首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Temporal course of regeneration of the hypostome and basal disc along the body length of the hydra is studied both in the presence and absence of the other determined centre. The regeneration times vary nonlinearly with distance from the original position indicating that the underlying processes are of non-linear nature. The presence of hypostome influences the regeneration of basal disc in an inhibitory manner throughout the body length, whereas, basal disc influences the regeneration of hypostome only in the lower portion of the body in a positive manner. A scheme in terms of the activators and inhibitors specific to hypostome and basal disc, is given. The implication of these results is that the two inhibitors are functionally distinct.  相似文献   

2.
Lateral grafting of small pieces of midregion tissue into different levels of the hydra body column was done to assess the influence of the host hypostome and basal disc (or, of the underlying morphogenetic gradients) in inducing secondary structures in the transplanted tissue; and also to identify the role, if any, of the induced secondary structures (or, perturbed morphogen gradients) on the pattern of the host. The same midpiece tissue differentiated to a basal disc when grafted near the host hypostome, and to a small hypostome with tentacles when grafted near the host basal disc. Chimeras with induced secondary basal discs showed a phenomenal increase in budding compared to the controls and to the chimeras having induced hypostomes. These results indicate a positive cross-reaction between both organizing regions during patterning in hydra.  相似文献   

3.
Twelve-hour continuous pretreatment of regenerating Hydra with 60 μg/ml actinomycin D inhibited the synthesis of RNA by 98%. In such Hydra, hypostome regeneration was found more affected than basal disc regeneration since a complete blockage of development of oral structures occurred. It is assumed that the hypostome regeneration requires new DNA-dependent RNA synthesis. Better differentiation of the basal disc is explained on the basis of a stable variety of messenger RNA (mRNA), which would become activated at the time of determination. The formation of mesoglea and the development of fibrous materials in the basal disc are attributed to new DNA-dependent RNA synthesis.  相似文献   

4.
The relative sizes of the various structures in Hydra attenuata were compared over a broad range of animal sizes to determine in detail the ability to regulate proportions during regeneration. The three components of the head, namely hypostome, tentacles, and tentacle zone from which the tentacles emerge, the body column, and the basal disc were all measured separately. Ectodermal cell number was used as the measure of size. The results showed that the basal disc proportioned exactly over a 40-fold size range, and the tentacle tissue proportioned exactly over a 20-fold size range. In contrast, the hypostome and tentacle zone proportioned allometrically. With decreasing size, the hypostome and tentacle zone became an increasing fraction of the animal at the expense of body tissue, and in the very smallest regenerates at the expense of tentacle tissue. In their current form, the reaction-diffusion models proposed for pattern regulation in hydra are not consistent with the data.  相似文献   

5.
The freshwater polyp Hydra produces buds which separate from the parent. Other Hydrozoa produce branches which remain connected to the parent, thus forming a colony. Some Hydrozoa grow by means of an organ that is like a shoot apical meristem. Others display a sympodial type of growth. In this article, I propose that these different types of branches are organized by a common pattern-forming system. This system has self-organizing properties. It causes branch tip formation and is kept active in the tip when the tip finally differentiates into a hypostome of a polyp. The system does not cause structure formation directly but rather, determines a tissue property called positional value, in such a way that a gradient of values forms in the tissue of the bud or branch. The local value determines the local morphodynamic processes, including differentiation of the hypostome (highest positional value), tentacles and basal disc and of the exoskeleton pattern along the shoot. A high positional value favors the onset of a new self-organizing process and by lateral inhibition, such a process prevents the initiation of a further process in its surroundings. Small quantitative differences in the range of the signals involved determine whether a bud or a branch forms and whether monopodial and sympodial growth follows.  相似文献   

6.
7.
SYNOPSIS. Pieces of hydra tissue of various sizes and shapeswere cut from the body columns of adult hydra and allowed toregenerate. The proportions of the resulting animals were determinedfirst by counting cells in the head and body, and secondly bymeasuring the structures directly using an ocular micrometer. Head-body proportions were found to be constant over a tenfoldsize range. Very small regenerates had a larger head fractionand large budding regenerates had a smaller head fraction. Extrastructures developed in certain shape pieces, but total head-bodytissue remained proportional. More detailed measurement of thehead showed that the hypostome regulated only slightly withtotal size change, while the tentacle tissue varied considerablyto maintain the head-body ratio. This suggested that the patterningof the hypostome and the tentacles might involve separate processes,with the latter being responsible for proportion regulation.While the body mass appeared to be determined by the proportioningmechanism, its circumference was related to the circumferenceof the hypostome, suggesting a causal relationship between thetwo organizers and the column shaping. The basal disc remainedproportional to the body except in the smallest pieces. A Gierer-Meinhardtpattern formation scheme could account for the results found.  相似文献   

8.
The plasticity of nerve cells expressing the neuropeptide FMRFamide was examined in adult hydra. Using a whole-mount technique with indirect immunofluorescence, the spatial pattern of neurons showing FMRFamide-like immunoreactivity (FLI) was visualized. These neurons were located in the tentacles, hypostome, and peduncle, but not in the body column or basal disc. Since every neuron in the nerve net is continuously displaced toward an extremity and eventually sloughed, the constant pattern of FLI+ neurons could arise in one of two ways. When displaced into the appropriate region, FLI- neurons are converted to FLI+ neurons, or FLI+ neurons arise by differentiation from interstitial cells. To distinguish between these two possibilities, interstitial cells, the multipotent precursors of the nerve cells, were eliminated by treatment with hydroxyurea or nitrogen mustard. Following head, or foot and peduncle, removal from these animals, the missing structures regenerated. The spatial pattern of FLI+ neurons reappeared in the newly regenerated head or peduncle. This shows FLI- neurons in the body column were converted to FLI+ when their position was changed to the head or the peduncle. When the peduncle was grafted into the body column, it was converted to basal disc or body column tissue, and FLI disappeared. The appearance and loss of FLI was always position dependent. These results indicate that the neurons in the mature nerve net can change their neuropeptide phenotype in response to changes in their position.  相似文献   

9.
目的观察大乳头水螅(Hydra magnipapillata )基盘组织更新进程,探讨水螅营养积累对基盘组织更新进程的影响。方法设定水螅喂食频率梯度(代表不同的营养积累水平),记录和观察喂食频率对水螅更新基盘组织进程的影响。通过ABTS细胞化学染色法检测水螅基盘分子标志物过氧化物酶的表达,观察水螅老基盘组织脱落后水螅体主体新生基盘组织的再生过程。结果喂食频率对水螅更新基盘组织进程有明显的影响。水螅基盘组织更新的标准过程如下;在一定的喂食频率下培养水螅,水螅体出芽区逐渐有芽体产生,随后在出芽区和基盘之间靠近芽体的位置出现缢痕,最后水螅体在缢痕处断裂为水螅体主体和老基盘组织两部分。缢痕断裂后对水螅体主体保持既定的喂食频率,其伤口能愈合但不能再生出新的基盘组织;对其降低喂食频率直至其伤口上方的芽体全部脱落后伤口处重新启动新生基盘组织的再生进程。另外,脱落的老基盘组织有两种不同的命运,即大部分老基盘组织不能发育成正常水螅体、最终解体;而小部分的老基盘组织能发育成正常的水螅体。结论水螅营养积累可能促进基盘组织更新进程,靠近断裂伤口处的芽体能抑制水螅体主体新生基盘的再生进程。  相似文献   

10.
The distribution of interstitial stem cells along the Hydra body column was determined using a simplified cloning assay. The assay measures stem cells as clone-forming units (CFU) in aggregates of nitrogen mustard inactivated Hydra tissue. The concentration of stem cells in the gastric region was uniform at about 0.02 CFU/epithelial cell. In both the hypostome and basal disk the concentration was 20-fold lower. A decrease in the ratio of stem cells to committed nerve and nematocyte precursors was correlated with the decrease in stem cell concentration in both hypostome and basal disk. The ratio of stem cells to committed precursors is a sensitive indicator of the rate of self-renewal in the stem cell population. From the ratio it can be estimated that <10% of stem cells self-renew in the hypostome and basal disk compared to 60% in the gastric region. Thus, the results provide an explanation for the observed depletion of stem cells in these regions. The results also suggest that differentiation and self-renewal compete for the same stem cell population.  相似文献   

11.
Axial patterning of the aboral end of the hydra body column was examined using expression data from two genes. One, shin guard, is a novel receptor protein-tyrosine kinase gene expressed in the ectoderm of the peduncle, the end of the body column adjacent to the basal disk. The other gene, manacle, is a paired-like homeobox gene expressed in differentiating basal disk ectoderm. During regeneration of the aboral end, expression of manacle precedes that of shin guard. This result is consistent with a requirement for induction of peduncle tissue by basal disk tissue. Our data contrast with data on regeneration of the oral end. During oral end regeneration, markers for tissue of the tentacles, which lie below the extreme oral end (the hypostome), are detected first. Later, markers for the hypostome itself appear at the regenerating tip, with tentacle markers displaced to the region below. Additional evidence that tissue can form basal disk without passing through a stage as peduncle tissue comes from LiCl-induced formation of patches of ectopic basal disk tissue. While manacle is ectopically expressed during formation of basal disk patches, shin guard is not. The genes examined also provide new information on development of the aboral end in buds. Although adult hydra are radially symmetrical, expression of both genes in the bud's aboral end is initially asymmetrical, appearing first on the side of the bud closest to the parent's basal disk. The asymmetry can be explained by differences in positional information in the body column tissue that evaginates to form a bud. As predicted by this hypothesis, grafts reversing the orientation of evaginating body column tissue also reverse the orientation of asymmetrical gene expression.  相似文献   

12.
The monophyly of the order Proetida, the only trilobite group to survive the end‐Devonian mass extinction, has been regularly questioned since its erection almost three decades ago. Through analysis of a novel phylogenetic data set comprising 114 characters coded for 55 taxa, including both traditional members of the Proetida along with a number of other trilobite groups, the monophyly of proetide trilobites is rigorously tested for the first time. Proetida is shown to be monophyletic, united by the initial compound eye formation in early protaspids occurring at the lateral margin rather than the anterior margin, and the form of the protaspid glabella being tapering with a pre‐glabellar field. A number of adult characters, including the possession of a quadrate or shield‐shaped hypostome with angular posterior margins, the hypostome median body being divided by a deep groove that entirely traverses the median body, the presence of an enlarged thoracic spine on the sixth tergite and a tergite count of between 7 and 10, also define the basal node. Hystricurid and dimeropygoid trilobites are shown to resolve at the base of the group, while the remaining proetide taxa are divided between large proetoid and aulacopleuroid clades. Some taxa previously allied with Aulacopleuroidea, such as rorringtoniids and scharyiids, are retrieved as basal members of the Proetoidea.  相似文献   

13.
The regulation of organ size constitutes a major unsolved question in developmental biology. The wing imaginal disc of Drosophila serves as a widely used model system to study this question. Several mechanisms have been proposed to have an impact on final size, but they are either contradicted by experimental data or they cannot explain a number of key experimental observations and may thus be missing crucial elements. We have modeled a regulatory network that integrates the experimentally confirmed molecular interactions underlying other available models. Furthermore, the network includes hypothetical interactions between mechanical forces and specific growth regulators, leading to a size regulation mechanism that conceptually combines elements of existing models, and can be understood in terms of a compression gradient model. According to this model, compression increases in the center of the disc during growth. Growth stops once compression levels in the disc center reach a certain threshold and the compression gradient drops below a certain level in the rest of the disc. Our model can account for growth termination as well as for the paradoxical observation that growth occurs uniformly in the presence of a growth factor gradient and non-uniformly in the presence of a uniform growth factor distribution. Furthermore, it can account for other experimental observations that argue either in favor or against other models. The model also makes specific predictions about the distribution of cell shape and size in the developing disc, which we were able to confirm experimentally.  相似文献   

14.
In the marine hydroid Hydractinia echinata, metamorphosis transforms the spindle-shaped larva into a primary polyp. It bears a hypostome with a ring of tentacles at its apical end, a gastric region in the middle and stolons at the base. In nature, metamorphosis is induced in response to external stimuli provided by bacteria. These stimuli can be replaced by artificial inducers, one of which is heat shock. Among heat shock treated stages are those undergoing complete metamorphosis but also specimens forming chimeras of different developmental stages. In the chimeric larvae, the posterior is transformed into the apical hypostome of the adult polyp while the anterior part of the larva persists as larval tissue. After transverse sectioning, these stage chimeras regenerate the missing body parts with respect to the nature of the tissue at the wound surface. This shows that the decision to make larva or polyp morphology depends not on the majority of the tissue in the original body section, but on stage specificity within the regenerating animal part. Single cells can escape from this general rule, since RFamide nerve cells which usually differentiate in polyp tissue appear in regenerated larval tails of sectioned stage chimeras. The results indicate that the pattern-forming system of the larva and of the adult have features in common. The primary signals controlling patterning along the anterior-posterior axis in larvae and the apical-basal axis in polyps arethus likelyto be the same while the interpretation of these primary signals by the individual cells changes during metamorphosis.  相似文献   

15.
Influences underlying the direction of nematocyte migration in hydra were studied. Nematocytes arise by interstitial cell differentiation in the body column, and then up to 80% migrate into the ectodermal epithelial cells of the tentacles. The migration of these cells, which is clearly apically directed, may be due either to a chemotactic attraction into the hypostome and tentacles, or to a property inherent in the tissue of the body column, such as the regeneration polarity. To distinguish between these two possibilities, the rates of accumulation of 3H-proline-labeled desmoneme and stenotele nematocytes in unlabeled heads (hypostome and tentacles) grafted either basally or apically to the labeled body column were compared. Basally grafted heads, if left in place for an appropriate length of time, reversed the regeneration polarity of the tissue. In all experiments the direction of desmoneme migration was correlated with the direction (apical or basal) of the regeneration polarity of the tissue. Further, the kinetics of polarity reversal were modified by varying the grafting procedure or the environmental conditions. In every case the kinetics of reversal of desmoneme migration also paralleled the kinetics of reversal of tissue polarity. The results suggest that the direction of desmoneme migration is influenced by the regeneration polarity of the tissue. Stenotele migration was largely unaffected by tissue polarity, but behaved as though chemotactically attracted to the head.  相似文献   

16.
Abstract:  Several thousand disarticulated remains together with a few complete enrolled specimens of the lower Cambrian eodiscoid trilobite Calodiscus lobatus ( Hall, 1847 ) have been collected at two outcrop areas in Sweden. The material reveals new details of morphology and morphogenesis during ontogenetic development. Size-frequency analyses show that the material from the Fånån rivulet in Jämtland, central Sweden, represents a natural population dominated by juveniles, whereas the material from Gislövshammar in Scania, southern Sweden, has been sorted during postmortem transport. Three stages of protaspid development can be traced and defined as well as all subsequent ontogenetic stages for the cephalon, hypostome and pygidium. The early meraspid pygidium has a pronounced larval notch, which persists, though becoming progressively less distinct in later meraspides. The number of axial rings in the transitory pygidium increases throughout meraspid development until a third and final thoracic segment is liberated. During ontogeny the articulating half-rings are strongly developed, and both meraspides and holaspides were capable of full sphaeroidal enrollment and outstretched postures. The hypostome undergoes some dramatic modifications; in M0 the anterior margin is axe-shaped, by M1 the area of attachment greatly decreases and the hypostome becomes more elongated and pear-shaped, before attaining its adult form, which has an overall resemblance to that of polymerid trilobites. During ontogeny, the hypostome changes from a conterminant attachment to a natant condition, thereby mirroring hypostomal evolution within trilobites generally. The morphology, ontogeny, enrollment, hypostomal development and the presence of calcified protaspides suggest polymerid rather than agnostoid affinities of the eodiscoids.  相似文献   

17.
Liparidae (snailfishes) is one of the most diverse and abundant fish families in polar and deep-sea habitats. However, the evolution of this family is poorly known because of the rarity of many species and difficulties in scoring morphological characters. We perform phylogenetic analyses of Liparidae using sequences from two mtDNA genes, 16S (585 bp) and cytochrome b (426 bp), and 84 morphological characters from 24 species of Liparidae and 4 species of Cyclopteridae (outgroup). The present study confirms earlier hypotheses that the shallow-water genera, such as Liparis and Crystallichthys, occupy basal positions and that deep-water genera, such as Careproctus, Elassodiscus, Rhinoliparis, Paraliparis, Rhodichthys and Psednos, are increasingly derived. The later two genera form a terminal clade which does not include Paraliparis. The topology shows that the family has undergone a reductive type of evolution, with a gradual loss of characters (e.g. sucking disc/pelvic fins, pseudobranchial filaments, skin spinules). Nectoliparis, which had previously been placed either as the basal most genus or among the most derived genera, are found to occupy the most basal position among the taxa analyzed. This result indicates that the sucking disc has been lost at least twice during the evolution of the Liparidae. The basal position of Nectoliparis is supported by its plesiomorphic otolith morphology, whereas an advanced overgrown otolith ostium, unique among teleosts, is found to be apomorphic for a clade containing the derived genera: Paraliparis, Psednos, Rhinoliparis and Rhodichthys. We also identify the presence of probable nuclear inserts of mitochondrial DNA (Numts) in three species of Careproctus and in Elassodiscus caudatus.  相似文献   

18.
Ahmad SM  Baker BS 《Cell》2002,109(5):651-661
A central issue in developmental biology is how the deployment of generic signaling proteins produces diverse specific outcomes. We show that Drosophila FGF is used, only in males, to recruit mesodermal cells expressing its receptor to become part of the genital imaginal disc. Male-specific deployment of FGF signaling is controlled by the sex determination regulatory gene doublesex. The recruited mesodermal cells become epithelial and differentiate into parts of the internal genitalia. Our results provide exceptions to two basic tenets of imaginal disc biology-that imaginal disc cells are derived from the embryonic ectoderm and belong to either an anterior or posterior compartment. The recruited mesodermal cells migrate into the disc late in development and are neither anterior nor posterior.  相似文献   

19.
20.
The head region of Hydra, the hypostome, is a key body part for developmental control and the nervous system. We herein examined genes specifically expressed in the head region of Hydra oligactis using suppression subtractive hybridization (SSH) cloning. A total of 1414 subtracted clones were sequenced and found to be derived from at least 540 different genes by BLASTN analyses. Approximately 25% of the subtracted clones had sequences encoding thrombospondin type-1 repeat (TSR) domains, and were derived from 17 genes. We identified 11 TSR domain-containing genes among the top 36 genes that were the most frequently detected in our SSH library. Whole-mount in situ hybridization analyses confirmed that at least 13 out of 17 TSR domain-containing genes were expressed in the hypostome of Hydra oligactis. The prominent expression of TSR domain-containing genes suggests that these genes play significant roles in the hypostome of Hydra oligactis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号