首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelium-protective properties of pharmacological agents may be assessed by using different experimental models of endothelial dysfunction or injury. The model of endothelial dysfunction induced by vessel perfusion with polymorphonuclear leukocytes (PMN) was used for evaluation of pentoxifylline (PTX) effects on vasoconstrictor responses to noradrenaline (NA) in the rabbit renal artery. Addition of PMN into the perfusion solution significantly increased the responses to NA at all doses. PTX administration (10(-5) mol x l(-1)) significantly diminished the constrictor responses to NA in vessels perfused with PMN+PTX when compared to the responses in PMN-perfused vessels (at dose 0.1 microg: 32.25 vs. 14.25, at dose 1 microg: 51 vs. 27.75 (p<0.01), at dose 10 microg 74.25 vs. 39.75 (p<0.05), all values expressed as median of perfusion pressure in mm Hg). The model of endothelial damage induced by repeated NA administration in 5 doses (10-50 microg of NA) was used for evaluation of the endothelium-protective effect of sulodexide (SLX). It was found that SLX (120 U/l) significantly decreased the number of desquamated endothelial cells (EC) compared to the control group (controls: 131.4+/-20.1 EC, +SLX: 83.3+/-13.8 EC, p<0.01). These results confirmed the favorable endothelium-protective effects of pentoxifylline and sulodexide in the two experimental models.  相似文献   

2.
Caveolae represent an important structural element involved in endothelial signal-transduction. The present study was designed to investigate the role of caveolae in endothelium-dependent relaxation of different vascular beds. Caveolae were disrupted by cholesterol depletion with filipin (4x10(-6) g L(-1)) or methyl-beta-cyclodextrin (MCD; 1x10(-3) mol L(-1)) and the effect on endothelium-dependent relaxation was studied in rat aorta, small renal arteries and mesenteric arteries in the absence and presence of L-NMMA. The contribution of NO and EDHF, respectively, to total relaxation in response to acetylcholine (ACh) gradually changed from aorta (71.2+/-6.1% and 28.8+/-6.1%), to renal arteries (48.6+/-6.4% and 51.4+/-6.4%) and to mesenteric arteries (9.1+/-4.0% and 90.9+/-4.1%). Electron microscopy confirmed filipin to decrease the number of endothelial caveolae in all vessels studied. Incubation with filipin inhibited endothelium-dependent relaxation induced by cumulative doses of ACh (3x10(-9)-10(-4) mol L(-1)) in all three vascular beds. In aorta, treatment with either filipin or MCD only inhibited the NO component, whereas in renal artery both NO and EDHF formation were affected. In contrast, in mesenteric arteries, filipin treatment only reduced EDHF formation. Disruption of endothelial caveolae is associated with the impairment of both NO and EDHF in acetylcholine-induced relaxation.  相似文献   

3.
The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity.  相似文献   

4.
We investigated the progression of vascular dysfunction associated with the metabolic syndrome with and without hyperglycemia in lean, Zucker obese, and Zucker diabetic fatty (ZDF) rats. Responses of aorta and small coronary and mesenteric arteries were measured to endothelium-dependent and -independent vasodilators. Indices of oxidative stress were increased in serum from ZDF rats throughout the study, whereas values were increased in Zucker obese rats later in the study [thiobarbituric acid reactive substances: 0.45 +/- 0.02, 0.59 +/- 0.03 (P < 0.05), and 0.58 +/- 0.03 (P < 0.05) mug/ml in serum from 28- to 40-wk-old lean, Zucker obese, and ZDF rats, respectively]. Acetylcholine (ACh)-induced relaxation was not altered in vessels from lean animals from 8-40 wk. ACh-induced relaxation was nearly abolished in coronary arteries from 28- to 36-wk-old Zucker obese rats and by 16-36 wk in ZDF rats and was attenuated in aorta and mesenteric vessels from ZDF rats [%relaxation to 10 muM ACh: 72.2 +/- 7.1, 17.9 +/- 5.9 (P < 0.05), and 23.0 +/- 4.5 (P < 0.05) in coronary vessels; and 67.9 +/- 9.2, 50.1 +/- 5.5, and 42.3 +/- 4.7 (P < 0.05) in mesenteric vessels from 28- to 40-wk-old lean, Zucker obese, and ZDF rats, respectively]. The attenuated ACh-induced relaxation was improved when vessels were incubated with tiron, suggesting superoxide as a mechanism of endothelial dysfunction. Sodium nitroprusside-induced relaxation was not altered in aorta or coronary arteries and was potentiated in mesenteric arteries from Zucker obese rats. Our data suggest that diabetes enhances the progression of vascular dysfunction. Increases in indices of oxidative stress precede the development of dysfunction and may serve as a marker of endothelial damage.  相似文献   

5.
Transition-metal catalyzed reactions contribute to oxidative stress, which has been implicated in the pathogenesis of diabetic complications. The aim was to evaluate the effects of treatment with the transition metal chelator trientine on endothelium-dependent relaxation of aorta and corpus cavernosum from streptozotocin-induced diabetes of 8 weeks duration in rats. Effects on cavernosum autonomic innervation were also examined. Diabetes caused a 30.1 +/- 3.8% reduction in maximum aorta endothelium-dependent relaxation to acetylcholine (ACh), which was markedly attenuated (72.7 +/- 10.6%) by trientine treatment. Reversal treatment (4 weeks untreated diabetes, 4 weeks trientine) did not effect endothelium-dependent relaxation compared with aortas from rats with 4 weeks of diabetes, however, there was a 22.5 +/- 6.2% improvement compared with 8 weeks of diabetes. Eight weeks of diabetes caused a 41.5 +/- 6.6% reduction in corpus cavernosum endothelium-dependent maximum relaxation to ACh that was 70.1 +/- 16.9% prevented by trientine. Cavernosum nonadrenergic, noncholinergic (NANC) nerve stimulation caused frequency-dependent relaxation to a maximum of 40.9 +/- 2.4%, which was reduced by diabetes to 24.2 +/- 2.1%. Trientine partially prevented this deficit, maximum relaxation being 31.9 +/- 2.3%. Thus, metal chelator treatment has beneficial effects on aorta and cavernosum endothelium-dependent relaxation and on cavernosum NANC innervation.  相似文献   

6.
We previously reported that in mesenteric arteries from aged Otsuka Long-Evans Tokushima fatty (OLETF) rats (a type 2 diabetes model) endothelium-derived hyperpolarizing factor (EDHF)-type relaxation is impaired while endothelium-derived contracting factor (EDCF)-mediated contraction is enhanced (Matsumoto T, Kakami M, Noguchi E, Kobayashi T, Kamata K. Am J Physiol Heart Circ Physiol 293: H1480-H1490, 2007). Here we investigated whether acute and/or chronic treatment with metformin might improve this imbalance between the effects of the above endothelium-derived factors in mesenteric arteries isolated from OLETF rats. In acute studies on OLETF mesenteric arteries, ACh-induced relaxation was impaired and the relaxation became weaker at high ACh concentrations. Both metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside [AICAR, an AMP-activated protein kinase (AMPK) activator that is also activated by metformin] 1) diminished the tendency for the relaxation to reverse at high ACh concentrations and 2) suppressed both ACh-induced EDCF-mediated contraction and ACh-stimulated production of prostanoids (thromboxane A2 and PGE2). In studies on OLETF arteries from chronically treated animals, metformin treatment (300 mg.kg(-1).day(-1) for 4 wk) 1) improved ACh-induced nitric oxide- or EDHF-mediated relaxation and cyclooxygenase (COX)-mediated contraction, 2) reduced EDCF-mediated contraction, 3) suppressed production of prostanoids, and 4) reduced superoxide generation. Metformin did not alter the protein expressions of endothelial nitric oxide synthase (eNOS), phospho-eNOS (Ser1177), or COX-1, but it increased COX-2 protein. These results suggest that metformin improves endothelial functions in OLETF mesenteric arteries by suppressing vasoconstrictor prostanoids and by reducing oxidative stress. Our data suggest that within the timescale studied here, metformin improves endothelial function through this direct mechanism, rather than by improving metabolic abnormalities.  相似文献   

7.
We recently reported that the lipoxygenase product 11,12,15-trihydroxyeicosatrienoic acid (THETA) mediates arachidonic acid (AA)-induced relaxation in the rabbit aorta. This study was designed to determine whether this lipoxygenase metabolite is involved in relaxation responses to AA in rabbit small mesenteric arteries. AA (10(-9)-10(-4) M) produced potent relaxations in isolated phenylephrine-preconstricted arteries, with a maximal relaxation of 99 +/- 0.5% and EC(50) of 50 nM. The cyclooxygenase (COX) inhibitors indomethacin (10 microM), NS-398 (10 microM, selective for COX-2), and SC-560 (100 nM, selective for COX-1) caused a marked rightward shift of concentration responses to AA. With the use of immunohistochemical analysis, both COX-1 and COX-2 were detected in endothelium and smooth muscle of small mesenteric arteries. Indomethacin-resistant relaxations were further reduced by the lipoxygenase inhibitors cinnamyl-3,4-dihydroxy-cyanocinnamate (CDC; 1 muM), nordihydroguaiaretic acid (NDGA; 1 microM), and ebselen (1 microM). HPLC analysis showed that [(14)C]AA was metabolized by mesenteric arteries to PGI(2), PGE(2), THETAs, hydroxyepoxyeicosatrienoic acids (HEETAs), and 15-hydroxyeicosatetraenoic acid (15-HETE). The production of PGI(2) and PGE(2) was blocked by indomethacin, and the production of THETAs, HEETAs, and 15-HETE was inhibited by CDC and NDGA. Column fractions corresponding to THETAs were further purified, analyzed by gas chromatography/mass spectrometry, and identified as 11,12,15- and 11,14,15-THETA. PGI(2), PGE(2), and purified THETA fractions relaxed mesenteric arteries precontracted with phenylephrine. The AA- and THETA-induced relaxations were blocked by high K(+) (60 mM). These findings provide functional and biochemical evidence that AA-induced relaxation in rabbit small mesenteric arteries is mediated through both COX and lipoxygenase pathways.  相似文献   

8.
Jack AM  Keegan A  Cotter MA  Cameron NE 《Life sciences》2002,71(16):1863-1877
Diabetes causes endothelial dysfunction, with deleterious effects on nitric oxide (NO) mediated vasodilatation. However, in many vessels other local vasodilators such as endothelium-derived hyperpolarizing factor (EDHF), prostacyclin, epoxides or endocannabinoids are also important. Several of these factors may be derived from omega-6 essential fatty acids via arachidonate metabolism. Diabetes inhibits this pathway, a defect that may be bypassed by diets enriched with omega-6 gamma-linolenic acid-containing oils such as evening primrose oil (EPO). The aim was to examine the effects of preventive EPO treatment on endothelium-dependent and neurally mediated vasorelaxation. Diabetes was induced by streptozotocin in rats; duration was 8 weeks. Vascular responses were examined in vitro on thoracic aorta, corpus cavernosum and perfused mesenteric bed preparations. Diabetes caused 25% and 35% deficits, respectively, in aorta and corpus cavernosum NO-mediated endothelium-dependent relaxation to acetylcholine that were largely unaffected by EPO treatment. Moreover, a 44% reduction in maximum corpus cavernosum vasorelaxation to nitrergic nerve stimulation was not prevented by EPO. However, for the mesenteric vascular bed, a 29% diminution of responses to acetylcholine, mediated by both NO and EDHF, was 84% attenuated by EPO treatment. When the EDHF component was isolated during NO synthase inhibition, a 76% diabetic deficit was noted. This was completely prevented by EPO treatment, which also caused supernormal EDHF responses in nondiabetic rats. EPO treatment prevented the development of deficits in endothelium-dependent relaxation in diabetic rats. Effects were particularly marked on the resistance vessel EDHF system, which may have potential therapeutic relevance for diabetic microvascular complications.  相似文献   

9.
Diabetes mellitus compromises endothelium-dependent relaxation of blood vessels. This has been linked to the generation of reactive oxygen species (ROS), which neutralise nitric oxide (NO) and interfere with vasodilator function. Experiments using chelators have emphasised the importance of ROS produced by transition metal catalysed reactions. However, particularly for the small arteries and arterioles that control microcirculatory blood flow, NO is not the only endothelium-derived mediator; endothelium-derived hyperpolarizing factor (EDHF) has a major role. EDHF-mediated vasodilation is severely curtailed by diabetes; however, little information exists on the underlying pathophysiology. Deficits in the EDHF system, alone or in combination with the NO system, are crucial for the development of diabetic microvascular complications. To further elucidate the mechanisms involved, the aim was to examine the effects of diabetes and preventive and intervention chelator therapy with trientine on a preparation that has well-defined NO and EDHF-mediated responses, the rat mesenteric vascular bed. In phenylephrine-preconstricted preparations, maximum vasodilation to acetylcholine was reduced by 35 and 44% after 4 and 8 weeks of streptozotocin-induced diabetes, respectively. Trientine treatment over the first 4 weeks gave 72% protection; intervention therapy over the final 4 weeks prevented deterioration and corrected the initial deficit by 68%. These responses depend on both NO and EDHF. When the latter mechanism was isolated by NO synthase inhibition, diabetic deficits of 53.4 (4 weeks) and 65.4% (8 weeks) were revealed, that were 65% prevented and 50% corrected by trientine treatment. Neither diabetes nor trientine altered vascular smooth muscle responses to the NO donor, sodium nitroprusside (SNP). Thus, the data suggest that metal catalysed ROS production makes a substantial contribution to defects in both the EDHF and NO endothelial mechanisms in diabetes, which has therapeutic implications for microvascular complications.  相似文献   

10.
Diabetes mellitus compromises endothelium-dependent relaxation of blood vessels. This has been linked to the generation of reactive oxygen species (ROS), which neutralise nitric oxide (NO) and interfere with vasodilator function. Experiments using chelators have emphasised the importance of ROS produced by transition metal catalysed reactions. However, particularly for the small arteries and arterioles that control microcirculatory blood flow, NO is not the only endothelium-derived mediator; endothelium-derived hyperpolarizing factor (EDHF) has a major role. EDHF-mediated vasodilation is severely curtailed by diabetes; however, little information exists on the underlying pathophysiology. Deficits in the EDHF system, alone or in combination with the NO system, are crucial for the development of diabetic microvascular complications. To further elucidate the mechanisms involved, the aim was to examine the effects of diabetes and preventive and intervention chelator therapy with trientine on a preparation that has well-defined NO and EDHF-mediated responses, the rat mesenteric vascular bed. In phenylephrine-preconstricted preparations, maximum vasodilation to acetylcholine was reduced by 35 and 44% after 4 and 8 weeks of streptozotocin-induced diabetes, respectively. Trientine treatment over the first 4 weeks gave 72% protection; intervention therapy over the final 4 weeks prevented deterioration and corrected the initial deficit by 68%. These responses depend on both NO and EDHF. When the latter mechanism was isolated by NO synthase inhibition, diabetic deficits of 53.4 (4 weeks) and 65.4% (8 weeks) were revealed, that were 65% prevented and 50% corrected by trientine treatment. Neither diabetes nor trientine altered vascular smooth muscle responses to the NO donor, sodium nitroprusside (SNP). Thus, the data suggest that metal catalysed ROS production makes a substantial contribution to defects in both the EDHF and NO endothelial mechanisms in diabetes, which has therapeutic implications for microvascular complications.  相似文献   

11.
Diabetes is associated with endothelial dysfunction and platelet activation, both of which may contribute to increased cardiovascular risk. The purpose of this study was to characterize circulating platelets in diabetes and clarify their effects on endothelial function. Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. Each experiment was performed by incubating carotid arterial rings with platelets (1.65×107 cells/mL; 30 min) isolated from STZ or control rats. Thereafter, the vascular function was characterized in isolated carotid arterial rings in organ bath chambers, and each expression and activation of enzymes involved in nitric oxide and oxidative stress levels were analyzed. Endothelium-dependent relaxation induced by acetylcholine was significantly attenuated in carotid arteries treated with platelets isolated from STZ rats. Similarly, treatment with platelets isolated from STZ rats significantly reduced ACh-induced Akt/endothelial NO synthase signaling/NO production and enhanced TXB2 (metabolite of TXA2), while CD61 (platelet marker) and CD62P (activated platelet marker) were increased in carotid arteries treated with platelets isolated from STZ rats. Furthermore, the platelets isolated from STZ rats decreased total eNOS protein and eNOS dimerization, and increased oxidative stress. These data provide direct evidence that circulating platelets isolated from diabetic rats cause dysfunction of the endothelium by decreasing NO production (via Akt/endothelial NO synthase signaling pathway) and increasing TXA2. Moreover, activated platelets disrupt the carotid artery by increasing oxidative stress.  相似文献   

12.
Zhu BH  Guan YY  He H  Lin MJ 《Life sciences》1999,65(15):1553-1559
We examined the endothelium-dependent relaxation response to acetylcholine (Ach) in streptozotocin-induced diabetic rat aorta at the stages of 2- and 6-wks' duration in vitro, and compared with another two groups which were treated with dietary supplement of 0.1% Aminoquanidine (AG) and 0.5% Erigeron breviscapus (EB) from 1-week of diabetes induction. At the stage of 2-wks' duration of diabetes, relaxation responses to lower concentrations of Ach in 0.3 uM phenylepherine-precontracted aortas were diminished significantly (P<0.05) compared with age-matched control, but the maximal relaxation of Ach remained unchanged. At the stage of 6-wks' duration, diabetes caused an approximately 60% (P<0.001) deficit in maximum relaxation, and this was significantly (P<0.001) prevented in AG and EB treated groups. There was an approximately 40% enhancement in the maximum contractile response to phenylepherine with diabetes (P<0.05), which was unaffected significantly by AG and EB treatments. The data suggest that the defective endothelium-dependent relaxation in diabetic rat aorta occurred as early as 2-wks' duration of diabetes, and the treatments of AG and EB could protect vascular endothelium although the deficits in vascular smooth muscle contractile responses were not protected.  相似文献   

13.
Diabetes mellitus compromises nitric oxide (NO)-mediated endothelium-dependent relaxation of blood vessels, which has been linked to the excessive generation of reactive oxygen species. There are also deleterious effect on nitrergic innervation, contributing to autonomic neuropathy symptoms such as impotence and gastroporesis. Poly(ADP-ribose) polymerase (PARP) is a nuclear protein stimulated by DNA damage, caused, for example, by oxidative stress. Activation has been linked to impaired endothelial nitric oxide synthase (eNOS)-mediated vasodilation in experimental diabetes. There is no information on the potential role of PARP in nitrergic nerve dysfunction, therefore, the aim was to examine the effects of PARP inhibition, using 3-aminobenzamide (3-AB) on neurally mediated gastric fundus relaxation in streptozotocin-induced diabetic rats. Eight weeks of diabetes caused a 42.5% deficit in maximum relaxation of in vitro gastric fundus strips to electrical stimulation of the non-adrenergic non-cholinergic innervation. This was largely prevented or corrected (4 weeks of treatment following 4 weeks of untreated diabetes) by 3-AB. Diabetes also markedly attenuated the maintenance of relaxation responses to prolonged stimulation, and this was partially corrected by 3-AB treatment. Experiments in the presence of the NOS inhibitor, N(G)-nitro-L-arginine, and/or blockade of the co-transmitter, vasoactive intestinal polypeptide, by alpha-chymotrypsin, showed that the beneficial effects of 3-AB were primarily due to improved nitrergic neurotransmission. Thus, PARP plays an important role in defective nitrergic neurotransmission in experimental diabetes, which may have therapeutic implications for treatment of aspects of diabetic autonomic neuropathy.  相似文献   

14.
The handling of serotonin [5-hydroxytryptamine (5-HT)] depends on the serotonin transporter (SERT). A SERT knockout (KO) rat is a useful model to test the hypothesis that SERT is the primary mechanism for arterial 5-HT uptake and to investigate the impact of SERT removal on blood pressure. Wild-type (WT) and KO rats were used to measure 5-HT content (plasma, raphe, aorta, carotid, and mesenteric artery), aortic isometric contraction, and blood pressure. HPLC supported the lack of circulating 5-HT in plasma (ng/ml plasma, WT, 310 +/- 96; and KO, 1.0 +/- 0.5; P < 0.05). Immunohistochemistry and Western blot analyses validated the presence of the SERT protein in the WT rats and a lesser expression in the KO rat. The aorta isolated from KO rats had a normal contraction to phenylephrine and norepinephrine and a normal relaxation to the endothelium-dependent agonist acetylcholine compared with the aorta from WT. In contrast, the potency of 5-HT was increased in the aorta from KO rats compared with WT rats [-log EC(50) (M); WT, 5.71 +/- 0.08; and KO, 6.7 +/- 0.18] and maximum contraction was reduced [%phenylephrine (10 muM) contraction, WT, 113 +/- 6%; and KO, 52 +/- 12%]. 5-HT uptake was reduced but not abolished in arteries of the KO compared with the WT rats. Diurnal mean arterial blood pressure, heart rate, and locomotor activity level of the KO rats were similar to the WT rats. These data suggest that there are other mechanisms of 5-HT uptake in the arteries of the rat and that although the absence of circulating 5-HT and/or SERT function sensitizes arteries to 5-HT, SERT dysfunction does not impair normal blood pressure.  相似文献   

15.
Effects of prostaglandins (PGs) E1, E2, F2 alpha and I2 in a wide range of concentration were examined in mesenteric and cerebral arteries isolated from mature baboons. PGs E1, E2 and F2 alpha at low concentrations (10(-10) to 10(-7) M) elicited relaxation in helically cut strips of cerebral arteries precontracted with phenylephrine. In contrast, the PGs did not cause relaxation in the mesenteric artery. PGI2 (10(-9) to 10(-6) M) produced marked relaxation in both arteries. The EC25 for PGI2 in the mesenteric artery was significantly lower than that in the cerebral artery. During baseline conditions, cerebral arteries contracted in response to high concentrations (greater than 10(-7) M) of PGs E1, E2 and F2 alpha. In mesenteric arteries, a large contraction was induced by PGs F2 alpha and E2 but not by PGE1. Arachidonic acid (10(-6) M) produced an aspirin-inhibitable relaxation in both arteries to a similar extent, so that the vasodilator PG(s) formed in the two different arterial walls appear to exert a similar relaxant action. Thus, the baboon mesenteric artery was more sensitive to PGI2 for the relaxant effect than was the cerebral artery, while PGs F2 alpha, E1 and E2 caused only a contraction in the mesenteric artery but both relaxation and contraction in the cerebral artery.  相似文献   

16.
Chan HY  Yao X  Tsang SY  Chan FL  Lau CW  Huang Y 《Life sciences》2001,69(14):1609-1617
The present study was aimed to examine the different role of endothelium/nitric oxide in relaxation induced by two female sex hormones, 17beta-estradiol and progesterone in rat isolated aortas and mesenteric arteries. The isometric force of each ring was measured with Grass force-displacement transducers in the organ bathes. 17beta-Estradiol induced both endothelium-dependent and -independent relaxation in the rat aortas but only the endothelium-independent relaxation in the rat mesenteric arteries. In contrast. progesterone induced both endothelium-dependent and -independent relaxation in the rat mesenteric arteries but only endothelium-independent relaxation in rat aortas. N(G)-Nitro-L-arginine methyl ester and methylene blue attenuated the relaxant response to 17beta-estradiol in the aortic rings or to progesterone in the mesenteric arteries. Pretreatment with L-arginine antagonized the effect of N(G)-nitro-L-arginine methyl ester on sex hormone-induced relaxation. The endothelium contribution to relaxation seems to only relate to lower concentrations of 17beta-estradiol and progesterone. In summary, the present results clearly demonstrate a different role of the functional endothelium in the relaxant response to 17beta-estradiol or progesterone in the conduit vessel (aorta) and the resistance vessels (mesenteric artery). Nitric oxide contributes largely to the endothelium-dependent relaxation induced by 17beta-estradiol in the isolated aortas or by progesterone in the mesenteric arteries.  相似文献   

17.
The aim of the presented experiments was to study the influence of suturated NAE--N-stearoylethanolamine (NSE) on the NO synthesis by NO-synthases in aorta and heart tissues of rats with developmental (12-week) streptozotocin-induced (50 mg/kg of body weight) diabetes. Also we evaluated the state of endothelium-dependent relax reactions of aorta smooth muscles. It was shown that the development of diabetes is accompanied with disbalance of NO-synthesis wich consist in inducible NOS (iNOS) activation and inhibition of constitutive NOS (cNOS) and arginase activities. The aorta smooth muscle endothelium-dependent relax reactions were decreased in diabetic rats. The NSE administration to rats with development streptozotocin-induced diabetes resulted in inhibition of iNOS activity and elevation of cNOS and arginase activities in these tissues. Normalization of NO-synthesis under NSE action was accompanied with restoration of aorta smooth muscle endothelium-dependent relax reactions in diabetic rats.  相似文献   

18.
Nonadrenergic noncholinergic (NANC) vasodilator mechanisms may contribute to the maintenance of adult pulmonary and systemic vascular tone. However, their actions in the neonatal circulation have not been studied. We aimed to investigate NANC vasorelaxation in neonatal and 2-week-old piglet pulmonary and mesenteric arteries and to examine the potential role of nitric oxide (NO) in this phenomenon. Responses to electric field stimulation (EFS, 50V, 0.25-32 Hz) were investigated in pulmonary and mesenteric artery rings (external diameter 150-200 microm) precontracted with the thromboxane A2 mimetic U46619, in the presence of guanethidine (10 microM) and atropine (10 microM). Under these conditions, EFS resulted in a frequency dependent relaxation of newborn pulmonary (maximal relaxation of 53+/-9.1%), mesenteric (68.8.2+/-7.1%) and 2-wk-old mesenteric (46 6.3%) arteries but this relaxation was significantly reduced (4.5+/-2.2%) in 2-week-old pulmonary arteries. In neonatal pulmonary arteries, the neurotoxin tetrodotoxin (0.3 muM), the NO synthase inhibitor L-NAME (0.1 mM), and the guanylyl cyclase inhibitor ODQ (10 microM) abolished EFS-induced relaxations, suggesting that NANC relaxation of porcine neonatal pulmonary arteries is mediated by NO, which is probably neuronal in origin. However, The expression in pulmonary arteries of the neuronal NO synthase (nNOS), as determined by Western-blot analysis, increased with postnatal age whereas the expression of the endothelial NOS (eNOS) did not change. In conclusion, NANC relaxation is present in neonatal pulmonary and mesenteric arteries and it is, at least partially, mediated through NO. NANC relaxation of porcine pulmonary and mesenteric arteries decreases with postnatal maturation.  相似文献   

19.
To analyze the effects of diabetes mellitus on the vascular responsiveness to nitric oxide and thromboxane receptor stimulation, 2 mm long segments of basilar, coronary, renal and tail arteries from male and female, control (normoglycemic) and streptozotocin-induced diabetic rats, were prepared for isometric tension recording. In the segments at basal resting tension, the thromboxane analog U46619 (10(-9)-10(-5) M) produced concentration-dependent contraction, which was similar in arteries from male and female rats, and was reduced by diabetes in coronary arteries from male and in tail arteries from female rats. In the vascular segments precontracted with endothelin-1 (10(-9) M), acetylcholine (10(-9)-3 x 10(-5) M) produced concentration-dependent relaxation which was similar in all arteries from normoglycemic male and female rats, and was increased by diabetes in tail arteries from female, but not in those from male rats. In precontracted segments the nitric oxide donor sodium nitroprusside (10(-10)-10(-5) M) also produced concentration-dependent relaxation, which was higher in basilar arteries from normoglycemic females compared with males, and was increased by diabetes in tail arteries from female but not from male rats. These results suggest that diabetes may increase the relaxation to nitric oxide in tail arteries, and may reduce the contraction to thromboxane receptor activation in coronary and tail arteries in a gender-dependent way. These changes in vascular reactivity may be adaptative to the vascular alterations produced by diabetes.  相似文献   

20.
Effects of cobalt on the antioxidant status of control and streptozotocin diabetic rat heart and aorta were examined at the second, fourth and sixth week of treatment. Rats were divided into four groups: control, diabetic, control treated with cobalt chloride and diabetic treated with cobalt chloride. Diabetes was induced by tail vein injection of streptozotocin (STZ). Cobalt treatment groups were given 0.5 mM of CoCl(2) in drinking water. The rats in both groups were further subdivided into three groups of six rats each. Rats in these subgroups were studied at 2-week intervals up to 6 weeks. At the end of the experiment, all animals were sacrificed by decapitation, heart and aorta samples were removed for determination of thiobarbituric acid reactive substance (TBARS) level and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. It was found that lipid peroxidation levels and antioxidant enzyme activities were increased in the streptozotocin-induced diabetic rats at all times studied. Cobalt treatment of diabetic rats (0.5 mM in drinking water) resulted in attenuation of the increased levels of TBARS and antioxidant enzyme activities in heart and aorta. Thus, the effect of oral administration of cobalt at this dose during the early stage of experimental diabetes can be considered as a consequence of altered endogenous defence mechanisms in heart and aorta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号