首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Canine cardiac sarcoplasmic reticulum vesicles contain intrinsic protein phosphatase activity, which can dephosphorylate phospholamban and regulate calcium transport. This phosphatase has been suggested to be a mixture of both type 1 and type 2 enzymes (E. G. Kranias and J. Di Salvo, 1986, J. Biol. Chem. 261, 10,029-10,032). In the present study the sarcoplasmic reticulum phosphatase activity was solubilized with n-octyl-beta-D-glucopyranoside and purified by sequential chromatography on DEAE-Sephacel, polylysine-agarose, heparin-agarose, and DEAE-Sephadex. A single peak of phosphatase activity was eluted from each column and it was coincident for both phospholamban and phosphorylase a, used as substrates. The partially purified phosphatase could dephosphorylate the sites on phospholamban phosphorylated by either cAMP-dependent or calcium-calmodulin-dependent protein kinase(s). Enzymatic activity was inhibited by inhibitor-2 and by okadaic acid (I50 = 10-20 nM), using either phosphorylase a or phospholamban as substrates. The sensitivity of the phosphatase to inhibitor-2 or okadaic acid was similar for the two sites on phospholamban, phosphorylated by the cAMP-dependent and the calcium-calmodulin-dependent protein kinases. Phospholamban phosphatase activity was enhanced (40%) by Mg2+ or Mn2+ (3 mM) while Ca2+ (0.1-10 microM) had no effect. These characteristics suggest that the phosphatase associated with cardiac sarcoplasmic reticulum is a type 1 enzyme, and this activity may participate in the regulation of Ca2+ transport through dephosphorylation of phospholamban in cardiac muscle.  相似文献   

2.
A Molla  J G Demaille 《Biochemistry》1986,25(11):3415-3424
Phospholamban, the cardiac sarcoplasmic reticulum proteolipid, is phosphorylated by cAMP-dependent protein kinase, by Ca2+/phospholipid-dependent protein kinase, and by an endogenous Ca2+/calmodulin-dependent protein kinase, the identity of which remains to be defined. The aim of this study was therefore to characterize the latter kinase, called phospholamban kinase. Phospholamban kinase was purified approximately 42-fold with a yield of 11%. The purified fraction exhibits a specific activity of 6.5 nmol of phosphate incorporated into exogenous phospholamban per minute per milligram of protein. Phospholamban kinase appears to be a high molecular weight enzyme and presents a broad substrate specificity, synapsin-1, glycogen synthase, and smooth muscle myosin regulatory light chain being the best substrates. Phospholamban kinase phosphorylates synapsin-1 on a Mr 30 000 peptide. The enzyme exhibits an optimum pH of 8.6, a Km for ATP of 9 microM, and a requirement for Mg2+ ions. These data suggest that phospholamban kinase might be an isoenzyme of the multifunctional Ca2+/calmodulin-dependent protein kinase. Consequently we have searched for Mr 50 000-60 000 phosphorylatable subunits among cardiac sarcoplasmic reticulum proteins. A Mr 56 000 protein was found to be phosphorylated in the presence of Ca2+/calmodulin. Such phosphorylation alters the electrophoretic migration velocity of the protein. In addition, this protein that binds calmodulin was always found to be present in fractions containing phospholamban kinase activity. This Mr 56 000 protein is therefore a good candidate for being a subunit of phospholamban kinase. However, the Mr 56 000 calmodulin-binding protein and the Mr 53 000 intrinsic glycoprotein which binds ATP are two distinct entities.  相似文献   

3.
G Jakab  E G Kranias 《Biochemistry》1988,27(10):3799-3806
Phospholamban, the putative regulator for the calcium pump, was purified to apparent homogeneity and in high yields from canine cardiac sarcoplasmic reticulum membranes. Purified phospholamban migrated with an apparent Mr of 27,000 in alkaline sodium dodecyl sulfate-polyacrylamide gels, and upon boiling in 7.5% sodium dodecyl sulfate, it dissociated into a lower molecular weight component of 5500-6000. Purified phospholamban contained 0.62 +/- 0.09 mumol of lipid Pi/mg of protein, and the major phospholipids were phosphatidylserine (34%), phosphatidylcholine (22%), sphingomyelin (17%), phosphatidylinositol (13%), and phosphatidylethanolamine (9%). Phospholamban was phosphorylated by cAMP-dependent protein kinase to a level of 207 nmol of Pi/mg, and this would indicate an incorporation of 1 mol of phosphate/mol of protein, assuming a molecular weight of 5500 for phospholamban. Phosphorylation of phospholamban could be reversed by a "phospholamban phosphatase" isolated from canine cardiac cytosol. Phospholipids associated with the purified phospholamban were also phosphorylated in the presence of the catalytic subunit of cAMP-dependent protein kinase, and the maximal phosphate incorporation was 4 nmol/mg of protein. The main phospholipids phosphorylated were phosphatidylinositol 4-monophosphate and phosphatidylinositol 4,5-bisphosphate. Phosphorylation of phospholipids was inhibited by the heat-stable inhibitor protein of the cAMP-dependent protein kinase, and it could be also reversed by the phospholamban phosphatase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cardiac sarcoplasmic reticulum plays a critical role in the excitation-contraction cycle and hormonal regulation of heart cells. Catecholamines exert their ionotropic action through the regulation of calcium transport into the sarcoplasmic reticulum. Cyclic 3'-5'-adenosine monophosphate (cAMP) causes the cAMP-dependent protein kinase to phosphorylate the regulatory protein phospholamban, which results in the stimulation of calcium transport. Calmodulin also phosphorylates phospholamban by a calcium-dependent mechanism. We have reported the isolation and purification of phospholamban with low deoxycholate (DOC) concentrations (5 X 10(-6) M). We have also reported the isolation and purification of Ca2+ + Mg2+-ATPase with a similar procedure. Both phospholamban and Ca2+ + Mg2+-ATPase retained their native properties associated with sarcoplasmic reticulum vesicles. Further, we have shown that the removal of phospholamban from membranes of sarcoplasmic reticulum vesicles uncouples Ca2+-uptake from ATPase without any effect on Ca2+ + Mg2+-ATPase activity or Ca2+ efflux. Phospholamban appears to be the substrate for both the Ca2+-calmodulin system and the cAMP-dependent protein kinase system. It is found that the phosphorylation of phospholamban by the Ca2+-calmodulin system is required for the normal basal level of Ca2+ transport, and that the phosphorylation of phospholamban at another site by the cAMP-dependent protein kinase system causes the stimulation of Ca2+-transport above the basal level. The functional effects of the phosphorylation of phospholamban by cAMP-dependent protein kinase system are expressed only after the phosphorylation of phospholamban with Ca2+-calmodulin system. We propose a model for the cardiac Ca2+ + Mg2+-ATPase, whereby the enzyme is normally uncoupled from Ca2+ uptake. The enzyme becomes coupled to Ca2+ transport after the first site of phospholamban is phosphorylated with the Ca2+-calmodulin system. When the second site of phospholamban is phosphorylated with cAMP-dependent protein kinase both Ca2+ transport and ATPase are stimulated and phospholamban becomes inaccessible to DOC solubilization and trypsin.  相似文献   

5.
Phospholamban, the putative protein regulator of the Ca2+ pump of cardiac sarcoplasmic reticulum, was purified to apparent homogeneity from canine cardiac sarcoplasmic reticulum vesicles by selective extraction with sodium cholate, followed by adsorption to calcium oxalate, solubilization in Zwittergent 3-14, and specific elution from p-hydroxymercuribenzoate-agarose. Phospholamban, isolated in the dephosphorylated state, was purified 80-fold in 15% yield (approximately 2 mg of phospholamban/g of sarcoplasmic reticulum protein). Nondissociated phospholamban exhibited an apparent Mr = 25,000 in sodium dodecyl sulfate-polyacrylamide gels. Partially dissociated phospholamban, induced by boiling in sodium dodecyl sulfate, exhibited five distinct mobility forms in sodium dodecyl sulfate-polyacrylamide gels, of apparent molecular weights between 5,000-6,000 and 25,000. Phospholamban was phosphorylated to a level of 190 nmol of Pi/mg of protein by cAMP-dependent protein kinase, consistent by minimum stoichiometry with a subunit molecular weight of approximately 5,000. Phospholamban prepared by the present method was different in several respects from the proteins that have been isolated in other laboratories. Pure phospholamban was cysteine rich, containing 6 residues/100 amino acid residues. Dephosphorylated phospholamban was strongly basic with a pI = 10; phosphorylation decreased the pI to approximately 6.7. Pure phospholamban (and phospholamban present in sarcoplasmic reticulum vesicles) was not readily extracted into acidified chloroform/methanol, suggesting that the protein does not behave as an acidic proteolipid. The purified protein was highly antigenic. Phospholamban was localized by immunochemical methods to cardiac membranes enriched in sarcoplasmic reticulum, but was absent from sarcoplasmic reticulum membranes prepared from fast skeletal muscle. The method described for isolation of cardiac phospholamban is highly reproducible and relatively simple, and should be useful for further detailed studies designed to probe the molecular structure of the protein.  相似文献   

6.
R C Gupta  E G Kranias 《Biochemistry》1989,28(14):5909-5916
A Ca2+-calmodulin-dependent protein kinase was purified to apparent homogeneity from the cytosolic fraction of canine myocardium, with phospholamban as substrate. Purification involved sequential chromatography on DEAE-cellulose, calmodulin-agarose, DEAE-Bio-Gel A, and phosphocellulose. This procedure resulted in a 987-fold purification with a 5.4% yield. The purified enzyme migrated as a single band on native polyacrylamide gels, and it exhibited an apparent molecular weight of 550,000 upon gel filtration. Gel electrophoresis under denaturing conditions revealed a single protein band with Mr 55,000. The purified kinase could be autophosphorylated in a Ca2+-calmodulin-dependent manner, and under optimal conditions, 6 mol of Pi was incorporated per mole of 55,000-dalton subunit. The activity of the enzyme was dependent on Ca2+, calmodulin, and ATP.Mg2+. Other ions which could partially substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations were Sr2+ greater than Mn2+ greater than Zn2+ greater than Fe2+. The substrate specificity of the purified Ca2+-calmodulin-dependent protein kinase for cardiac proteins was determined by using phospholamban, troponin I, sarcoplasmic reticulum membranes, myofibrils, highly enriched sarcolemma, and mitochondria. The protein kinase could only phosphorylate phospholamban and troponin I either in their purified forms or in sarcoplasmic reticulum membranes and myofibrils, respectively. Exogenous proteins which could also be phosphorylated by the purified protein kinase were skeletal muscle glycogen synthase greater than gizzard myosin light chain greater than brain myelin basic protein greater than casein. However, phospholamban appeared to be phosphorylated with a higher rate as well as affinity than glycogen synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Phospholamban is a regulatory protein in cardiac sarcoplasmic reticulum that is phosphorylated by cAMP- and Ca2+/calmodulin-dependent protein kinase activities. In this report, we present the partial amino acid sequence of canine cardiac phospholamban and the identification of the sites phosphorylated by these two protein kinases. Gas-phase protein sequencing was used to identify 20 NH2-terminal residues. Overlap peptides produced by trypsin or papain digestion extended the sequence 16 residues to give the following primary structure: Ser-Ala-Ile-Arg-Arg-Ala-Ser-Thr-Ile-Glu-Met-Pro-Gln-Gln-Ala- Arg-Gln-Asn-Leu-Gln-Asn-Leu-Phe-Ile-Asn-Phe-(Cys)-Leu-Ile-Leu-Ile-(Cys)- Leu-Leu-Leu-Ile-. Phospholamban phosphorylated by either cAMP-dependent or Ca2+/calmodulin-dependent protein kinase was cleaved with trypsin, and the major phosphorylated peptide (comprising greater than 70% of the incorporated 32P label) was purified by reverse-phase high performance liquid chromatography. The identical sequence was revealed for the radioactive peptide obtained from phospholamban phosphorylated by either kinase: Arg-Ala-Ser-Thr-Ile-Glu-Met-Pro-Gln-Gln-. The adjacent residues Ser7 and Thr8 of phospholamban were identified as the unique sites phosphorylated by cAMP- and Ca2+/calmodulin-dependent protein kinases, respectively. These results establish that phospholamban is an oligomer of small, identical polypeptide chains. A hydrophilic, cytoplasmically oriented NH2-terminal domain on each monomer contains the unique, adjacent residues phosphorylated by cAMP- and Ca2+/calmodulin-dependent protein kinase activities. Analysis by hydropathic profiling and secondary structure prediction suggests that phospholamban monomers also contain a hydrophobic domain, which could form amphipathic helices sufficiently long to traverse the sarcoplasmic reticulum membrane. A model of phospholamban as a pentamer is presented in which the amphipathic alpha-helix of each monomer is a subunit of the pentameric membrane-anchored domain, which is comprised of an exterior hydrophobic surface and an interior hydrophilic region containing polar side chains.  相似文献   

8.
Calcium fluxes across the sarcoplasmic reticulum membrane are regulated by phosphorylation of a 27,000-dalton membrane-bound protein termed phospholamban. Phospholamban is phosphorylated by three different protein kinases (cAMP-dependent, Ca2+.CAM-dependent and Ca2+.phospholipid dependent) at apparently distinct sites. Phosphorylation by each of the protein kinases increases the rates of active calcium transport by sarcoplasmic reticulum vesicles. The stimulatory effects of protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase activity. The phosphoprotein phosphatase can dephosphorylate both the cAMP-dependent and the Ca2+.CAM-dependent sites of phospholamban. Phosphorylation of phospholamban also occurs in situ, in perfused beating hearts, during the peak of the inotropic response to beta-adrenergic stimulation. Reversal of the stimulatory effects is associated with dephosphorylation of phospholamban. Thus, in vivo and in vitro studies suggest that phospholamban is a regulator for the calcium pump in cardiac sarcoplasmic reticulum. The degree of phospholamban phosphorylation determined by the interaction of specific protein kinases and phosphatases may represent an important control for sarcoplasmic reticulum function and, thus, for the contraction-relaxation cycle in the myocardium. In this review, we summarize recent evidence on physical and structural properties of phospholamban, the proposed structural molecular models for this protein, and the significance of its regulatory role both in vitro and in situ.  相似文献   

9.
Canine cardiac sarcoplasmic reticulum vesicles contain intrinsic phospholamban protein phosphatase activity, which is also effective in dephosphorylating phosphorylase a. The phosphatase associated with sarcoplasmic reticulum membranes was solubilized with Triton X-100 and subjected to chromatography on Mono Q HR 5/5 and polylysine-agarose. A single peak of phosphatase activity was eluted from each column and it was coincident for both phospholamban and phosphorylase a, used as substrates. Thermal denaturation of the enzyme resulted in progressive and coincident loss of both phospholamban and phosphorylase a phosphatase activities. Enzymic activity was partially inhibited by protein phosphatase inhibitor 1. Migration of the enzyme during sucrose density gradient ultracentrifugation corresponded to a globular protein with an apparent Mr of 46,000. This enzyme preparation could dephosphorylate both the calcium-calmodulin-dependent as well as the cAMP-dependent sites on phospholamban. Thus, dephosphorylation of phospholamban by this sarcoplasmic reticulum-associated phosphatase may participate in modulating sarcoplasmic reticulum function in cardiac muscle.  相似文献   

10.
Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) is able to catalyze the phosphorylation of phospholamban in a canine cardiac sarcoplasmic reticulum preparation. This phosphorylation is associated with a 2-fold stimulation of Ca2+ uptake by cardiac sarcoplasmic reticulum similar to that seen following phosphorylation of phospholamban by an endogenous calmodulin-dependent protein kinase or by the catalytic subunit of cAMP-dependent protein kinase. Two-dimensional peptide maps of the tryptic fragments of phospholamban indicate that the three protein kinases differ in their selectivity for sites of phosphorylation. However, one common peptide appears to be phosphorylated by all three protein kinases. These findings suggest that protein kinase C may play a role similar to those played by cAMP- and calmodulin-dependent protein kinases in the regulation of Ca2+ uptake by cardiac sarcoplasmic reticulum, and raise the possibility that the effects of all three protein kinases are mediated through phosphorylation of a common peptide in phospholamban.  相似文献   

11.
Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium-calmodulin-dependent protein kinase on a 22,000 proteolipid, called phospholamban. Phosphorylation by the calcium-calmodulin-dependent protein kinase is associated with stimulation of the initial rates of calcium transport (Davis, B. A., Schwartz, A., Samaha, F. J., and Kranias, E. G. (1983) J. Biol. Chem. 258, 13587-13591). The present study shows that protein phosphatase activity, associated with canine cardiac sarcoplasmic reticulum vesicles, can catalyze dephosphorylation of the calcium-calmodulin-dependent sites on phospholamban. The activity was maximally stimulated by manganese; fluoride was inhibitory, but its effect was reversible. Dephosphorylation of phospholamban, which was prephosphorylated by calcium-calmodulin-dependent protein kinase, resulted in a reduction of the stimulation on calcium transport rates, particularly at submaximal calcium concentrations. The decrease in calcium transport was associated with a statistically significant decrease in the apparent affinity (EC50) for calcium. Rephosphorylation of phospholamban by the endogenous calcium-calmodulin-dependent protein kinase caused full recovery of the stimulation on calcium transport rates and reversal of the effects mediated by the protein phosphatase. Thus, the calcium pump in cardiac sarcoplasmic reticulum appears to be under reversible regulation mediated by endogenous calcium-calmodulin-dependent protein kinase and protein phosphatase. Such regulation may represent an important control mechanism for the myocardium.  相似文献   

12.
The activity of the Ca2+-pumping ATPase of cardiac sarcoplasmic reticulum is controlled by the phosphorylation level of the intrinsic membrane protein phospholamban. Phospholamban monomers contain two distinct phosphorylation sites for either the cAMP-dependent or the calmodulin-dependent kinase. The two kinases, however, preferentially phosphorylate different populations of phospholamban molecules and double phosphorylation of the same subunit by their concerted action is a phenomenon that occurs only under particular experimental conditions. This study investigates the phosphorylation pattern of phospholamban in various subfractions derived from dog cardiac sarcoplasmic reticulum. The results show that the endogenous calmodulin-dependent kinase preferentially phosphorylates the phospholamban population found in association with the cisternal compartments of the reticulum. The differential phosphorylation occurs despite the presence of sufficient amounts of the kinase in all sarcoplasmic reticulum subfractions. On the other hand, phospholamban molecules localized on the longitudinal system are preferential substrates for the cAMP-dependent kinase. Possibly, the different lipid and/or protein microenvironment of phospholamban in the various sarcoplasmic reticulum domains is responsible for the apparent heterogeneity of phosphorylation. The present findings are compatible with the concept of additive and independent action of the cAMP-dependent and calmodulin-dependent kinases on cardiac sarcoplasmic reticulum. The imply, however, that different regions of the sarcoplasmic reticulum network are controlled by the two regulatory mechanisms.  相似文献   

13.
The cardiac sarcolemmal 15-kDa protein, previously shown to be the principal sarcolemmal substrate phosphorylated in intact heart in response to beta-adrenergic stimulation (Presti, C. F., Jones, L. R., and Lindemann J. P. (1985) J. Biol. Chem. 260, 3860-3867), was demonstrated to be the major substrate phosphorylated in purified canine cardiac sarcolemmal vesicles by an intrinsic protein kinase C activity. The intrinsic protein kinase C, detected by its ability to phosphorylate H1 histones, was most concentrated in cardiac sarcolemmal vesicles and absent from sarcoplasmic reticulum membranes. Unmasking techniques localized the intrinsic protein kinase activity and its principal endogenous substrate, the 15-kDa protein, to the cytoplasmic surfaces of sarcolemmal vesicles; phospholamban contaminating the sarcolemmal preparation was not significantly phosphorylated. The intrinsic protein kinase C required micromolar Ca2+ for activity, but not calmodulin. Half-maximal phosphorylation of the 15-kDa protein occurred at 10 microM Ca2+; optimal phosphorylation of the 15-kDa protein by protein kinase C and Ca2+ was additive to that produced by cAMP-dependent protein kinase. Exogenous phospholipids were not required to activate endogenous protein kinase C. However, heat-treated sarcolemmal vesicles, in which intrinsic protein kinase activities were inactivated, were sufficient to maximally activate soluble protein kinase C prepared from rat brain, suggesting that all the necessary phospholipid cofactors were already present in sarcolemmal vesicles. Of the many proteins present in sarcolemmal vesicles, only the 15-kDa protein was phosphorylated significantly in heat-inactivated sarcolemmal vesicles by soluble protein kinase C, confirming that the 15-kDa protein was a preferential substrate for this enzyme. Consistent with a protein kinase C activity in sarcolemmal vesicles, the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate stimulated 15-kDa protein phosphorylation severalfold, producing approximately 70% of the maximal phosphorylation even in the absence of significant ionized Ca2+. The results are compatible with an intrinsic protein kinase C activity in sarcolemmal vesicles whose major substrate is the 15-kDa protein.  相似文献   

14.
Monoclonal antibodies have been raised against canine phospholamban purified by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE). Four of twenty-four antibodies were purified to close to homogeneity from mouse ascites. All four antibodies could react with isolated bovine cardiac sarcoplasmic reticulum (SR) to result in the stimulation of ATP-dependent Ca2+ pump activity and blocking of phospholamban phosphorylation by cAMP-dependent protein kinase. Relative efficiencies of antibodies in Ca2+ pump stimulation and on phospholamban phosphorylation were not correlated. An immunoabsorbent prepared by conjugating antibody Al to Affi-Gel 10 was used for the purification of phospholamban. Isolated bovine cardiac SR was solubilized in a buffer containing deoxycholate and the soluble fraction was applied to the immunoaffinity column. After washing the column with a series of detergent-containing buffer solutions, the column-bound protein which contained essentially pure phospholamban was eluted by a buffer containing 2.8 M MgCl2. The phospholamban recovery from the immunoaffinity column was close to 100%; the overall yield of purification from SR vesicles was about 70%. SDS-PAGE analysis showed that purified phospholamban consisted of a 25 and 5 kilodalton (kDa) protein species. Upon brief boiling (20 s) of the sample in SDS-PAGE sample buffer, five molecular species ranging from 5 to 25 kDa could be detected by immunotransblotting following SDS-PAGE. This observation supports the notion that phospholamban is composed of five 5-kDa polypeptides. The pure phospholamban could be phosphorylated maximally by cAMP-dependent protein kinase to 1-1.5 mol phosphate/mol phospholamban (25,000 g). This stoichiometry of phosphorylation could be increased to about 5 upon addition of the immunoaffinity column flow through fraction.  相似文献   

15.
Canine cardiac sarcoplasmic reticulum is phosphorylated by adenosine 3',5'-monophosphate (cAMP)-dependent and by Ca2+-calmodulin-dependent protein kinases on an Mr 22 000 protein called phospholamban. Both types of phosphorylation are associated with an increase in the initial rate of Ca2+ transport. Thus, phospholamban appears to be a regulator for the calcium pump in cardiac sarcoplasmic reticulum. However, there is conflicting evidence as to the degree of association of the Ca2+-ATPase with its regulator, phospholamban. In this study, we report that phospholamban does not copurify with a Ca2+-ATPase preparation of high specific activity. Although 32P-labeled phospholamban is solubilized in the same fraction as the Ca2+-ATPase from cardiac sarcoplasmic reticulum, it dissociates from the Ca2+ pump during subsequent purification steps. Our isolation procedure results in an increase of over 4-fold in the specific activity of the Ca2+-ATPase, but a decrease of 2.5-fold in the specific activity of 32Pi-phosphoester bonds (pmol Pi/mg). Furthermore, the purified Ca2+-ATPase enzyme preparation is not a substrate for protein kinase in vitro to any significant extent. These data indicate that phospholamban does not copurify with the Ca2+-ATPase from cardiac sarcoplasmic reticulum. Isolation of a Ca2+-ATPase preparation essentially free of phospholamban will aid in future kinetic studies designed to elucidate similarities and differences in the Ca2+-ATPase parameters from cardiac and skeletal muscle (which is known not to contain phospholamban).  相似文献   

16.
Phospholamban, a putative regulator of cardiac sarcoplasmic reticulum Ca2+ transport, has been shown to be phosphorylated in vitro by cAMP-dependent protein kinase and an intrinsic Ca2+-calmodulin-dependent protein kinase activity. This study was conducted to determine if Ca2+-calmodulin-dependent phosphorylation of phospholamban occurs in response to physiologic increases in intracellular Ca2+ in intact myocardium. Isolated guinea pig and rat ventricles were perfused with 32Pi after which membrane vesicles were isolated from individual hearts by differential centrifugation. Administration of isoproterenol (10 nM) to perfused hearts stimulated 32P incorporation into phospholamban, Ca2+-ATPase activity, and Ca2+ uptake of sarcoplasmic reticulum isolated from these hearts. These biochemical changes were associated with increases in contractility and shortening of the t 1/2 of relaxation. Elevated extracellular Ca2+ produced comparable increases in contractility but failed to stimulate phospholamban phosphorylation or Ca2+ transport and did not alter the t 1/2 of relaxation. Inhibition of trans-sarcolemmal Ca2+ influx by perfusing the ventricles with reduced extracellular Ca2+ (50 microM) attenuated the increases in 32P incorporation produced by 10 nM isoproterenol. Trifluoperazine (10 microM) also attenuated isoproterenol-induced increases in 32P incorporation into phospholamban. In both cases, Ca2+ transport was reduced to a degree comparable to the reduction in phospholamban phosphorylation. These results suggest that direct physiologic increases in intracellular Ca2+ concentration do not stimulate phospholamban phosphorylation in intact functioning myocardium. Ca2+-calmodulin-dependent phosphorylation of phospholamban may occur in response to agents which stimulate cAMP-dependent mechanisms in intact myocardium.  相似文献   

17.
Purified phospholamban isolated from canine cardiac sarcoplasmic reticulum vesicles was subjected to proteolysis and peptide mapping to localize the different sites of phosphorylation on the protein and to gain further information on its subunit structure. Five different proteases (trypsin, papain, chymotrypsin, elastase, and Pronase) degraded the oligomeric 27-kDa phosphoprotein into a major 21-22-kDa protease-resistant fragment. No 32P was retained by this protease-resistant fragment, regardless of whether phospholamban had been phosphorylated by cAMP-dependent protein kinase, Ca2+/calmodulin-dependent protein kinase, or protein kinase C. Phosphoamino acid analysis and thin-layer electrophoresis of liberated phosphopeptides revealed that 1 threonine and 2 serine residues were phosphorylated in phospholamban and that 1 of these serine residues and the threonine residue were in close proximity. Only serine was phosphorylated by cAMP-dependent protein kinase, whereas Ca2+-calmodulin-dependent protein kinase phosphorylated exclusively threonine. The results demonstrate that phospholamban has a large protease-resistant domain and a smaller protease-sensitive domain, the latter of which contains all of the sites of phosphorylation. The 21-22-kDa protease-resistant domain, although devoid of incorporated 32P, was completely dissociated into identical lower molecular weight subunits by boiling in sodium dodecyl sulfate, suggesting that this region of the molecule promotes the relatively strong interactions that hold the subunits together. The data presented lend further support for a model of phospholamban structure in which several identical low molecular weight subunits are noncovalently bound to one another, each containing one site of phosphorylation for cAMP-dependent protein kinase and another site of phosphorylation for Ca2+/calmodulin-dependent protein kinase.  相似文献   

18.
Phosphorylation of phospholamban by either a cAMP-dependent or a calmodulin-dependent kinase stimulates the Ca2+ transporting activity of cardiac sarcoplasmic reticulum membranes. It has now been found that phospholamban consists of 2 distinct proteins; one is the specific substrate for the cAMP-dependent phosphorylation, and the other for the calmodulin-dependent kinase. In spite of functional diversity, the 2 polypeptides share a number of properties. Among them, the proteolipid character, Mr, resistance to trypsinization, and subunit composition.  相似文献   

19.
S Currie  G L Smith 《FEBS letters》1999,459(2):244-248
A protein kinase activity intrinsic to the sarcoplasmic reticulum was studied in normal and hypertrophied rabbit hearts. The relationship between this kinase activity and phospholamban phosphorylation was examined. Calmodulin-dependent kinase II activity was found to be increased in sarcoplasmic reticulum preparations from hypertrophied hearts compared with normal. This was evident by measuring the phosphotransferase activity of the kinase and also by examining phospholamban phosphorylation by electrophoretic band shift analysis. Increased phospholamban phosphorylation by Calmodulin-dependent protein kinase II was dependent on prior phosphorylation by cAMP-dependent protein kinase, indicating potential crosstalk. Specific immunoblot analysis of the rabbit sarcoplasmic reticulum identified the presence of the delta form of calmodulin dependent protein kinase II and showed it to be up-regulated in hypertrophied hearts.  相似文献   

20.
Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium X calmodulin-dependent protein kinase and phosphorylation occurs mainly on a 27 kDa proteolipid, called phospholamban. To determine whether this phosphorylation has any effect on Ca2+ release, sarcoplasmic reticulum vesicles were phosphorylated by the calcium X calmodulin-dependent protein kinase, while non-phosphorylated vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both non-phosphorylated and phosphorylated vesicles were centrifuged to remove calmodulin, and subsequently used for Ca2+ release studies. Calcium loading was carried out either by the active calcium pump or by incubation with high (5 mM) calcium for longer periods. Phosphorylation of sarcoplasmic reticulum by calcium X calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca2+ released from cardiac sarcoplasmic reticulum vesicles loaded under passive conditions and on the apparent 45Ca2+-40Ca2+ exchange from cardiac sarcoplasmic reticulum vesicles loaded under active conditions. Thus, it appears that calcium X calmodulin-dependent protein kinase mediated phosphorylation of cardiac sarcoplasmic reticulum is not involved in the regulation of Ca2+ release and 45Ca2+-40Ca2+ exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号