首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li H  Frigaard NU  Bryant DA 《Biochemistry》2006,45(30):9095-9103
Chlorosomes are unique light-harvesting antennae found in two phyla of green bacteria: Chlorobi and Chloroflexi. In the green sulfur bacterium Chlorobium tepidum, 10 proteins (CsmA, CsmB, CsmC, CsmD, CsmE, CsmF, CsmH, CsmI, CsmJ, and CsmX) exist in the chlorosome envelope. Chlorosomes from the wild type and mutants lacking a single chlorosome protein were cross-linked with the zero-length cross-linker 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) and analyzed by gel electrophoresis. Similar cross-linking products were observed when the time and temperature were varied or when EDC was replaced with glutaraldehyde. Specific interactions between chlorosome proteins in cross-linked products were identified by immunoblotting with polyclonal antibodies raised against recombinant chlorosome proteins. We confirmed these interactions by demonstrating that these products were missing in appropriate mutants. Confirming the location of CsmA in the paracrystalline baseplate, cross-linking showed that CsmA forms dimers, trimers, and homomultimers as large as dodecamers and that CsmA directly interacts with the Fenna-Matthews-Olson protein. Cross-linking further suggests that the precursor form of CsmA is inserted near the edges of the baseplate, where CsmA and pre-CsmA interact with CsmB and CsmF. Several chlorosome proteins, including CsmA, CsmC, CsmD, CsmH, CsmI, CsmJ, and CsmX, were shown to exist as homomultimers in the chlorosome envelope. On the basis of the structural information obtained from these cross-linking experiments, a model for the locations and interactions of the proteins of the chlorosome envelope is proposed.  相似文献   

2.
The chlorosome envelope of Chlorobaculum tepidum contains 10 proteins that belong to four structural motif families. A previous mutational study (N.-U. Frigaard, H. Li, K. J. Milks, and D. A. Bryant, J. Bacteriol. 186:646-653, 2004) suggested that some of these proteins might have redundant functions. Six multilocus mutants were constructed to test the effects of eliminating the proteins of the CsmC/CsmD and CsmB/CsmF motif families, and the resulting strains were characterized physiologically and biochemically. Mutants lacking all proteins of either motif family still assembled functional chlorosomes, and as measured by growth rates of the mutant strains, light harvesting was affected only at the lowest light intensities tested (9 and 32 μmol photons m−2 s−1). The size, composition, and biogenesis of the mutant chlorosomes differed from those of wild-type chlorosomes. Mutants lacking proteins of the CsmC/CsmD motif family produced smaller chlorosomes than did the wild type, and the Qy absorbance maximum for the bacteriochlorophyll c aggregates in these chlorosomes was strongly blueshifted. Conversely, the chlorosomes of mutants lacking proteins of the CsmB/CsmF motif family were larger than wild-type chlorosomes, and the Qy absorption for their bacteriochlorophyll c aggregates was redshifted. When CsmH was eliminated in addition to other proteins of either motif family, chlorosomes had smaller diameters. These data show that the chlorosome envelope proteins of the CsmB/CsmF and CsmC/CsmD families play important roles in determining chlorosome size as well as the assembly and supramolecular organization of the bacteriochlorophyll c aggregates within the chlorosome.Green sulfur bacteria (GSB; phylum Chlorobi) are obligate photolithoautotrophs that utilize chlorosomes for light harvesting (2, 13). Chlorosomes additionally occur in some green-nonsulfur bacteria, also known as filamentous anoxygenic phototrophs (phylum Chloroflexi), and in a recently discovered chlorophototrophic member of the phylum Acidobacteria, “Candidatus Chloracidobacterium thermophilum” (2, 3). Chlorosomes are the largest known light-harvesting organelles and can contain up to 250,000 bacteriochlorophyll (BChl) molecules (13, 29, 30, 39). They do not have a fixed stoichiometric ratio of the major pigment, which may be BChl c, d, or e, to any protein component, and as a result they are highly variable in size, shape, and composition. In spite of this structural heterogeneity (34), the detailed molecular and supramolecular structures of the BChls in chlorosomes of Chlorobaculum tepidum were recently solved by combining systems biology, solid-state nuclear magnetic resonance (NMR), cryo-electron microscopy, and molecular modeling (22). The fundamental structural units were found to be syn-anti monomer stacks that form coaxial nanotubes, which have a 2.1-nm spacing between the adjacent BChl layers. In addition to the major BChl species, chlorosomes contain carotenoids, isoprenoid quinones, wax esters, and a small quantity of BChl a. BChl a is known to be associated with CsmA, the most highly conserved protein in chlorosomes (13).Although the structural organization of the BChl molecules in all chlorosomes may be similar (4, 22, 25, 37, 38), with the exception of CsmA, the composition and sequences of the envelope proteins of chlorosomes of the phyla Chlorobi, Chloroflexi, and Acidobacteria are not well conserved. Blankenship (1) suggested that lateral gene transfer might have been responsible for the presence of the genes for chlorosome biogenesis among some of these three groups of bacteria. However, because chlorosomes are found in each of three, early-diverging bacterial lineages that contain chlorophototrophs, two of which additionally contain homodimeric type 1 reaction centers (2, 3), it is possible that chlorosomes represent one of the earliest types of photosynthetic antennae and were present in a common ancestor of these phyla.A protein-stabilized, glycolipid envelope surrounds the chlorosome BChls, and this membrane can be considered to be an asymmetric bilayer membrane in which glycolipids form the outer leaflet and the hydrophobic tails of BChls form the inner leaflet (13, 24, 50, 53). In C. tepidum, a genetically tractable model GSB, this envelope contains 10 proteins, which are designated CsmA, CsmB, CsmC, CsmD, CsmE, CsmF, CsmH, CsmI, CsmJ, and CsmX (6-8, 14, 47, 50). The structural organization of these proteins has been studied by cross-linking and immunoblotting, which led to a model for the organization of these proteins in the chlorosome envelope (28, 50, 53). CsmA, the only protein for which any detailed structural information is available, probably binds both BChl a and carotenoids (13, 23, 31, 35, 40) and forms a large, paracrystalline array known as the “baseplate” (8, 23, 28, 35, 36, 42). The structure for apo-CsmA in an organic solvent was recently determined by NMR spectroscopy, and a model for the structural organization of CsmA in the chlorosome baseplate of C. tepidum was proposed (35, 36).Sequence comparisons suggest that the chlorosome envelope proteins can be assigned to four motif families: 1, CsmA/CsmE; 2, CsmB/CsmF (CsmH); 3, CsmC/CsmD (CsmH); and 4, CsmI/CsmJ/CsmX (48, 50). CsmA and CsmE are 49% identical and are both synthesized as precursors, which are proteolytically processed by the removal of ∼20 amino acids at their carboxy termini to generate the mature polypeptides (7, 8). CsmB and CsmF are 29% identical and 63% similar in sequence (6, 50). Moreover, the amino-terminal domain of CsmH is related in sequence to these two proteins (50). The CsmC and CsmD proteins are 26% identical and 45% similar in sequence, and these two proteins additionally share sequence similarity to the carboxyl-terminal region of CsmH. The other three chlorosome proteins (CsmI, CsmJ, and CsmX) share some sequence similarities to the precursor forms of CsmA and CsmE in their carboxyl-terminal regions, while their amino-terminal domains are obviously related to adrenodoxin-type [2Fe-2S] ferredoxins (47-50). These sequence relationships strongly imply that gene duplication and divergence have occurred among a small number of ancestral gene types, and these observations additionally suggest that some of these proteins might be functionally redundant (47, 50). This view was supported by mutational studies that showed that only CsmA was essential for the viability of C. tepidum. Mutants lacking any other single chlorosome protein still assembled functional chlorosomes that were similar in pigment composition and functionality to those of the wild type (14).Because of the possible functional redundancy of chlorosome proteins of the different motif classes, double, triple, and quadruple mutants were constructed to study the roles of the CsmC/CsmD/CsmH and CsmB/CsmF/CsmH protein motif families in chlorosome biogenesis and structure. Mutants lacking CsmI, CsmJ, and CsmX, which form the Fe/S motif family of envelope proteins, were also constructed, and these mutants will be described in detail elsewhere (27; H. Li, N.-U. Frigaard, and D. A. Bryant, unpublished data). The results presented here show that functional chlorosomes assemble in the complete absence of proteins of the CsmC/CsmD or CsmB/CsmF motif families, but the size, shape, and composition of the resulting chlorosomes are altered. The results suggest that the chlorosome envelope proteins may also influence the structural organization of the BChls in chlorosomes and thus help to define chlorosome assembly and shape.  相似文献   

3.
Chlorosomes of the green sulfur bacterium Chlorobium tepidum comprise mostly bacteriochlorophyll c (BChl c), small amounts of BChl a, carotenoids, and quinones surrounded by a lipid-protein envelope. These structures contain 10 different protein species (CsmA, CsmB, CsmC, CsmD, CsmE, CsmF, CsmH, CsmI, CsmJ, and CsmX) but contain relatively little total protein compared to other photosynthetic antenna complexes. Except for CsmA, which has been suggested to bind BChl a, the functions of the chlorosome proteins are not known. Nine mutants in which a single csm gene was inactivated were created; these mutants included genes encoding all chlorosome proteins except CsmA. All mutants had BChl c contents similar to that of the wild-type strain and had growth rates indistinguishable from or within approximately 90% (CsmC(-) and CsmJ(-)) of those of the wild-type strain. Chlorosomes isolated from the mutants lacked only the protein whose gene had been inactivated and were generally similar to those from the wild-type strain with respect to size, shape, and BChl c, BChl a, and carotenoid contents. However, chlorosomes from the csmC mutant were about 25% shorter than those from the wild-type strain, and the BChl c absorbance maximum was blue-shifted about 8 nm, indicating that the structure of the BChl c aggregates in these chlorosomes is altered. The results of the present study establish that, except with CsmA, when the known chlorosome proteins are eliminated individually, none of them are essential for the biogenesis, light harvesting, or structural organization of BChl c and BChl a within the chlorosome. These results demonstrate that chlorosomes are remarkably robust structures that can tolerate considerable changes in protein composition.  相似文献   

4.
Chlorosomes are unique light-harvesting structures found in two families of photosynthetic bacteria. In this study, three chlorosome proteins (CsmF, CsmH, and CsmX) of the green sulfur bacterium Chlorobium tepidum were characterized by cloning and sequencing the genes which encode them, by overproducing the respective proteins in Escherichia coli, and by raising polyclonal antisera to the purified proteins. Three other proteins (AtpF, CT1970, and CT2144) which were identified in chlorosome fractions have similarly been characterized. The antisera were used to establish the distribution of each protein in various cellular fractions. Ten chlorosome proteins (CsmA, CsmB, CsmC, CsmD, CsmE, CsmF, CsmH, CsmI, CsmJ, and CsmX) copurified in a constant proportion together with bacteriochlorophyll c, and none of these 10 proteins was found in substantial amounts in other subcellular fractions. An antiserum to CsmH was highly effective in agglutinating chlorosomes, and antisera to CsmI, CsmJ, CsmX, and CsmA also immunoprecipitated chlorosomes to varying extents. However, an antiserum to CsmF did not agglutinate chlorosomes. The sequences of chlorosome proteins generally are not significantly similar to the sequences of other proteins in the databases. However, the N-terminal domains of three chlorosome proteins, CsmI, CsmJ, and CsmX, are related to adrenodoxin-type ferredoxins that ligate [2Fe-2S] clusters [Vassilieva, E. V., Antonkine, M. L., Zybailov, B. L., Yang, F., Jakobs, C. U., Golbeck, J. H., and Bryant, D. A. (2001) Biochemistry 40, 464-473]. The sequences of the C-terminal domains of these three proteins appear to be distantly related to CsmA and CsmE. The remaining chlorosome proteins can be divided into two additional structural families, CsmB/F and CsmC/D. CsmH is recovered in water-soluble form after overproduction in E. coli. Interestingly, this protein contains an N-terminal domain that is similar to CsmB/D, while its C-terminal domain is related to CsmC/D. The sequence relationships indicate that, although the protein composition of Chlorobium-type chlorosomes is superficially more complex than that of the chlorosomes of Chloroflexus aurantiacus, this heterogeneity is mostly produced by gene duplication and divergence among a small number of protein types.  相似文献   

5.
Chlorosomes, the light-harvesting apparatus of green bacteria, are a unique antenna system, in which pigments are organized in aggregates rather than associated with proteins. Isolated chlorosomes from the green sulphur bacterium Chlorobium tepidum contain 10 surface-exposed proteins. Treatment of chlorosomes from Chlorobium tepidum with protease caused changes in the spectral properties of bacteriochlorophyll c and digestion of chlorosome proteins. Using SDS-PAGE analysis, immunoblotting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) we have investigated the topology of the 59-residue CsmA protein. Our results show that at the N-terminus, the only amino acid available for protease degradation is the methionine. At the C-terminus, amino acids can be removed by protease treatment to produce a residual protein containing at least the sequence between residues 2 and 38. These results indicate that the N-terminal portion of the CsmA protein, which is predicted to be mainly hydrophobic, is buried in the chlorosome envelope.  相似文献   

6.
Green sulfur bacteria possess two external light-harvesting antenna systems, the chlorosome and the FMO protein, which participate in a sequential energy transfer to the reaction centers embedded in the cytoplasmic membrane. However, little is known about the physical interaction between these two antenna systems. We have studied the interaction between the major chlorosome protein, CsmA, and the FMO protein in Chlorobium tepidum using surface plasmon resonance (SPR). Our results show an interaction between the FMO protein and an immobilized synthetic peptide corresponding to 17 amino acids at the C terminal of CsmA. This interaction is dependent on the presence of a motif comprising six amino acids that are highly conserved in all the currently available CsmA protein sequences.  相似文献   

7.
Bryant DA  Vassilieva EV  Frigaard NU  Li H 《Biochemistry》2002,41(48):14403-14411
Chlorosomes of the photosynthetic green sulfur bacterium Chlorobium tepidum consist of bacteriochlorophyll (BChl) c aggregates that are surrounded by a lipid-protein monolayer envelope that contains ten different proteins. Chlorosomes also contain a small amount of BChl a, but the organization and location of this BChl a are not yet clearly understood. Chlorosomes were treated with sodium dodecyl sulfate (SDS), Lubrol PX, or Triton X-100, separately or in combination with 1-hexanol, and the extracted components were separated from the residual chlorosomes by ultrafiltration on centrifugal filters. When chlorosomes were treated with low concentrations of SDS, all proteins except CsmA were extracted. However, this treatment did not significantly alter the size and shape of the chlorosomes, did not extract the BChl a, and caused only minor changes in the absorption spectrum of the chlorosomes. Cross-linking studies with SDS-treated chlorosomes revealed the presence of multimers of the major chlorosome protein, CsmA, up to homooctamers. Extraction of chlorosomes with SDS and 1-hexanol solubilized all ten chlorosome envelope proteins as well as BChl a. Although the size and shape of these extracted chlorosomes did not initially differ significantly from untreated chlorosomes, the extracted chlorosomes gradually disintegrated, and rod-shaped BChl c aggregates were sometimes observed. These results strongly suggest that CsmA binds the BChl a in Chlorobium-type chlorosomes and further indicate that none of the nine other chlorosome envelope proteins are absolutely required for maintaining the shape and integrity of chlorosomes. Quantitative estimates suggest that chlorosomes contain approximately equimolar amounts of CsmA and BChl a and that roughly one-third of the surface of the chlorosome is covered by CsmA.  相似文献   

8.
We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1 microL) of a concentrated suspension of isolated chlorosomes directly to the target of the mass spectrometer we have been able to detect bacteriochlorophyll a and all the major homologs of bacteriochlorophyll c. The peak heights of the different bacteriochlorophyll c homologs in the MALDI spectra were proportional to peak areas obtained from HPLC analysis of the same sample. The same result was also obtained when whole cells of Chl. tepidum were applied to the target, indicating that MALDI-MS can provide a rapid method for obtaining a semiquantitative determination or finger-print of the bacteriochlorophyll homologs in a small amount of green bacterial cells. In addition to information on pigments, the MALDI spectra also contained peaks from chlorosome proteins. Thus we have been able with high precision to confirm the molecular masses of the chlorosome proteins CsmA and CsmE which have been previously determined by conventional biochemical and genetic methods, and demonstrate the presence of truncated versions of CsmA and CsmB.  相似文献   

9.
10.
A highly purified oxygen evolving Photosystem II core complex was isolated from PS II membranes solubilized with the non-ionic detergent n-octyl--D-thioglucoside. The three extrinsic proteins (33, 23 and 17 kDa) were functionally bound to the PS II core complex. Selective extraction of the 22, 10 kDa, CP 26 and CP 29 proteins demonstrated that these species are not involved in the binding of the extrinsic proteins (33, 23 and 17 kDa) or the DCMU sensitivity of the Photosystem II complex.Abbreviations Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHC light-harvesting complex - MES 2-(N-morpholino)ethanesulfonic acid - OGP n-octyl--d-glucoside - OTG n-octyl--d-thioglucoside - PAGE polyacrylamide gel electrophoresis - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   

11.
Summary The nucleotide sequence of a 3.6 kb DNA fragment containing a cellodextrinase gene (celA) fromRuminococcus flavefaciens FD-1 was determined. The gene was expressed from its own regulatory region inEscherichia coli and a putative consensus promoter sequence was identified upstream of a ribosome binding site and a TTG start codon. The complete amino acid sequence of the CeIA enzyme (352 residues) was deduced and showed no significant homology to cellulases from other oganisms. Two lysozymetype active sites were found in the amino-terminal third of the enzyme. InE. coli the cloned CeIA protein was translocated into the periplasm. The lack of a typical signal sequence, and the results of transposonphoA mutagenesis experiments indicated that CeIA is secreted by a mechanism other than a leader peptide.Abbreviations CMCase carboxymethylcellulase - celA gene coding for CeIA - CelA cellodextrinase - ORF open reading frame - phoA gene encoding alkaline phosphatase - pNPC p-nitrophenyl--d-cellobioside  相似文献   

12.
The composition, abundance and apparent molecular masses of chlorosome polypeptides from Chlorobium tepidum and Chlorobium vibrioforme 8327 were compared. The most abundant, low-molecular-mass chlorosome polypeptides of both strains had similar electrophoretic mobilities and abundances, but several of the larger proteins were different in both apparent mass and abundance. Polyclonal antisera raised against recombinant chlorosome proteins of Cb. tepidum recognized the homologous proteins in Cb. vibrioforme, and a one-to-one correspondence between the chlorosome proteins of the two species was confirmed. As previously shown [Ormerod et al. (1990) J Bacteriol 172: 1352–1360], acetylene strongly suppressed the synthesis of bacteriochlorophyll c in Cb. vibrioforme strain 8327. No correlation was found between the bacteriochlorophyll c content of cells and the cellular content of chlorosome proteins. Nine of ten chlorosome proteins were detected in acetylene-treated cultures, and the chlorosome proteins were generally present in similar amounts in control and acetylene-treated cells. These results suggest that the synthesis of chlorosome proteins and the assembly of the chlorosome envelope is constitutive. It remains possible that the synthesis of bacteriochlorophyll c and its insertion into chlorosomes might be regulated by environmental parameters such as light intensity.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

13.
Calcium is essential for the growth of rhizobia and the formation of nitrogen-fixing root-nodules on legumes, but its precise role in these processes remains unknown. We have found that Rhizobium fredii USDA208 accumulates a major 38 kDa protein when grown in media supplemented with 0.3–2 mM CaCl2. We have purified this protein and raised polyclonal antibodies against it. The protein initially is synthesized as a 40 kDa precursor which subsequently undergoes calcium-dependent processing to give rise to the mature polypeptide. Subcellular and immunocytochemical localization studies indicate that the 38 kDa protein accumulates preferentially in the periplasmic space. Its N-terminal sequence, AETIKIGVAGPMTG, shows significant homology to the N-termini of amino acid binding proteins from the periplasm, including leucine-, isoleucine-, and valine-specific binding proteins of Pseudomonas aeruginosa and Escherichia coli and a leucine-specific binding protein of E. coli. The R. fredii protein does not, however, bind [3H]-leucine. The 38 kDa protein is encoded by the bacterial chromosome. It is absent in several rhizobia other than R. fredii, but antigenically related polypeptides are present in Escherichia coli and Erwinia carotovora subsp. carotovora.  相似文献   

14.
The Brassica napus cDNA clone A9 and the corresponding Arabidopsis thaliana gene have been sequenced. The B. napus cDNA and the A. thaliana gene encode proteins that are 73% identical and are predicted to be 10.3 kDa and 11.6 kDa in size respectively. Fusions of an RNase gene and the reporter gene -glucuronidase to the A. thaliana A9 promoter demonstrated that in tobacco the A9 promoter is active solely in tapetal cells. Promoter activity is first detectable in anthers prior to sporogenous cell meiosis and ceases during microspore premitotic interphase.The deduced A9 protein sequence has a pattern of cysteine residues that is present in a superfamily of seed plant proteins which contains seed storage proteins and several protease and -amylase inhibitors.  相似文献   

15.
Summary The Escherichia coli mutator gene mutT, which causes A:TC:G transversion, was cloned in pBR 322. mutT + plasmids carry a 0.9 kb PvuII DNA fragment derived from the E. coli chromosome. Specific labelling of plasmid-encoded proteins by the maxicell method revealed that mutT codes for a polypeptide of about 15,000 daltons. The protein was overproduced when the mutT gene was placed under the control of the lac regulatory region on a multicopy runaway plasmid. The nucleotide sequence of the mutT gene was determined by the dideoxy method.Abbreviations Ap ampicillin - IPTG isopropyl--d-thiogalactopyranoside - kb kilobase pair(s) - kDa kilodalton(s) - SDS sodium dodecyl sulphate - Tc tetracycline  相似文献   

16.
Chlorosomes are the light-harvesting organelles in photosynthetic green bacteria and typically contain large amounts of bacteriochlorophyll (BChl) c in addition to smaller amounts of BChl a, carotenoids, and several protein species. We have isolated vestigial chlorosomes, denoted carotenosomes, from a BChl c-less, bchK mutant of the green sulfur bacterium Chlorobium tepidum. The physical shape of the carotenosomes (86 ± 17 nm × 66 ± 13 nm × 4.3 ± 0.8 nm on average) was reminiscent of a flattened chlorosome. The carotenosomes contained carotenoids, BChl a, and the proteins CsmA and CsmD in ratios to each other comparable to their ratios in wild-type chlorosomes, but all other chlorosome proteins normally found in wild-type chlorosomes were found only in trace amounts or were not detected. Similar to wild-type chlorosomes, the CsmA protein in the carotenosomes formed oligomers at least up to homo-octamers as shown by chemical cross-linking and immunoblotting. The absorption spectrum of BChl a in the carotenosomes was also indistinguishable from that in wild-type chlorosomes. Energy transfer from the bulk carotenoids to BChl a in carotenosomes was poor. The results indicate that the carotenosomes have an intact baseplate made of remarkably stable oligomeric CsmA–BChl a complexes but are flattened in structure due to the absence of BChl c. Carotenosomes thus provide a valuable material for studying the biogenesis, structure, and function of the photosynthetic antennae in green bacteria.  相似文献   

17.
T. Teucher  E. Heinz 《Planta》1991,184(3):319-326
Uridine 5-diphosphate(UDP)-galactose: 1,2-diacylglycerol 3-O--d-galactopyranosyltransferase (EC 2.4.1.46) is an integral protein of chloroplast envelope membranes from which it has been partially purified (Covès et al., 1986, FEBS Lett. 208, 401–406). We have worked out a purification procedure which after removal of peripheral membrane proteins, solubilization and two chromotographic steps allowed us to identify a 22-kDa protein as the galactosyltransferase. Enrichment of enzymatic activity was paralleled by an enrichment of this protein and its radioactive derivative obtained by photoaffinity labelling with [-–32P]UDP which is a potent inhibitor of the enzyme. The purification factor of about 350 is substantially higher than achieved previously and indicates that the enzyme represents less than 0.3% of the envelope proteins. The purified enzyme has a Km of 87 M for UDP-galactose with dioleoylglycerol as acceptor and could not be activated by addition of other lipids.Abbreviations CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-propanesulfonate - DTE dithioerythritol - MGD monogalactosyl diacylglycerol - PMSF phenylmethanesulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

18.
19.
The xylitol dehydrogenase-encoding Arxula adeninivorans AXDH gene was isolated and characterized. The gene includes a coding sequence of 1107 bp encoding a putative 368 amino acid protein of 40.3 kDa. The identity of the gene was confirmed by a high degree of homology of the derived amino acid sequence to that of xylitol dehydrogenases from different sources. The gene activity was regulated by carbon source. In media supplemented with xylitol, D-sorbitol and D-xylose induction of the AXDH gene and intracellular accumulation of the encoded xylitol dehydrogenase was observed. This activation pattern was confirmed by analysis of AXDH promoter – GFP gene fusions. The enzyme characteristics were analysed from isolates of native strains as well as from those of recombinant strains expressing the AXDH gene under control of the strong A. adeninivorans-derived TEF1 promoter. For both proteins, a molecular mass of ca. 80 kDa was determined corresponding to a dimeric structure, an optimum pH at 7.5 and a temperature optimum at 35 °C. The enzyme oxidizes polyols like xylitol and D-sorbitol whereas the reduction reaction is preferred when providing D-xylulose, D-ribulose and L-sorbose as substrates. Enzyme activity exclusively depends on NAD+ or NADH as coenzymes.  相似文献   

20.
We present a molecular-scale model of Bacteriochlorophyll a (BChl a) binding to the chlorosome protein A (CsmA) of Chlorobaculum tepidum, and the aggregated pigment–protein dimer, as determined from protein–ligand docking and quantum chemistry calculations. Our calculations provide strong evidence that the BChl a molecule is coordinated to the His25 residue of CsmA, with the magnesium center of the bacteriochlorin ring situated <3 Å from the imidazole nitrogen atom of the histidine sidechain, and the phytyl tail aligned along the nonpolar residues of the α-helix of CsmA. We also confirm that the Q y band in the absorption spectra of BChl a experiences a large (+16 to +43 nm) redshift when aggregated with another BChl a molecule in the CsmA dimer, compared to the BChl a in solvent; this redshift has been previously established by experimental researchers. We propose that our model of the BChl a–CsmA binding motif, where the dimer contains parallel aligned N-terminal regions, serves as the smallest repeating unit in a larger model of the para-crystalline chlorosome baseplate protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号