首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of iron deficiency on the composition of the xylem sap and leaf apoplastic fluid have been characterized in sugar beet (Beta vulgaris Monohil hybrid). pH was estimated from direct measurements in apoplastic fluid and xylem sap obtained by centrifugation and by fluorescence of leaves incubated with 5-carboxyfluorescein and fluorescein isothiocyanate-dextran. Iron deficiency caused a slight decrease in the pH of the leaf apoplast (from 6.3 down to 5.9) and xylem sap (from 6.0 down to 5.7) of sugar beet. Major organic acids found in leaf apoplastic fluid and xylem sap were malate and citrate. Total organic acid concentration in control plants was 4.3 mM in apoplastic fluid and 9.4 mM in xylem sap and increased to 12.2 and 50.4 mM, respectively, in iron-deficient plants. Inorganic cation and anion concentrations also changed with iron deficiency both in apoplastic fluid and xylem sap. Iron decreased with iron deficiency from 5.5 to 2.5 microM in apoplastic fluid and xylem sap. Major predicted iron species in both compartments were [FeCitOH](-1) in the controls and [FeCit(2)](-3) in the iron-deficient plants. Data suggest the existence of an influx of organic acids from the roots to the leaves via xylem, probably associated to an anaplerotic carbon dioxide fixation by roots.  相似文献   

2.
Plants grown in calcareous, high pH soils develop Fe deficiency chlorosis. While the physiological parameters of Fe-deficient leaves have been often investigated, there is a lack of information regarding structural leaf changes associated with such abiotic stress. Iron-sufficient and Fe-deficient pear and peach leaves have been studied, and differences concerning leaf epidermal and internal structure were found. Iron deficiency caused differences in the aspect of the leaf surface, which appeared less smooth in Fe-deficient than in Fe-sufficient leaves. Iron deficiency reduced the amount of soluble cuticular lipids in peach leaves, whereas it reduced the weight of the abaxial cuticle in pear leaves. In both plant species, epidermal cells were enlarged as compared to healthy leaves, whereas the size of guard cells was reduced. In chlorotic leaves, bundle sheaths were enlarged and appeared disorganized, while the mesophyll was more compacted and less porous than in green leaves. In contrast to healthy leaves, chlorotic leaves of both species showed a significant transient opening of stomata after leaf abscission (Iwanoff effect), which can be ascribed to changes found in epidermal and guard cells. Results indicate that Fe-deficiency may alter the barrier properties of the leaf surface, which can significantly affect leaf water relations, solute permeability and pest and disease resistance.  相似文献   

3.
The ferric-chelate reductase (FC-R) activity of mesophyll protoplasts isolated from Fe-sufficient (control) and Fe-deficient sugar beet (Beta vulgaris L.) leaves has been characterized. Measurements were made in an ionic environment similar to that in the apoplastic space of the sugar beet mesophyll cells. The FC-R activity of Fe-sufficient and Fe-deficient protoplasts was dependent on light. Fe deficiency decreased markedly the FC-R activity per protoplast surface unit. The optimal pH for the activity of the FC-R in mesophyll protoplasts was in the range 5.5 to 6.0, typical of the apoplastic space. Beyond pH 6.0, the activity of the FC-R in mesophyll protoplasts decreased markedly in both Fe-sufficient and Fe-deficient protoplasts. These data suggest that both the intrinsic decrease in FC-R activity per protoplast surface and a possible shift in the pH of the apoplastic space could lead to the accumulation of physiologically inactive Fe pools in chlorotic leaves.  相似文献   

4.
The characteristics of the Fe(III)-chelate reductase activity have been investigated in mesophyll disks of Fe-sufficient and Fe-deficient sugar beet leaves. The Fe(III)-chelate reductase activity of mesophyll disks was light dependent and increased markedly when the epidermis was removed. Iron(III)-citrate was photo-reduced directly by light in the absence of plant tissue. Total reductase activity was the sum of enzymatic mesophyll reduction, enzymatic reduction carried out by organelles exposed at the disk edge and reduction caused by the release of substances both by exposed mesophyll cells and at the disk edge. Compounds excreted were shown by HPLC to include organic anions, mainly oxalate, citrate and malate. When expressed on a leaf surface basis, Fe deficiency decreased the total mesophyll Fe(III)-chelate reductase activity. However, Fe-sufficient disks reduced less Fe than the Fe-deficient ones when expressed on a chlorophyll basis. The optimal pH values for Fe(III) reduction were always in the range 6.0-6.7. In control leaves Fe(III)-citrate and Fe(III)-malate were the substrates that led to the highest Fe reduction rates. In Fe-deficient leaves Fe(III)-malate led to the highest Fe reduction rates, followed by Fe(III)-EDTA and then Fe(III)-citrate. K:(m) values for the total reductase activity, enzymatic mesophyll reduction and enzymatic reduction carried out by organelles at the disk edge were obtained.  相似文献   

5.
Ion chromatographic methods determined organic acids and mainnutrient minerals in the apoplastic solution from leaves ofseveral Fagaceae (Quercus ilex L., Quercus cerris L., Quercusvirgiliana (Ten.) Ten, and Fagus sylvatica L.). The anions oforganic acids found in high amounts (250 to 650 µM) werequinate, malate, and oxalate. Lactate, pyruvate, formate andacetate were detected in relatively low amounts with concentrationsbetween 20 and 200 µM. The total concentration of organicacids in the apoplastic sap ranged between 1.5 and 2 mM. Thetotal concentration of inorganic cations (K+, Mg2+, NH4+, Ca2+,Na+) and anions (C1, NO3, SO2–4 and PO3–4)in the apoplastic sap varied between 5 and 10 mM, and 0.35 and1.8 mM, respectively. We conclude that the concentration oforganic acid ions in the leaf apoplast depends mainly on theexchange with the leaf cells and is influenced by the electrochemicalgradient between the symplast and the apoplast in relation tothe water potential of the leaf. The determination of formateand acetate in the apoplastic compartment of leaves lend weightto the argument that the production of these acids by treesis a important emission source to the atmosphere. (Received June 9, 1998; Accepted April 8, 1999)  相似文献   

6.
The effects of Fe deficiency on different metabolic processes were characterized in roots, xylem sap and leaves of tomato. The total organic acid pool increased significantly with Fe deficiency in xylem sap and leaves of tomato plants, whereas it did not change in roots. However, the composition of the pool changed with Fe deficiency, with major increases in citrate concentrations in roots (20-fold), leaves (2-fold) and xylem sap (17-fold). The activity of phosphoenolpyruvate carboxylase, an enzyme leading to anaplerotic C fixation, increased 10-fold in root tip extracts with Fe deficiency, whereas no change was observed in leaf extracts. The activities of the organic acid synthesis-related enzymes malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, fumarase and aconitase, as well as those of the enzymes lactate dehydrogenase and pyruvate carboxylase, increased with Fe deficiency in root extracts, whereas only citrate synthase increased significantly with Fe deficiency in leaf extracts. These results suggest that the enhanced C fixation capacity in Fe-deficient tomato roots may result in producing citrate that could be used for Fe xylem transport. Total pyridine nucleotide pools did not change significantly with Fe deficiency in roots or leaves, although NAD(P)H/NAD(P) ratios were lower in Fe-deficient roots than in controls. Rates of O(2) consumption were similar in Fe-deficient and Fe-sufficient roots, but the capacity of the alternative oxidase pathway was decreased by Fe deficiency. Also, increases in Fe reductase activity with Fe deficiency were only 2-fold higher when measured in tomato root tips. These values are significantly lower than those found in other plant species, where Fe deficiency leads to larger increases in organic acid synthesis-related enzyme activities and flavin accumulation. These data support the hypothesis that the extent of activation of different metabolic pathways, including carbon fixation via PEPC, organic acid synthesis-related enzymes and oxygen consumption is different among species, and this could modulate the different levels of efficiency in Strategy I plants.  相似文献   

7.
Iron is an essential micronutrient for plant growth and development, involved in key cellular processes. However, the distribution of Fe in plant tissues is still not well known. In the so-called Fe chlorosis paradox, leaves of fruit trees grown in the field usually have high concentrations of Fe but still are Fe-deficient. Leaves of the Prunus rootstock GF 677 (P. dulcis?×?P. persica) grown in hydroponics have been used to carry out two-dimensional (2-D) nutrient mapping by synchrotron radiation-induced X-ray fluorescence. Iron-deficient leaves accumulated more Fe in the midrib and veins, with Fe concentration being markedly lower in mesophyll leaf areas. The effects of Fe deficiency and Fe re-supply on leaf chlorophyll concentration and on the distribution of Fe and other nutrients within different plant tissues have been investigated in the same plants. After Fe re-supply, leaf Fe concentrations increased largely in all leaf types. However, whereas re-greening was almost completely achieved in apical leaves, in some expanded leaves the increase in chlorophyll concentration was only moderate. Therefore, after Fe re-supply Fe-deficient expanded leaves of the Prunus rootstock GF 677 had significant increases in Fe concentration but were still chlorotic. This is similar to what occurs in leaves of peach trees in field conditions, opening the possibility that this system could be used as a model to study the Fe chlorosis paradox.  相似文献   

8.
Iron (Fe) deficiency chlorosis is a common and severe nutritional deficiency in plants, and nitric oxide (NO) is an important signaling molecule in regulating Fe homeostasis in plants. We studied the effect of sodium nitroprusside (SNP, an NO donor) on Fe uptake, translocation, storage, and activation in a greenhouse. The concentrations of active Fe, total Fe, and the ratio of active Fe to total Fe, the activities of key enzymes, and chlorophyll concentration were determined, and resistance to oxidative stress and mineral element distribution in peanut plants grown in Fe sufficiency and Fe deficiency (an absence of Fe and low level of Fe concentration) conditions were also investigated. The results showed that NO significantly increased the concentration of active Fe and the ratio of active Fe to total Fe in Fe-deficient plants, and increased active Fe concentration in leaves and stems of Fe-sufficient plants. NO application also increased Fe translocation from roots to the shoots and the accumulation of Fe in cell organelles and the soluble fraction in leaves, especially in the low-level Fe concentration condition, thus increased available Fe and chlorophyll concentration in leaves of Fe-deficient plants. The activities of key enzymes were regulated by NO, which effectively mitigated oxidative damages by enhancing the activities of antioxidant enzymes (SOD, POD, CAT), increasing H+-ATPase and Ca2+-ATPase activities to balance the ion (Fe, Ca, Mg and Zn) uptake and distribution in Fe-deficient plants. However, NO application had no obvious effect on these variables in Fe-sufficient plants. These results indicated that NO application can improve Fe uptake, translocation, and activation of related enzymes in Fe-deficient plants, thus mitigating the adverse effect of Fe deficiency.  相似文献   

9.
Dixit  Deeksha  Srivastava  N.K. 《Photosynthetica》2000,38(2):193-197
Changes in leaf growth, photosynthetic efficiency, and incorporation pattern of photosynthetically fixed 14CO2 in leaves 1 and 2 from plant apex, in roots, and rhizome induced in Curcuma by growing in a solution culture at Fe concentration of 0 and 5.6 g m–3 were studied. 14C was incorporated into primary metabolites (sugars, amino acids, and organic acids) and secondary metabolites (essential oil and curcumin). Fe deficiency resulted in a decrease in leaf area, its fresh and dry mass, chlorophyll (Chl) content, and CO2 exchange rate at all leaf positions. The rate of 14CO2 fixation declined with leaf position, maximum being in the youngest leaf. Fe deficiency resulted in higher accumulation of sugars, amino acids, and organic acids in leaves at both positions. This is due to poor translocation of metabolites. Roots and rhizomes of Fe-deficient plants had lower concentrations of total photosynthate, sugars, and amino acids whereas organic acid concentration was higher in rhizomes. 14CO2 incorporation in essential oil was lower in the youngest leaf, as well as incorporation in curcumin content in rhizome. Fe deficiency influenced leaf area, its fresh and dry masses, CO2 exchange rate, and oil and curcumin accumulation by affecting translocation of assimilated photosynthates.  相似文献   

10.
The effects of placing solid implants containing Fe sulfate in branches of Fe-deficient pear and peach trees on the composition of the xylem sap have been studied. Iron sulfate implants are commercially used in northeastern Spain to control iron chlorosis in fruit trees. Implants increased Fe concentrations and decreased organic acid concentrations in the xylem sap, whereas xylem sap pH was only moderately changed. The citrate to Fe ratios decreased markedly after implants, therefore improving the possibility that Fe could be reduced by the leaf plasma membrane enzyme reductase, known to be inhibited by high citrate/Fe ratios. In peach, the effects of the implants could be observed many months post treatment. In pear, some effects were still observed one year after the implants had taken place. Results obtained indicate that solid Fe sulfate implants were capable of significantly changing the chemical composition of the xylem sap in fruit trees.  相似文献   

11.
The effects of iron deficiency on the leaf chlorophyll concentrations and on the macro- (N, P, K, Ca and Mg) and micro-nutrient (Fe, Mn, Zn and Cu) composition of flowers (at full bloom) and leaves (60 and 120 days after full bloom) of field-grown peach (Prunus persica L. Batsch) trees were investigated. Flowers and leaves were taken and analysed from fifty individual trees. Our data indicate that large decreases in leaf chlorophyll concentration were found at the beginning of the season in control trees, possibly associated to a dilution effect by leaf growth, that were later followed by leaf chlorophyll concentration increases. Leaf Fe chlorosis apparently results from two different processes, the dilution of leaf Chl caused by growth and the subsequent inability to produce and/or stabilize new Chl molecules in the thylakoid membrane. Iron chlorosis did not change the seasonal change patterns of any of the nutrients studied. In Fe-deficient trees the K concentration and the K/Ca ratio were high not only in leaves but also in flowers, indicating that this is a characteristic of Fe-deficient plant tissue in the whole fruit tree growing season. Flower Fe concentrations were well correlated with the degree of chlorosis developed later in the season by the trees, suggesting that flower analysis could be used for the prognosis of Fe deficiency in peach.  相似文献   

12.
Capillary electrophoresis methods are described for the analysis of the major inorganic anions (nitrite, nitrate, chloride, sulphate, phosphate), organic acids (oxalate, malate, citrate, succinate) and inorganic cations (ammonium, potassium, sodium, calcium, magnesium) in leaf extracts. Analytical performance was validated for extracts from leaves of four sclerophyllous species: Eucalyptus globulus, E. cladocalyx, E. nitens and Pinus radiata. Inorganic anions and organic acids were analysed in a single run within 5 min using a background electrolyte of 2,6-pyridinedicarboxylic acid (20 mM) and cetyltrimethylammonium bromide (0.5 mM). Cations were analysed in a separate run also within 5 min using imidazole (10 mM) and 18-crown-6 (2 mM) as background electrolyte. Replicate injections were highly repeatable when the capillary was rinsed between runs with hydrochloric acid (0.25 M) and background electrolyte, but not when the acid rinse was omitted or replaced by a rinse with sodium hydroxide (0.25 M). Standard curves for all analytes were linear over the range of 0.05-1 mm. Standard curves constructed by serial dilution of a leaf extract were also highly linear, and this, combined with the excellent recovery of added solutes in a spike and recovery test, suggests quantification was unaffected by the complex matrix that is present in un-purified, hot water extracts of leaves. There were significant differences in concentrations of the major anions and cations between the species studied.  相似文献   

13.
Iron deficiency changed markedly the shape of the leaf chlorophyll fluorescence induction kinetics during a dark-light transition, the so-called Kautsky effect. Changes in chlorophyll fluorescence lifetime and yield were observed, increasing largely the minimal and the intermediate chlorophyll fluorescence levels, with a marked dip between the intermediate and the maximum levels and loss of the secondary peak after the maximum. During the slow changes, the lifetime-yield relationship was found to be linear and curvilinear (towards positive lifetime values) in control and Fe-deficient leaves, respectively. These results suggested that part of the Photosystem II antenna in Fe-deficient leaves emits fluorescence with a long lifetime. In dark-adapted Fe-deficient leaves, measurements in the picosecond-nanosecond time domain confirmed the presence of a 3.3-ns component, contributing to 15% of the total fluorescence. Computer simulations revealed that upon illumination such contribution is also present and remains constant, indicating that energy transfer is partially interrupted in Fe-deficient leaves. Photosystem II-enriched membrane fractions containing different pigment-protein complexes were isolated from control and Fe-deficient leaves and characterized spectrophotometrically. The photosynthetic pigment composition of the fractions was also determined. Data revealed the presence of a novel pigment-protein complex induced by Fe deficiency and an enrichment of internal relative to peripheral antenna complexes. The data suggest a partial disconnection between internal Photosystem II antenna complexes and the reaction center, which could lead to an underestimation of the Photosystem II efficiency in dark-adapted, low chlorophyll Fe-deficient leaves, using chlorophyll fluorescence. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The effects of iron deficiency and iron resupply on the metabolism of leaf organic acids have been investigated in hydroponically grown sugar beet. Organic acid concentrations and activities in leaf extracts of several enzymes related to organic acid metabolism were measured. Enzymes assayed included phosphoenol pyruvate carboxylase (PEPC; EC 4.1.1.31), different Krebs cycle enzymes: malate dehydrogenase (MDH; EC 1.1.1.37), aconitase (EC 4.2.1.3), fumarase (EC 4.2.1.2), citrate synthase (CS; EC 4.1.3.7) and isocitrate dehydrogenase (ICDH; EC 1.1.1.42), glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and two enzymes related to anaerobic metabolism (lactate dehydrogenase [LDH]; EC 1.1.1.27, and pyruvate decarboxylase [PDC]; EC 4.1.1.1). Iron concentration in leaves was severely decreased by iron deficiency. Iron resupply caused an increase in iron concentrations, reaching levels similar to the controls in 96 h. Iron deficiency induced a 2.3-fold (from 16 to 37 mmol m−2) increase in leaf total organic acid concentration. Organic anion concentrations were still 4-fold higher than the controls 24 h after resupply and decreased to values similar to those found in the controls after 96 h. All measured enzymes had increased activities in extracts of iron-deficient leaves when compared to the controls and generally decreased to control values 24 h after iron addition. These data provide evidence that organic acid accumulation in iron-deficient leaves is likely not due to an enhancement in leaf carbon fixation. Instead, this accumulation could be associated with organic acid export from the roots to the leaves via xylem.  相似文献   

15.
Activated oxygen and antioxidant defences in iron-deficient pea plants   总被引:7,自引:0,他引:7  
Iron (Fe) deficiency in pea leaves caused a large decrease (44–62&) in chlorophyll a, chlorophyll b and carotenoids, and smaller decreases in soluble protein (18&) and net photosynthesis (28&). Catalase, non-specific peroxidase and ascorbate peroxidase activities declined by 51& in young Fe-deficient leaves, whereas monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase activities remained unaffected. Ascorbate peroxidase activity was highly correlated (r2= 0. 99, P < 0. 001) with the Fe content of leaves, which allows its use as an indicator of the Fe nutritional status of the plant. Fe deficiency resulted in an increase of CuZn-superoxide dismutase but not of Mn-superoxide dismutase. The content of ascorbate decreased by only 24& and those of reduced and oxidized glutathione and vitamin E did not vary. The low-molecular-mass fraction of Fe-sufficient leaves contained 30–65 μg (g dry weight)?1 Mn. This concentration was 15–60 times greater than that of Fe and Cu in the same fraction, and was further enhanced (1. 5- to 2. 5-fold) by Fe deficiency without causing Mn toxicity. The concentration of catalytic Fe, that is, of Fe active for free radical generation, was virtually zero and that of catalytic Cu did not change with severe Fe deficiency. Because catalytic metals mediate lipid and protein oxidation in vivo, the above findings would explain why oxidatively damaged lipids and proteins do not accumulate in Fe-deficient leaves.  相似文献   

16.
Nikolic M  Römheld V 《Plant physiology》2003,132(3):1303-1314
It has been hypothesized that nitrate (NO(3)(-)) nutrition might induce iron (Fe) deficiency chlorosis by inactivation of Fe in the leaf apoplast (H.U. Kosegarten, B. Hoffmann, K. Mengel [1999] Plant Physiol 121: 1069-1079). To test this hypothesis, sunflower (Helianthus annuus L. cv Farnkasol) plants were grown in nutrient solutions supplied with various nitrogen (N) forms (NO(3)(-), NH(4)(+) and NH(4)NO(3)), with or without pH control by using pH buffers [2-(N-morpholino)ethanesulfonic acid or 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid]. It was shown that high pH in the nutrient solution restricted uptake and shoot translocation of Fe independently of N form and, therefore, induced Fe deficiency chlorosis at low Fe supply [1 micro M ferric ethylenediaminedi(O-hydroxyphenylacetic acid)]. Root NO(3)(-) supply (up to 40 mM) did not affect the relative distribution of Fe between leaf apoplast and symplast at constant low external pH of the root medium. Although perfusion of high pH-buffered solution (7.0) into the leaf apoplast restricted (59)Fe uptake rate as compared with low apoplastic solution pH (5.0 and 6.0, respectively), loading of NO(3)(-) (6 mM) showed no effect on (59)Fe uptake by the symplast of leaf cells. However, high light intensity strongly increased (59)Fe uptake, independently of apoplastic pH or of the presence of NO(3)(-) in the apoplastic solution. Finally, there are no indications in the present study that NO(3)(-) supply to roots results in the postulated inactivation of Fe in the leaf apoplast. It is concluded that NO(3)(-) nutrition results in Fe deficiency chlorosis exclusively by inhibited Fe acquisition by roots due to high pH at the root surface.  相似文献   

17.
It has been hypothesized that under NO(3)(-) nutrition a high apoplastic pH in leaves depresses Fe(3+) reductase activity and thus the subsequent Fe(2+) transport across the plasmalemma, inducing Fe chlorosis. The apoplastic pH in young green leaves of sunflower (Helianthus annuus L.) was measured by fluorescence ratio after xylem sap infiltration. It was shown that NO(3)(-) nutrition significantly increased apoplastic pH at distinct interveinal sites (pH >/= 6.3) and was confined to about 10% of the whole interveinal leaf apoplast. These apoplastic pH increases presumably derive from NO(3)(-)/proton cotransport and are supposed to be related to growing cells of a young leaf; they were not found in the case of sole NH(4)(+) or NH(4)NO(3) nutrition. Complementary to pH measurements, the formation of Fe(2+)-ferrozine from Fe(3+)-citrate was monitored in the xylem apoplast of intact leaves in the presence of buffers at different xylem apoplastic pH by means of image analysis. This analysis revealed that Fe(3+) reduction increased with decreasing apoplastic pH, with the highest rates at around pH 5. 0. In analogy to the monitoring of Fe(3+) reduction in the leaf xylem, we suggest that under alkaline nutritional conditions at interveinal microsites of increased apoplastic pH, Fe(3+) reduction is depressed, inducing leaf chlorosis. The apoplastic pH in the xylem vessels remained low in the still-green veins of leaves with intercostal chlorosis.  相似文献   

18.
The role of the leaf apoplast in iron (Fe) uptake into the leaf symplast is insufficiently understood, particularly in relation to the supposed inactivation of Fe in leaves caused by elevated bicarbonate in calcareous soils. It has been supposed that high bicarbonate supply to roots increases the pH of the leaf apoplast which decreases the physiological availability of Fe in leaf tissues. The study reported here has been carried out with sunflower plants grown in nutrient solution and with grapevine plants grown on calcareous soil under field conditions. The data obtained clearly show that the pH of the leaf apoplastic fluid was not affected by high bicarbonate supply in the root medium (nutrient solution and field experiments). The concentrations of total, symplastic and apoplastic Fe were decreased in chlorotic leaves of both sunflower (nutrient solution experiment) and grapevine plants in which leaf expansion was slightly inhibited (field experiment). However, in grapevine showing severe inhibition of leaf growth, total Fe concentration in chlorotic leaves was the same or even higher than in green ones, indicative to the so-called `chlorosis paradox'. The findings do not support the hypothesis of Fe inactivation in the leaf apoplast as the cause of Fe deficiency chlorosis since no increase was found in the relative amount of apoplastic Fe (% of total leaf Fe) either in the leaves of sunflower or grapevine plants. It is concluded that high bicarbonate concentration in the soil solution does not decrease Fe availability in the leaf apoplast.  相似文献   

19.
Harris (Biochemistry 24 (1985) 7412) reports that inorganic anions bind to human apotransferrin in such a way as to perturb the ultraviolet spectrum. The locus of binding is thought to involve the specific metal/anion-binding sites since no perturbation is observed with Fe3+-transferrin-CO3(2-). Paradoxically, we were unable to demonstrate the formation of Fe3+-transferrin-inorganic anion complexes despite the presence of high concentrations of SO4(2-), H2PO4-, Cl-, ClO4- or NO3-. Similar results were found for human lactoferrin. Electron paramagnetic resonance spectroscopy and visible spectrophotometry were used to monitor the results. An attempt to form the H2PO4- complex by displacement of glycine from Fe3+-transferrin-glycine resulted only in the disruption of the ternary complex. A series of inorganic anions varied in their ability to release iron from Fe3+-transferrin-CO3(2-) at pH 5.5, the approximate pH of endosomes where iron release takes place within cells. The order of effectiveness was H2P2O7(2-) much greater than H2PO4- greater than SO4(2-) greater than NO3- greater than Cl- greater than ClO4-. The rate of iron removal from Fe3+-transferrin-CO3(2-) at pH 5.5 by a 4-fold excess of pyrophosphate was greatly enhanced by physiological NaCl concentration. Iron removal was complete within 10 min, the approximate time for iron release from Fe3+-transferrin-CO3(2-) in developing erythroid cells. Thus, inorganic anions may have a significant effect on the release of iron under physiological conditions despite the fact that such inorganic anions cannot act as synergistic anions. The results are discussed in relation to a special role for the carboxylate group in allowing ternary complex formation.  相似文献   

20.
The effects of leaf age on water relations, organic solute, and total ion accumulation were studied in mature and immature leaves of two-year-old grapevines (Vitis vinifera L., cv. Savatiano) grown under water stress conditions. Osmotic potential at full turgor decreased significantly in leaves of stressed plants, irrespective of leaf age, indicating the occurrence of an active osmotic adjustment. The apoplastic water fraction (A) increased during leaf ontogeny in both control and stressed plants. However, the values of A were lower in stressed plants. Starch concentration decreased significantly in both mature and immature leaves during the drought cycle, while the relative proportion of monosaccharides and sucrose was markedly different in immature leaves compared to mature. The accumulation of total inorganic ions, induced by drought, was also age dependent, increasing significantly with leaf age, while there were no significant differences in total amino acids content. Inorganic ions and carbohydrates seem to be the major component of osmotic adjustment in mature and immature grapevine leaves, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号