首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidemiological studies have suggested that moderate consumption of red wine might reduce the risk of cardiovascular disease. Red Wine Polyphenolic Compounds (RWPC), a complex extract obtained from red wine, causes endothelium-dependent vasorelaxation in rat aortic rings pre-contracted with noradrenaline. This effect is associated with marked formation of NO in the vessel (directly shown by electron paramagnetic resonance spectroscopy) and it is abolished by the NO synthase inhibitor N(G)-nitro-L-arginine methylester (300 microM). It is mimicked by some defined polyphenols (like the anthocyanin delphinidin) but not by others (malvidin, cyanidin, quercetin, catechin, epicatechin), despite close structures. In addition, RWPC causes an extracellular Ca(2+)-dependent increase in [Ca2+]i in endothelial but not in smooth muscle cells. The efficiency of RWPC in inducing NO production in the aorta and increase in [Ca2+]i, in endothelial cells is comparable to those of carbachol and bradykinine, respectively. These findings provide evidence that RWPC and polyphenols with selective structures can activate an undefined target in endothelial cells. The resulting increase in [Ca2+]i activation of NO-synthase and enhanced formation of NO may be involved in cardiovascular protection.  相似文献   

2.
The present study was aimed to evaluate the mechanisms involved in the vasorelaxant effects of red wine polyphenol compounds (RWPC) in small mesenteric rat arteries. RWPC produce relaxation in small mesenteric arteries. This relaxant effect was abolished by endothelial denudation, NO-synthase blockade with L-NAME and partial depolarization with KCl or L-NAME plus KCl. Incubation with the reactive oxygen species scavenger, superoxide dismutase (SOD) plus catalase, or inhibition of NAD(P)H-dependent oxidoreductases with diphenyleneiodonium also inhibited RWPC induced vascular relaxation. Application of RWPC elicited a transient increase in intracellular calcium concentration ([Ca2+]i) in bovine aortic endothelial cells (BAEC), which was attenuated by a mixture of SOD and catalase. Incubation of BAEC with RWPC increased the SOD inhibitable production of O2-. These results suggest the involvement of O2- in the [Ca2+]i increase evoked by RWPC, leading to the activation of enzymes involved in the release of endothelial relaxant factors and subsequent vasodilatation of resistance arteries.  相似文献   

3.
There is growing evidence that endothelial dysfunction, which is often defined as the decreased endothelial-derived nitric oxide (NO) bioavailability, is a crucial factor leading to vascular disease states such as hypertension, diabetes, atherosclerosis, heart failure and cigarette smoking. This is due to the fact that the lack of NO in endothelium-dependent vascular disorders contributes to impaired vascular relaxation, platelet aggregation, increased vascular smooth muscle proliferation, and enhanced leukocyte adhesion to the endothelium. During the last several years, it has become clear that reduction of NO bioavailability in the endothelium-impaired function disorders is associated with an increase in endothelial production of superoxide (O(2)(*-)). Because O(2)(*-) rapidly scavenges NO within the endothelium, a reduction of bioactive NO might occur despite an increased NO generation. Among many enzymatic systems that are capable of producing O(2)(*-), NAD(P)H oxidase and uncoupled endothelial NO synthase (eNOS) apparently are the main sources of O(2)(*-) in the endothelial cells. It seems that O(2)(*-) generated by NAD(P)H oxidase may trigger eNOS uncoupling and contribute to the endothelial balance between NO and O(2)(*-). That is maintained at diverse levels.  相似文献   

4.
Red wine polyphenol compounds (RWPC) exert paradoxical effects depending on the dose on post-ischemic neovascularisation. Low dose RWPC (0.2 mg/kg/day) is pro-angiogenic, whereas high dose (20 mg/kg/day) is anti-angiogenic. We recently reported that the endothelial effect of RWPC is mediated through the activation of a redox-sensitive pathway, mitochondrial biogenesis and the activation of α isoform of the estrogen receptor (ERα). Here, we investigated the implication of ERα on angiogenic properties of RWPC. Using ovariectomized mice lacking ERα treated with high dose of RWPC after hindlimb ischemia, we examined blood flow reperfusion, vascular density, nitric oxide (NO) production, expression and activation of proteins involved in angiogenic process and muscle energy sensing network. As expected, high dose of RWPC treatment reduced both blood flow and vascular density in muscles of mice expressing ERα. These effects were associated with reduced NO production resulting from diminished activity of eNOS. In the absence of RWPC, ERα deficient mice showed a reduced neo-vascularisation associated with a decreased NO production. Surprisingly in mice lacking ERα, high dose of RWPC increased blood flow and capillary density in conjunction with increased NO pathway and production as well as VEGF expression. Of particular interest is the activation of Sirt-1, AMPKα and PGC-1α/β axis in ischemic hindlimb from both strains. Altogether, the results highlight a pro-angiogenic property of RWPC via an ERα-independent mechanism that is associated with an up-regulation of energy sensing network. This study brings a corner stone of a novel pathway for RWPC to correct cardiovascular diseases associated with failed neovascularisation.  相似文献   

5.
Vascular diseases are characterized by impairment of endothelial-derived nitric oxide (NO) bioactivity and increased vascular levels of hydrogen peroxide (H(2)O(2)). Here we examined the implications of H(2)O(2) for agonist-stimulated endothelial NO bioactivity in rabbit aortic rings and cultured porcine aortic endothelial cells (PAEC). Vessels pre-treated with H(2)O(2) exhibited impaired endothelial-dependent relaxation induced by acetylcholine or calcium ionophore. In contrast, H(2)O(2) had no effect on endothelium-independent relaxation induced by a NO donor, indicating a defect in endothelium-derived NO. This defect was not related to eNOS catalytic activity; treatment of PAEC with H(2)O(2) enhanced agonist-stimulated eNOS activity indicated by increased eNOS phosphorylation at Ser-1177 and de-phosphorylation at Thr-495 and enhanced conversion of [(3)H]-L-arginine to [(3)H]-L-citrulline that was prevented by inhibitors of Src and phosphatidylinositol-3 kinases. Despite activating eNOS, H(2)O(2) impaired endothelial NO bioactivity indicated by attenuation of the increase in intracellular cGMP in PAEC stimulated with calcium ionophore or NO. The decrease in cGMP was not due to impaired guanylyl cyclase as H(2)O(2) treatment increased cGMP accumulation in response to BAY 41-2272, a NO-independent activator of soluble guanylyl cyclase. At concentrations that impaired endothelial NO bioactivity H(2)O(2) increased intracellular oxidative stress and size of the labile iron pool in PAEC. The increase in oxidative stress was prevented by the free radical scavenger's tempol or tiron and the iron chelator desferrioxamine and these antioxidants reversed the H(2)O(2)-induced impairment of NO bioactivity in PAEC. This study shows that despite promoting eNOS activity, H(2)O(2) impairs endothelial NO bioactivity by promoting oxidative inactivation of synthesized NO. The study highlights another way in which oxidative stress may impair NO bioactivity during vascular disease.  相似文献   

6.
We recently reported that in vitro Cognac polyphenolic compounds (CPC) induce NO-dependent vasorelaxant effects and stimulate cardiac function. In the present study, we aim to investigate the effect of CPC on both nitric oxide (NO) and superoxide anions (O(2)(-)) production in cultured human endothelial cells. In addition, its effect on the bradykinin (BK)-induced NO production was also tested. The role and sources of O(2)(-) in the concomitant effect of BK plus CPC were pharmacologically determined. NO and O(2)(-) signals were measured using electron paramagnetic resonance technique using specific spin trappings. Both, CPC and BK induced an increase in NO production in human endothelial cells. The combination of both further enhanced NO release. The capacity of CPC plus BK to increase NO signal was blunted by the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester, and was enhanced in the presence either of superoxide dismutase or catalase. Moreover, CPC plus BK response was greater after inhibition of either NADPH oxidase by apocynin or xanthine oxidase by allopurinol but it was not affected by rotenone. CPC did not affect O(2)(-) level either alone or after its increase upon lipopolysaccharide treatment. Finally, the capacity of BK alone to increase NO was enhanced either by apocynin or allopurinol. Altogether, these data demonstrate that CPC is able to directly increase NO production without affecting O(2)(-) and enhances the BK-induced NO production in human endothelial cells. The data highlight the ability of BK to stimulate not only NADPH oxidase- but also xanthine oxidase-inhibitor sensitive mechanisms that reduce its efficiency in increasing NO either alone or in the presence of CPC. These results bring pharmacological evidence for vascular protection by CPC via its potentiating effect of BK response in terms of endothelial NO release.  相似文献   

7.
8.
We investigated the endothelial modulations in nitrate tolerance in isolated rabbit aorta. Nitrate tolerance was induced by a 72-h treatment with transdermal nitroglycerin (NTG, 0.4 mg/h) in conscious rabbits, which was verified by a 20-fold increase in the EC50 values [NTG tolerance (6.1 +/- 0.8) x 10(-7) M vs control (3.0 +/- 0.6) x 10(-8) M]. The relaxations to NTG in tolerant and nontolerant aortic strips were enhanced when their endothelia were denuded [E(-)]. In the presence of endothelium [E(+)], NTG-tolerant vessels were not tolerant to acetylcholine (ACh), which can release endothelial nitric oxide (NO), exogenous NO or 8-bromo (Br)-cGMP. In NTG-tolerant and nontolerant vessels with endothelium, concentration-response curves for NO were the same as those in endothelium-absent tolerant vessels. In both NTG-tolerant and nontolerant vessels, treatment with superoxide dismutase (SOD, 20 units/ml), an O2-. scavenger, unaffected the responses to NTG reduced in the presence of endothelium, but treatment with NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), an NO synthase (NOS) inhibitor, reversed these reductions. Thus, our data did not indicate that an increased endothelial superoxide O2-. production contributes to nitrate tolerance. Our study suggested that (i) an impaired biotransformation process from NTG to NO is responsible for the occurrence of nitrate tolerance and (ii) vascular response to NTG enhanced by endothelial removal is related to blocked endothelial NO release.  相似文献   

9.
We investigated nitric oxide (*NO)-mediated proteosomal activation in bovine aortic endothelial cells (BAEC) treated with varying fluxes of hydrogen peroxide (H(2)O(2)) generated from glucose/glucose oxidase (Glu/GO). Results revealed a bell-shaped *NO signaling response in BAEC treated with Glu/GO (2-20 mU/ml). GO treatment (2 mU/ml) enhanced endothelial nitric oxide synthase (eNOS) phosphorylation and *NO release in BAEC. With increasing GO concentrations, phospho eNOS and *NO levels decreased. Bell-shaped responses in proteasomal function and *NO induction were observed in BAEC treated with varying levels of GO (2-10 mU/ml). Proteosomal activation induced in GO-treated BAEC was inhibited by N(omega)-nitro-L-arginine-methyl ester pretreatment, suggesting that *NO mediates proteasomal activation. Intracellular *NO induced by H(2)O(2) was detected by isolating the 4,5-diaminoflourescein (DAF-2)/*NO/O(2)-derived "green fluorescent product" using the high-performance liquid chromatography-fluorescence technique, a more rigorous and quantitative methodology for detecting the DAF-2/*NO/O(2) reaction product. Finally, the relationships between H(2)O(2) flux, proteasomal activation/inactivation, endothelial cell survival, and apoptosis are discussed.  相似文献   

10.
The present study tested the hypothesis that endostatin stimulates superoxide (O2*-) production through a ceramide-mediating signaling pathway and thereby results in an uncoupling of bradykinin (BK)-induced increases in intracellular Ca2+ concentration ([Ca2+]i) from nitric oxide (NO) production in coronary endothelial cells. With the use of high-speed, wavelength-switching, fluorescence-imaging techniques, the [Ca2+]i and NO levels were simultaneously monitored in the intact endothelium of freshly isolated bovine coronary arteries. Under control conditions, BK was found to increase NO production and [Ca2+]i in parallel. When the arteries were pretreated with 100 nM human recombinant endostatin for 1 h, this BK-induced NO production was reduced by 89%, whereas [Ca2+]i was unchanged. With the conversion rate of L-[3H]arginine to L-[3H]citrulline measured, endostatin had no effect on endothelial NO synthase (NOS) activity, but it stimulated ceramide by activation of sphingomyelinase (SMase), whereby O2*-. production was enhanced in endothelial cells. O2*-. scavenging by tiron and inhibition of NAD(P)H oxidase by apocynin markedly reversed the effect of endostatin on the NO response to BK. These results indicate that endostatin increases intracellular ceramide levels, which enhances O2*-. production through activation of NAD(P)H oxidase. This ceramide-O2*-. signaling pathway may contribute importantly to endostatin-induced endothelial dysfunction.  相似文献   

11.
Recently, it has been shown that the exogenous addition of hydrogen peroxide (H(2)O(2)) increases endothelial nitric oxide (NO(.)) production. The current study is designed to determine whether endogenous levels of H(2)O(2) are ever sufficient to stimulate NO(.) production in intact endothelial cells. NO(.) production was detected by a NO(.)-specific microelectrode or by an electron spin resonance spectroscopy using Fe(2+)-(DETC)(2) as a NO(.)-specific spin trap. The addition of H(2)O(2) to bovine aortic endothelial cells caused a potent and dose-dependent increase in NO(.) release. Incubation with angiotensin II (10(-7) mol) elevated intracellular H(2)O(2) levels, which were attenuated with PEG-catalase. Angiotensin II increased NO(.) production by 2-fold, and this was prevented by Losartan and by PEG-catalase, suggesting a critical role of AT1 receptor and H(2)O(2) in this response(.) In contrast, NO(.) production evoked by either bradykinin or calcium ionophore was unaffected by PEG-catalase. As in bovine aortic endothelial cells, angiotensin II doubled NO(.) production in aortic endothelial cells from C57BL/6 mice but had no effect on NO(.) production in endothelial cells from p47(phox-/-) mice. In contrast, stimulated NO(.) production to a similar extent in endothelial cells from wild-type and p47(phox-/-) mice. In summary, the present study provides direct evidence that endogenous H(2)O(2), derived from the NAD(P)H oxidase, mediates endothelial NO(.) production in response to angiotensin II. Under disease conditions associated with elevated levels of angiotensin II, this response may represent a compensatory mechanism. Because angiotensin II also stimulates O(2)() production from the NAD(P)H oxidase, the H(2)O(2) stimulation of NO(.) may facilitate peroxynitrite formation in response to this octapeptide.  相似文献   

12.
Mitochondria-derived oxygen-free radical(s) are important mediators of oxidative cellular injury. It is widely hypothesized that excess NO enhances O(2)(?-) generated by mitochondria under certain pathological conditions. In the mitochondrial electron transport chain, succinate-cytochrome c reductase (SCR) catalyzes the electron transfer reaction from succinate to cytochrome c. To gain the insights into the molecular mechanism of how NO overproduction may mediate the oxygen-free radical generation by SCR, we employed isolated SCR, cardiac myoblast H9c2, and endothelial cells to study the interaction of NO with SCR in vitro and ex vivo. Under the conditions of enzyme turnover in the presence of NO donor (DEANO), SCR gained pro-oxidant function for generating hydroxyl radical as detected by EPR spin trapping using DEPMPO. The EPR signal associated with DEPMPO/(?)OH adduct was nearly completely abolished in the presence of catalase or an iron chelator and partially inhibited by SOD, suggesting the involvement of the iron-H(2)O(2)-dependent Fenton reaction or O(2)(?-)-dependent Haber-Weiss mechanism. Direct EPR measurement of SCR at 77K indicated the formation of a nonheme iron-NO complex, implying that electron leakage to molecular oxygen was enhanced at the FAD cofactor, and that excess NO predisposed SCR to produce (?)OH. In H9c2 cells, SCR-dependent oxygen-free radical generation was stimulated by NO released from DEANO or produced by the cells following exposure to hypoxia/reoxygenation. With shear exposure that led to overproduction of NO by the endothelium, SCR-mediated oxygen-free radical production was also detected in cultured vascular endothelial cells.  相似文献   

13.
14.
Pulmonary vasoconstriction is influenced by inactivation of nitric oxide (NO) with extracellular superoxide (O2-*). Because the short-lived O2-* anion cannot diffuse across plasma membranes, its release from vascular cells requires specialized mechanisms that have not been well delineated in the pulmonary circulation. We have shown that the bicarbonate (HCO3-)-chloride anion exchange protein (AE2) expressed in the lung also exchanges O2-* for HCO3-. Thus we determined whether O2-* release involved in pulmonary vascular tone depends on extracellular HCO3-. We assessed endothelium-dependent vascular reactivity and O2-* release in the presence or absence of HCO3- in pulmonary artery (PA) rings isolated from normal rats and those exposed to hypoxia for 3 days. Lack of extracellular HCO3- in normal PA rings significantly attenuated endothelial O2-* release, opposed hypoxic vasoconstriction, and enhanced acetylcholine-mediated vasodilation. Release of O2-* was also inhibited by an AE2 inhibitor (SITS) and abolished in normoxia by an NO synthase inhibitor (NG-nitro-L-arginine methyl ester). In contrast, hypoxia increased PA AE2 protein expression and O2-* release; the latter was not affected by NG-nitro-l-arginine methyl ester or other inhibitors of enzymatic O2-* generation. Enhanced O2-* release by uncoupling NO synthase with geldanamycin was attenuated by hypoxia or by HCO3- elimination. These results indicate that O2-* produced by endothelial NOS in normoxia and unidentified sources in hypoxia regulate pulmonary vascular tone via AE2.  相似文献   

15.
Early determinants of H2O2-induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Reactive oxygen species (ROS) can stimulate nitric oxide (NO(*)) production from the endothelium by transient activation of endothelial nitric oxide synthase (eNOS). With continued or repeated exposure, NO(*) production is reduced, however. We investigated the early determinants of this decrease in NO(*) production. Following an initial H(2)O(2) exposure, endothelial cells responded by increasing NO(*) production measured electrochemically. NO(*) concentrations peaked by 10 min with a slow reduction over 30 min. The decrease in NO(*) at 30 min was associated with a 2.7-fold increase in O(2)(*-) production (p < 0.05) and a 14-fold reduction of the eNOS cofactor, tetrahydrobiopterin (BH(4), p < 0.05). Used as a probe for endothelial dysfunction, the integrated NO(*) production over 30 min upon repeated H(2)O(2) exposure was attenuated by 2.1-fold (p = 0.03). Endothelial dysfunction could be prevented by BH(4) cofactor supplementation, by scavenging O(2)(*-) or peroxynitrite (ONOO(-)), or by inhibiting the NADPH oxidase. Hydroxyl radical (()OH) scavenging did not have an effect. In summary, early H(2)O(2)-induced endothelial dysfunction was associated with a decreased BH(4) level and increased O(2)(*-) production. Dysfunction required O(2)(*-), ONOO(-), or a functional NADPH oxidase. Repeated activation of the NADPH oxidase by ROS may act as a feed forward system to promote endothelial dysfunction.  相似文献   

16.
Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2(-) and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2(-) and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2(-) and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress.  相似文献   

17.
Hyperglycemia is a major cause of diabetic vascular disease. High glucose can induce reactive oxygen species (ROS) and nitric oxide (NO) generation, which can subsequently induce endothelial dysfunction. High glucose is also capable of triggering endothelial cell apoptosis. Little is known about the molecular mechanisms and the role of ROS and NO in high glucose-induced endothelial cell apoptosis. This study was designed to determine the involvement of ROS and NO in high glucose-induced endothelial cell apoptosis. Expression of endothelial nitric oxide synthase (eNOS) protein and apoptosis were studied in cultured human umbilical vein endothelial cells (HUVECs) exposed to control-level (5.5 mM) and high-level (33 mM) glucose at various periods (e.g., 2, 12, 24, 48 h). We also examined the effect of high glucose on H(2)O(2) production using flow cytometry. The results showed that eNOS protein expression was up-regulated by high glucose exposure for 2-6 h and gradually reduced after longer exposure in HUVECs. H(2)O(2) production and apoptosis, which can be reversed by vitamin C and NO donor (sodium nitroprusside), but enhanced by NOS inhibitor (N(G)-nitro-L-arginine methyl ether), were collated to a different time course (24-48 h) to HUVECs. These results provide the molecular basis for understanding that NO plays a protective role from apoptosis of HUVECs during the early stage (<24 h) of high glucose exposure, but in the late stage (>24 h), high glucose exposure leads to the imbalance of NO and ROS, resulting to the observed apoptosis. This may explain, at least in part, the impaired endothelial function and vascular complication of diabetic mellitus that would occur at late stages.  相似文献   

18.
Kar S  Kavdia M 《PloS one》2012,7(6):e38912
Leukocyte-endothelial cell interactions and leukocyte activation are important factors for vascular diseases including nephropathy, retinopathy and angiopathy. In addition, endothelial cell dysfunction is reported in vascular disease condition. Endothelial dysfunction is characterized by increased superoxide (O(2) (?-)) production from endothelium and reduction in NO bioavailability. Experimental studies have suggested a possible role for leukocyte-endothelial cell interaction in the vessel NO and peroxynitrite levels and their role in vascular disorders in the arterial side of microcirculation. However, anti-adhesion therapies for preventing leukocyte-endothelial cell interaction related vascular disorders showed limited success. The endothelial dysfunction related changes in vessel NO and peroxynitrite levels, leukocyte-endothelial cell interaction and leukocyte activation are not completely understood in vascular disorders. The objective of this study was to investigate the role of endothelial dysfunction extent, leukocyte-endothelial interaction, leukocyte activation and superoxide dismutase therapy on the transport and interactions of NO, O(2)(?-) and peroxynitrite in the microcirculation. We developed a biotransport model of NO, O(2)(?-) and peroxynitrite in the arteriolar microcirculation and incorporated leukocytes-endothelial cell interactions. The concentration profiles of NO, O(2)(?-) and peroxynitrite within blood vessel and leukocytes are presented at multiple levels of endothelial oxidative stress with leukocyte activation and increased superoxide dismutase accounted for in certain cases. The results showed that the maximum concentrations of NO decreased ~0.6 fold, O(2)(?-) increased ~27 fold and peroxynitrite increased ~30 fold in the endothelial and smooth muscle region in severe oxidative stress condition as compared to that of normal physiologic conditions. The results show that the onset of endothelial oxidative stress can cause an increase in O(2)(?-) and peroxynitrite concentration in the lumen. The increased O(2) (?-) and peroxynitrite can cause leukocytes priming through peroxynitrite and leukocytes activation through secondary stimuli of O(2)(?-) in bloodstream without endothelial interaction. This finding supports that leukocyte rolling/adhesion and activation are independent events.  相似文献   

19.
Penicillium marneffei is an important opportunistic fungal pathogen. The mechanisms of host defense against P. marneffei are not fully understood. In the present study, we, for the first time, investigated the role of superoxide anion (O2-) in the killing of two forms of P. marneffei, yeast cells and conidia, and the role of this killing mediator in the fungicidal activity of IFN-gamma-stimulated murine peritoneal macrophages. P. marneffei yeast cells were susceptible to the killing effect of activated macrophages and chemically generated O2, while conidia were not. These results suggested that O2- played some role in the fungicidal activity of macrophages. However, an oxygen radical scavenger, superoxide dismutase (SOD), did not suppress, but rather enhanced the fungicidal activity of IFN-gamma-stimulated macrophages against P. marneffei yeast cells. This inconsistency was explained by the release of insufficient concentrations of O2- by activated macrophages as compared with the amount of O2- necessary for the killing of yeast cells, which was predicted in a chemical generating system. On the other hand, SOD enhanced the production of nitric oxide (NO) by IFN-gamma-activated macrophages, and their increased fungicidal activity was significantly inhibited by N(G)-monomethyl-L-arginine (L-NMMA), a competitive inhibitor of NO synthase. Our results suggested that O2- does not function as the killing mediator of macrophages against P. marneffei, but rather plays an important role in the regulation of the NO-mediated killing system by suppressing NO production.  相似文献   

20.
Cultured vascular endothelial cell (EC) exposure to steady laminar shear stress results in peroxynitrite (ONOO(-)) formation intramitochondrially and inactivation of the electron transport chain. We examined whether the "hyperoxic state" of 21% O(2), compared with more physiological O(2) tensions (Po(2)), increases the shear-induced nitric oxide (NO) synthesis and mitochondrial superoxide (O(2)(*-)) generation leading to ONOO(-) formation and suppression of respiration. Electron paramagnetic resonance oximetry was used to measure O(2) consumption rates of bovine aortic ECs sheared (10 dyn/cm(2), 30 min) at 5%, 10%, or 21% O(2) or left static at 5% or 21% O(2). Respiration was inhibited to a greater extent when ECs were sheared at 21% O(2) than at lower Po(2) or left static at different Po(2). Flow in the presence of an endothelial NO synthase (eNOS) inhibitor or a ONOO(-) scavenger abolished the inhibitory effect. EC transfection with an adenovirus that expresses manganese superoxide dismutase in mitochondria, and not a control virus, blocked the inhibitory effect. Intracellular and mitochondrial O(2)(*-) production was higher in ECs sheared at 21% than at 5% O(2), as determined by dihydroethidium and MitoSOX red fluorescence, respectively, and the latter was, at least in part, NO-dependent. Accumulation of NO metabolites in media of ECs sheared at 21% O(2) was modestly increased compared with ECs sheared at lower Po(2), suggesting that eNOS activity may be higher at 21% O(2). Hence, the hyperoxia of in vitro EC flow studies, via increased NO and mitochondrial O(2)(*-) production, leads to enhanced ONOO(-) formation intramitochondrially and suppression of respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号