首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three Pseudomonas fluorescens strains and the type strain Pseudomonas putida CFBP2066 inhibited invasion of the plant-parasitic nematodes Radopholus similis and Meloidogyne spp. in banana, maize and tomato roots. Results were, however, not always significantly different from controls. One Ps. fluorescens strain kept R. similis numbers significantly lower in banana roots after the initial invasion stage. All strains also showed an in vitro repellent effect towards the nematodes, with Meloidogyne spp. being more affected than R. similis. As Ps. putida CFBP2066 was negative for the enzymatic activities tested as well as HCN productivity, it was concluded that either other chemical bacterial compounds affected nematode infectivity or strains elicited induced systemic resistance in plants.  相似文献   

2.
Four endophytic fungi (Fusarium spp.) isolated from the cortical tissue of surface-sterilised banana as well as from tomato roots were tested for their capacity of biological control towards the burrowing nematode Radopholus similis on banana. The pathogenic and parasitic capacities of endophytic fungi towards R. similis were tested in in vitro experiments. No parasitism of fungi on R. similis was observed. However, nematode activity decreased significantly in the presence of all endophytic fungi in vitro when compared to nematodes in the absence of fungi. The effects of fungi on R. similis activities in the soil were tested in the absence of plants. Nematode activities were reduced significantly by 16-30% by endophytic fungi when compared to untreated soil.  相似文献   

3.
Monoxenic cultures of burrowing nematode populations extracted from banana roots from Belize, Guatemala, Honduras, and Costa Rica were established on carrot discs. Cultures of Radopholus spp. were also obtained from Florida, Puerto Rico, Dominican Republic, and Ivory Coast. The aggressiveness (defined as reproductive fitness and root necrosis) of these populations was evaluated by inoculating banana plants (Musa AAA, cv. Grande Naine) with 200 nematodes/plant. Banana plants produced by tissue culture were grown in 0.4-liter styrofoam cups, containing a 1:1 mix of a coarse and a fine sand, at ca. 27 °C and 80% RH. Banana plants were acclimated and allowed to grow for 4 weeks prior to inoculation. Plant height, fresh shoot and root weights, root necrosis, and nematode population densities were determined 8 weeks after inoculation. Burrowing-nematode populations varied in aggressiveness, and their reproductive fitness was generally related to damage reported in the field. Plant height and fresh shoot and root weight did not reflect damage caused by nematodes under our experimental conditions. Necrosis of primary roots was closely related to the reproductive fitness of the nematode populations. Variation in aggressiveness among nematode populations followed a similar trend in the two susceptible hosts tested, Grande Naine and Pisang mas. All nematode populations had a low reproductive factor (Rf ≤2.5) in the resistant host except for the Ivory Coast population which had a moderate reproductive factor (Rf ≤ 5) on Pisang Jari Buaya. This is the first report of a burrowing nematode population parasitizing this important source of resistance to R. similis.  相似文献   

4.
Paecilomyces lilacinus is a common soil fungus that has been isolated from many different habitats around the world. It is well known as a facultative egg pathogen of sedentary nematodes and also an important option to control Radopholus similis juvenile and adults in banana. This nematode antagonistic fungus may be used in an integrated approach to control banana plant parasitic nematodes. Dose response and form of application experiments were conducted with burrowing nematode, R. similis, on banana using a commercial water dispersible granulate formulated P. lilacinus (strain 251) product. The results revealed that nematode activity decreased in the presence of this fungus. An important correlation between rates of application and the degree of control of R. simnilis penetration and banana root weight was observed. The best control was achieved in the treatment were plantlets and soil were pre-inoculated with P. lilacinus and reinoculated during transplantation. The results showed that the biocontrol agent P. lilacinus is an excellent candidate for an IPM program against nematodes such as Radopholus similis.  相似文献   

5.
6.
Although mycorrhizal colonization provides a bioprotectional effect against a broad range of soil-borne pathogens, including plant parasitic nematodes, the commercial use of arbuscular mycorrhizal fungi (AMF) as biocontrol agents is still in its infancy. One of the main reasons is the poor understanding of the modes of action. Most AMF mode of action studies focused on AMF-bacterial/fungal pathogens. Only few studies so far examined AMF-plant parasitic nematode interactions. Therefore, the aim of the study was to determine whether the AMF Glomus intraradices was able to incite systemic resistance in banana plants towards Radopholus similis and Pratylenchus coffeae, two plant parasitic nematodes using a split-root compartmental set-up. The AMF reduced both nematode species by more than 50%, even when the AMF and the plant parasitic nematodes were spatially separated. The results obtained demonstrate for the first time that AMF have the ability to induce systemic resistance against plant parasitic nematodes in a root system.  相似文献   

7.
We report here, for the first time, the production of haploid plants of banana Musa balbisiana (BB). Callus was induced from anthers in which the majority of the microspores were at the uninucleate stage. The frequency of callus induction was 77%. Callus proliferation usually preceded embryo formation. About 8% of the anthers developed androgenic embryos. Of the 147 plantlets obtained, 41 were haploids (n=x=11). The frequency of haploid production depended on genotypes used: 18 haploid plants were produced from genotype Pisang klutuk, 12 from Pisang batu, seven from Pisang klutuk wulung and four from Tani. The frequency of regeneration was 1.1%, which was based on the total number of anthers cultured. Diploid plants (2n=2x=22) were also observed in the regenerated plants. The haploid banana plants that were developed will be important material for the improvement of banana through breeding programmes.  相似文献   

8.
Resistant rootstocks offer an alternative to pesticides for the control of soil pests. In Prunus spp., resistance loci to root-knot nematodes (RKN) have been mapped and a transformation method is needed to validate candidate genes. Our efforts have focused on the generation of transformed hairy-roots and composite plants appropriate for nematode infection assays. An efficient and reliable method using the A4R strain of Agrobacterium rhizogenes for the transformation of Prunus roots with an Egfp reporter gene is given. The rooting efficiency, depending on the genotypes, was maximal for the interspecific hybrid 253 (Myrobalan plum?×?almond-peach), susceptible to RKN, that was retained for subsequent studies. From the agro-inoculated cuttings, 72% produced roots, mainly at the basal section of the stem. Transformed roots were screened by microscope detection of Egfp fluorescence and molecular analyses of the integration of the transgene. The absence of residual agrobacteria in the plants was checked by the non-amplification of the chromosomal gene chvH. Egfp was expressed visually in 76% of the rooted plants. Isolated hairy roots in Petri dishes and composite plants (transformed roots and non-transformed aerial part) in soil containers were inoculated with the RKN Meloidogyne incognita. In both cases, root transformation did not affect the ability of the nematodes to develop in the root tissues. Our results showed that isolated hairy-roots can be used to validate candidate genes and the conditions in which composite plants offer a complementary system for studying the function of root genes in physiological conditions of whole plants are discussed.  相似文献   

9.
Studies were conducted to determine the potential of two avermectin compounds, abamectin and emamectin benzoate, for controlling plant-parasitic nematodes when applied by three methods: foliar spray, root dip, and pseudostem injection. Experiments were conducted against Meloidogyne incognita on tomato, M. javanica on banana, and Radopholus similis on banana. Foliar applications of both avermectins to banana and tomato were not effective for controlling any of the nematodes evaluated. Root dips of banana and tomato were moderately effective for controlling M. incognita on tomato and R. similis on banana. Injections (1 ml) of avermectins into banana pseudostems were effective for controlling M. javanica and R similis, and were comparable to control achieved with a conventional chemical nematicide, fenamiphos. Injections of 125 to 2,000 μg/plant effectively controlled one or both nematodes on banana; abamectin was more effective than emamectin benzoate for controlling nematodes.  相似文献   

10.
The burrowing nematode Radopholus similis is one of the major constraints to banana (Musa spp.) production worldwide. Resource-poor farmers can potentially manage R. similis by using naturally occurring banana endophytes, such as nonpathogenic Fusarium oxysporum, that are inoculated into tissue culture banana plantlets. At present, it is unclear at what stage in the R. similis infection process the endophytes are most effective. In this study, the effect of three endophytic F. oxysporum isolates (V5w2, Eny1.31i and Eny7.11o) on R. similis host preference of either endophyte-treated or untreated banana plants was investigated. No differences were observed between the proportion of nematodes attracted to either root segments excised from endophyte-treated or untreated plants, or in experiments using endophyte-treated and untreated tissue culture banana plantlets. These results imply that the early processes of banana plant host recognition by R. similis are not affected by endophyte infection.  相似文献   

11.
Jaizme-Vega  M.C.  Tenoury  P.  Pinochet  J.  Jaumot  M. 《Plant and Soil》1997,196(1):27-35
The effects of the interaction between the arbuscular mycorrhizal fungus Glomus mosseae and the root-knot nematode Meloidogyne incognita on growth and nutrition of micropropagated ;Grand Naine banana (Musa AAA) cultivar was studied under greenhouse conditions. Inoculation with two G. mosseae isolates significantly increased growth of plants in relation to non-mycorrhizal plants. Response to mycorrhizae was as effective as with an optimum P fertilization in promoting plant development for most growth parameters. Meloidogyne incognita had no apparent effect on the percentage of root colonization in mycorrhizal plants. In contrast, G. mosseae suppressed root galling and nematode buildup in the roots. The percentage of mycorrhizal colonization was high (over 80%) in low P fertilized plants, but optimum P rates for bananas (four times higher than low P) significantly reduced mycorrhizal colonization. Most elements were within sufficiency levels for banana with exception of N which was low for all treatments. Mycorrhizal plants fertilized with a low P rate showed higher N, P, K, Ca, and Mg contents as compared to non-mycorrhizal plants low in P with or without the nematode. Inoculation with G. mosseae favours growth of banana plants by enhancing plant nutrition and by suppressing nematode reproduction and galling during the early stages of plant development.  相似文献   

12.
Interactions between the root‐knot nematode Meloidogyne incognita and three isogenic tomato (Lycopersicon esculentum) genotypes were examined when plants were grown under ambient (370 ppm) and elevated (750 ppm) CO2. We tested the hypothesis that, defence‐recessive genotypes tend to allocate ‘extra’ carbon (relative to nitrogen) to growth under elevated CO2, whereas defence‐dominated genotypes allocate extra carbon to defence, and thereby increases the defence against nematodes. For all three genotypes, elevated CO2 increased height, biomass, and root and leaf total non‐structural carbohydrates (TNC):N ratio, and decreased amino acids and proteins in leaves. The activity of anti‐oxidant enzymes (superoxide dismutase and catalase) was enhanced by nematode infection in defence‐recessive genotypes. Furthermore, elevated CO2 and nematode infection did not qualitatively change the volatile organic compounds (VOC) emitted from plants. Elevated CO2 increased the VOC emission rate only for defence‐dominated genotypes that were not infected with nematodes. Elevated CO2 increased the number of nematode‐induced galls on defence‐dominated genotypes but not on wild‐types or defence‐recessive genotypes roots. Our results suggest that CO2 enrichment may not only increase plant C : N ratio but can disrupt the allocation of plant resources between growth and defence in some genetically modified plants and thereby reduce their resistance to nematodes.  相似文献   

13.
The potential of an in vitro technique to study root‐knot nematode infection on banana roots was investigated. Regenerated banana plants were placed horizontally on Gamborg B5 (GB5)‐medium and incubated under a light‐dark regime of 16h‐8h. Temperature fluctuated between 24 and 33 °C. Banana roots were inoculated with Meloidogyne incognita race 1 coming from roots of a transgenic tomato (Lycopersicon esculentum cv. Moneymaker) grown on GB5‐medium at 28 °C in complete darkness. Root‐knots appeared on primary and secondary banana roots two to seven days after nematode inoculation. After 28 days, egg masses protruded through the cortex and two days later juveniles hatched and reinfected banana roots. This method holds promise for dynamic studies of banana root infection with root‐knot nematodes.  相似文献   

14.
Polyphenol oxidase activity (PPO, EC 1.14.18.1, monophenol monooxygenase, and EC 1.10.3.2, o-diphenoloxidase) has been extensively studied in banana fruit for its role in enzymatic browning. Rapid discolouration of leaf, stem and root tissue after injury and strong pigmentation of tissue extracts indicate that PPO and phenolic compounds are ubiquitous in vegetative tissue of banana as well. They hamper biochemical and molecular studies in banana, as cumbersome adaptations of extraction protocols are required. On the other hand, PPO and phenolic compounds could be an important part of the plant's defence system against pests and diseases, including root parasitic nematodes. To facilitate future studies in this area, extraction and assay conditions for PPO from roots of banana (Musa acuminata AAA, Grande naine) were optimized. Highest enzyme activities were obtained in a 0.2 M phosphate buffer at pH 7.0 with 5% insoluble polyvinylpyrrolidone and 0.25% Triton X-100. The lowest K(m) values were obtained for dopamine and D-catechin. Monophenolase activity was shown with p-cresol. Banana root PPO was strongly inhibited by dithiothreitol and sodium metabisulfite. In root sections, oxidation of dopamine strongly co-localized with aerenchyma in the cortex. The experiments revealed indications for the involvement of root PPO and dopamine in resistance of banana against the parasitic nematode Radopholus similis.  相似文献   

15.
The seasonal fluctuations of nematodes associated with the rhizosphere of both banana cvs. Williams and Hindi throughout one year indicated a fairly negative correlation between the prevailing soil temperatures and the population densities of Criconemoides spp., Helicotylenchus exallus, Hoplolaimus spp. and Meloidogyne incognita.  相似文献   

16.
17.
18.
Pasteuria penetrans is a gram-positive, endospore-forming eubacterium that apparently is a member of the Bacillus-Clostridium clade. It is an obligate parasite of root knot nematodes (Meloidogyne spp.) and preferentially grows on the developing ovaries, inhibiting reproduction. Root knot nematodes are devastating root pests of economically important crop plants and are difficult to control. Consequently, P. penetrans has long been recognized as a potential biocontrol agent for root knot nematodes, but the fastidious life cycle and the obligate nature of parasitism have inhibited progress on mass culture and deployment. We are currently sequencing the genome of the Pasteuria bacterium and have performed amino acid level analyses of 33 bacterial species (including P. penetrans) using concatenation of 40 housekeeping genes, with and without insertions/deletions (indels) removed, and using each gene individually. By application of maximum-likelihood, maximum-parsimony, and Bayesian methods to the resulting data sets, P. penetrans was found to cluster tightly, with a high level of confidence, in the Bacillus class of the gram-positive, low-G+C-content eubacteria. Strikingly, our analyses identified P. penetrans as ancestral to Bacillus spp. Additionally, all analyses revealed that P. penetrans is surprisingly more closely related to the saprophytic extremophile Bacillus haladurans and Bacillus subtilis than to the pathogenic species Bacillus anthracis and Bacillus cereus. Collectively, these findings strongly imply that P. penetrans is an ancient member of the Bacillus group. We suggest that P. penetrans may have evolved from an ancient symbiotic bacterial associate of nematodes, possibly as the root knot nematode evolved to be a highly specialized parasite of plants.  相似文献   

19.
Six cultivars of banana grown widely in Malappuram district of Kerala were evaluated for the diversity of plant parasitic nematodes in their respective rhizosphere. The genotypes evaluated include Nendran, Poovan (Mysore), Njali poovan, Mysore poovan, Chenkadali and Ponnan. The study aims on a comparative analysis of rhizosphere of different banana varieties for the occurrence of plant parasitic nematodes, diversity, frequency of occurrence and to determine the most vulnerable type of banana variety. Cobb’s decanting and sieving method was used to isolate nematodes from soil. Thirty three samples randomly collected from different blocks of Malappuram district are subjected to analysis and a ten species of nematodes were reported. Among the six varieties analysed both Nendran and Mysore Poovan variety seems to be more susceptible to phytoparasitic nematodes. With respect to eight blocks of Malappuram district, Helicotylenchus sp. shows highest prominence value followed by Radopholus similis, reniform nematode and Meloidogyne incognita.  相似文献   

20.
Meloidogyne incognita causes more damage to cotton in the US than any other pathogen. The objective of this study was to document the cumulative effect of moderate resistance on M. incognita population density, root galling, and yield suppression in the southern United States on a moderately resistant cotton genotype grown continuously for three years. Cotton genotypes were Phytogen PH98-3196 (77% suppression of M. incognita), Acala NemX (85% suppression of M. incognita), and Delta and Pine Land DP458 B/R (susceptible standard, 0% suppression). Cotton was grown in fumigated and non-fumigated plots to measure yield loss. Each genotype and nematicide combination was planted in the same place for three years at two sites to document cumulative effects. In 2006, following three years of the different genotypes, all plots at one site were planted with susceptible cotton to document residual effects of planting resistant genotypes. Root galling and nematode population densities in the soil were significantly lower, and percentage yield suppression was numerically lower, when moderately resistant cotton was grown compared to the susceptible standard in both fields in all three years. Differences between susceptible and moderately resistant genotypes are established quickly (after only one season) and then either maintained at similar levels or slightly increased in subsequent years depending on initial nematode levels. However, when susceptible cotton was grown following three years of the moderately resistant genotypes, the nematode suppression provided by moderate resistance was undetectable by the end of the first season. Moderately resistant cotton genotypes are more beneficial than previously reported and should be pursued for nematode management. Rotation of moderately resistant and susceptible cotton could be used along with nematicides to manage root-knot nematodes in a continuous cotton cropping system and reduce selection pressure on the nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号