首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD26/DPPIV (dipeptidil peptidase IV) displays an array of diverse functional properties, with a role in the development of several human cancers. This enzyme is found mainly anchored in the membrane of cells although it also has an enzymatically active plasma isoform. The regulation of biological activities of cytokines by DPP IV activity has a potential role in the homeostatic regulation of hematopoiesis. In this study, we analyzed the CD26 antigen cell membrane expression by flow cytometry and the DPPIV activity in plasma of patients of acute leukemia. The results showed that the plasma DPPIV activity is significantly higher in leukemia patients and could be 100% inhibited by Januvia? (Merck Sharp & Dohme) a selective DPPIV inhibitor. Although CD26 expression on immune cells were not leukemia-dependent the analysis of the correlation between CD26 expression and the DPPIV plasma activity were statistically significant (p < 0.01) in acute lymphoid leukemia (B-ALL and T-ALL).  相似文献   

2.
CD26 (Ta1, dipeptidyl peptidase IV) is a Mr 105,000 protein expressed at high levels on activated T lymphocytes and is a potential marker of memory T cells. Reciprocal immunodepletion and solid phase double determinant binding studies showed that mAb AC7 and the CD26-specific mAb anti-Ta1 reacted with spatially distinct sites on the same molecule. The proteinase dipeptidyl peptidase IV (DPP IV) was immunoprecipitated with mAb AC7 and its enzymatic activity directly assayed using an enzyme overlay membrane system. High levels of DPP IV activity were detected on the T cell tumor line CCRF-HSB-2 and on PBMC stimulated by a variety of methods. By itself, soluble mAb AC7 was not mitogenic for T cells but enhanced T cell proliferation that resulted from treatment with phorbol myristic acetate (PMA) in the presence of accessory cells. T cell proliferation was also induced by co-immobilized mAb AC7 and mAb OKT3 (anti-CD3). Cultures of T cells growing in the presence of IL-2 responded with accelerated growth when exposed to a combination of immobilized mAb AC7 and soluble mAb OKT3, a result not seen with freshly isolated T cells.  相似文献   

3.
We assessed changes of the enzyme dipeptidyl peptidase IV (DPP IV, CD26) in the context of leptin or leptin receptor deficiency. C57BL/6 mice, Leptin-deficient mice (ob/ob mice, B6.V-Lep) and Leptin-receptor-deficient mice (db/db mice, B6.Cg-m+/+Lepr) were infected with B. Calmette-Guerin (BCG) and sacrificed three days later. DPP IV activity in serum was higher in ob/ob mice and in db/db mice than in wild-type mice. The expression of DPP IV/CD26 on splenocytes was higher in ob/ob mice than in wild-type animals, and lower in db/db mice, and decreased upon stimulation with BCG in ob/ob mice only. Several T cell antigens including CTLA-4 were expressed aberrantly in ob/ob and in db/db mice. Our observations provide evidence for a relationship between DPP IV and leptin.  相似文献   

4.
5.
GPG-NH2 and G-NH2 are highly selective antiretroviral agents in cell culture, and both compounds inhibit HIV replication in CEM cell cultures to an equal extent (50% effective concentration: approximately 30 microM). The lymphocyte surface glycoprotein marker CD26, which is identical to dipeptidyl peptidase IV, efficiently converted GPG-NH2 to G-NH2 releasing the dipeptide GP-OH. The closely related QPG-NH2 derivative was also inhibitory to HIV, presumably by the dipeptidyl peptidase IV (DPP IV)-catalyzed release of G-NH2. In contrast, the cyclic pQPG-NH2 derivative in which the glutamine at the amino terminal position of QPG-NH2 was replaced by pyroglutamine and which is resistant to cleavage by purified CD26, was devoid of antiviral activity. CD26 is abundantly expressed on a variety of HIV target cells and is also present in serum of bovine, murine and human origin. The CD26/DPP IV enzymatic activity in serum and in cell suspensions could be efficiently inhibited by the CD26/DPP IV inhibitor L-isoleucinepyrrolidine (IlePyr) with 50% inhibitory concentrations ranging between 20 and 100 microM. When combined in HIV-1-infected cell cultures, IlePyr and Diprotin A (DP-A), another CD26/DPP IV inhibitor, abrogated the antiviral activity of GPG-NH2 but not of G-NH2. Therefore, it was concluded that the anti-HIV drug GPG-NH2 is not active as such, but rather behaves as a prodrug that must be obligatorily cleaved by CD26/DPP IV to G-NH2 to exert its antiretroviral activity. This is the first demonstration of a lymphocyte activation/differentiation marker (i.e. CD26) that plays a direct regulatory and indispensable role in the eventual antiretroviral activity of small synthetic molecules such as the antiretroviral (pro)drug GPG-NH2.  相似文献   

6.
Dipeptidyl peptidase IV (DPPIV)/CD26 is by far the most extensively studied member of the prolyl oligopeptidase family of serine proteases. The discovery of the related enzymes DPP8 and DPP9 necessitates a (re-)evaluation of the DPPIV-like enzymatic activity in cells and organs. In this study, we aimed (1) to investigate the expression of the individual dipeptidyl peptidases in different types of endothelial cells (ECs) and (2) to reconsider published data in relation to our findings. Examination of DPP expression in rat primary ECs of aortic, endocardial and cardiac microvascular origin revealed the presence of DPPIV-like activity in all cell lysates. More than half of this activity could be attributed to DPP8/9. Western blot analysis revealed an abundance of the DPP8 protein as compared to DPP9. The expression of DPPIV and DPP8 was significantly higher in the cardiac microvascular endothelium than in the other ECs, suggesting a more pronounced role of these DPPs in the microvasculature. In situ, DPP activity in ventricular microvasculature was completely inhibited by sitagliptin, indicating that DPPIV is the predominant DPPIV-like enzyme in this organ. By contrast, immunohistochemical studies indicated DPP9 as the predominant DPP in human carotid artery ECs. In conclusion, our results support a highly regulated expression of individual DPPs in ECs, with a spatial heterogeneity in the cardiovascular tree.  相似文献   

7.
Aminopeptidase N (APN, CD13) and dipeptidyl peptidase IV (DPP IV, CD26) are transmembrane ectoenzymes occurring in a wide variety of cells. They are involved in tumour cell invasion and the formation of metastases. A basis for further information about these enzymes is the exact ultrastructural localization in normal and malignant cells. In this paper, we demonstrate the precise subcellular localization of the membrane peptidases APN and DPP IV on the cell surfaces in renal tissues, renal cell carcinoma, cultured renal parenchymal cells and cultured renal carcinoma cells. Using cryo-ultramicrotomy of weakly fixed tissues and cells in combination with indirect immunogold labelling, both membrane peptidases were detectable on the external cell surfaces. They showed different ultrastructural expression patterns. Both membrane peptidases were abundantly labelled on the external cell surfaces of human kidney proximal tubular cells. The expression pattern of APN/CD13 and DPP IV/CD26 in single labelling was confirmed by a successive double labelling technique. The immunolabelling of CD13 on cultured renal parenchymal cells showed a stronger expression then in cells in vivo, but CD26 could not be found. In renal cell cancer (mixed clear cell/chromophilic, poorly differentiated and clear cell type, moderately differentiated) CD13 and CD26 were labelled as in benign renal tissue, but CD26 appeared overexpressed. On the renal carcinoma cells Caki-1 and Caki-2, only one of the two peptidases could be found. CD13 was present non-homogeneously in Caki-1, where the enzyme appeared to form clusters. When CD26 on the cultured renal carcinoma cells Caki-2, is compared with renal proximal tubular cells and renal carcinoma cells in tissue sections, a reduced expression is observed. CD13 was not detected in Caki-2, and CD26 was not found in Caki-1. These small changes on the cell surfaces can only be detected by electronmicroscopic methods. The differences in the distribution of APN/CD13 and DPP IV/CD26 in normal and malignant cells are discussed in connection with literature. Further investigations, especially labelling studies on other neoplastic tissues and cells, will be necessary in order to explain the precise role these membrane peptidases in malignancies.  相似文献   

8.
We previously described a developmentally regulated, Mr 115,000 (reduced) and 110,000/128,000 (nonreduced) mouse T cell-activating molecule (THAM) also expressed on a variety of epithelial cell surfaces, and associated with neutral exoaminopeptidase activity. In the present study, we show that THAM is the mouse counterpart of the human T cell-activating ectoenzyme CD26 (dipeptidyl peptidase IV, DPP IV) and that highly purified THAM lacks neutral exoaminopeptidase activity. This conclusion is based on the following: 1) the N-terminal segments of the THAM Mr 110,000 and 128,000 components shared the same amino acid sequence with the rat DPP IV. These N-termini comprised a short intracytoplasmic tail of six residues followed by a downstream hydrophobic transmembrane segment. 2) THAM-specific mAb H194-112-Affi-Gel immunoadsorbent was capable of removing DPP IV enzymatic activity from mouse thymoma cell detergent extracts. 3) H194-112 reactivity pattern on developing thymocytes was found to parallel that previously reported for membrane-bound DPP IV enzymatic activity. The extent of THAM N-glycosylation, as measured by N-glycanase treatment of H194-112 immunoprecipitates, was found to be similar to that of human and rat DPP IV (i.e., approximately 20 kDa). Cross-linking experiments indicated that THAM was expressed at the cell surface as a dimer of approximately 220 kDa. Its two subunits were found to be structurally related but not identical as shown by their different Mr under nonreducing conditions and by their slightly distinct peptide profiles after proteolytic cleavage. We conclude from these data that DPP IV, in addition to its extracellular matrix receptor and ectoenzymatic functions, is a T cell-activating structure in both human and mouse species.  相似文献   

9.
The influence of human T lymphocytes expressing the enzyme dipeptidyl peptidase IV (DPP IV) was investigated with respect to human peripheral B-lymphocyte differentiation. B cells stimulated with pokeweed mitogen in the presence of DPP IV-positive T cells produced high amounts of immunoglobulin. Moderate amounts of immunoglobulin could be measured when B cells were cultured in the presence of DPP IV-negative T cells. DPP IV defines a T-cell subset partially overlapping the subsets characterized by the differentiation antigens Leu 3a (helper/inducer) and Leu 2a (suppressor/cytotoxic). DPP IV-positive T cells exert, in contrast to DPP IV-negative T cells, high interleukin-2 activity after stimulation with phytohemagglutinin and pokeweed mitogen. To further functionally characterize DPP IV-positive and DPP IV-negative T cells, the helper effects of Leu 3a-positive T-cell subsets, differing in DPP IV expression, were investigated in pokeweed mitogen- and Staphylococcus aureus-driven B-cell differentiation systems. After pokeweed mitogen stimulation, immunoglobulin production was markedly reduced when B cells were cultured in the presence of Leu 3a-positive T cells expressing DPP IV (DPP IV+/Leu 3a+). In contrast, high amounts of immunoglobulin were produced in cultures with Leu 3a-positive but DPP IV-negative T cells (DPP IV-/Leu 3a+). This difference in immunoglobulin production of B cells cultured with DPP IV+/Leu 3a+ and DPP IV-/Leu 3a+ T cells could not be observed in Staphylococcus aureus-stimulated cultures. Here, both T-cell subsets supported terminal differentiation of B cells. We conclude that in the pokeweed mitogen-driven culture systems, DPP IV+/Leu 3a+ and DPP IV-/Leu 3a+ T cells may differ in the production of growth and/or differentiation factors distinct from interleukin-2.  相似文献   

10.
Inhibition of DPP IV has been shown to abrogate the stress-related increase in murine abortions and a concomitant increase in gamma-interferon. The aim of the present study was to investigate a potential impact of the DPP IV inhibitor Isoleucine Cyanopyrrolidide on the expression of surface antigens involved in T-cell responses. DBA/2-mated CBA mice were stressed on day 5.5 of pregnancy and received injections of a DPP IV inhibitor. On day 13 of gestation, the animals were sacrificed and the percentage of abortions was determined. As shown before, stress failed to boost the abortion rate in mice receiving the DPP IV inhibitor. In stressed animals, a lower surface density of CTLA-4 on decidual CD26-positive lymphocytes was observed than in non-stressed animals. Inhibition of DPP IV restored CTLA-4 surface density to normal and decreased surface expression of CD26 and CD28 on decidual lymphocytes irrespective of stress exposure. These observations suggest that a modulation of T-cell surface antigens expression due to inhibition of DPP IV activity may contribute to the potent anti-abortogenic effect observed here.  相似文献   

11.

Background  

CD26 is a type II, cell surface glycoprotein known as dipeptidyl peptidase (DPP) IV. Previous studies have revealed CD26 expression in T cell leukemia/lymphoma and malignant mesothelioma, and an inhibitory effect of anti-CD26 monoclonal antibody (mAb) against the growth of CD26+ cancer cells in vitro and in vivo. The function of CD26 in tumor development is unknown and the machinery with which the CD26 mAb induces its anti-tumor effect remains uncharacterized.  相似文献   

12.
Chemokines attract and activate distinct sets of leukocytes. The CC chemokine eotaxin has been characterized as an important mediator in allergic reactions because it selectively attracts eosinophils, Th2 lymphocytes, and basophils. Human eotaxin has a penultimate proline, indicating that it might be a substrate for dipeptidyl-peptidase IV (CD26/DPP IV). In this study we demonstrate that eotaxin is efficiently cleaved by CD26/DPP IV and that the NH2-terminal truncation affects its biological activity. CD26/DPP IV-truncated eotaxin(3-74) showed reduced chemotactic activity for eosinophils and impaired binding and signaling properties through the CC chemokine receptor 3. Moreover, eotaxin(3-74) desensitized calcium signaling and inhibited chemotaxis toward intact eotaxin. In addition, HIV-2 infection of CC chemokine receptor 3-transfected cells was inhibited to a similar extent by eotaxin and eotaxin(3-74). Thus, CD26/DPP IV differently regulates the chemotactic and antiviral potencies of eotaxin by the removal of two NH2-terminal residues. This physiological processing may be an important down-regulatory mechanism, limiting eotaxin-mediated inflammatory responses.  相似文献   

13.
Uric acid affects endothelial and adipose cell function and has been linked to diseases such as hypertension, metabolic syndrome, and cardiovascular disease. Interestingly uric acid has been shown to increase endothelial progenitor cell (EPC) mobilization, a potential mechanism to repair endothelial injury. Since EPC mobilization is dependent on activity of the enzyme CD26/dipeptidyl peptidase (DPP)IV, we examined the effect uric acid will have on CD26/DPPIV activity. Uric acid inhibited the CD26/DPPIV associated with human umbilical vein endothelial cells but not human recombinant (hr) CD26/DPPIV. However, triuret, a product of uric acid and peroxynitrite, could inhibit cell associated and hrCD26/DPPIV. Increasing or decreasing intracellular peroxynitrite levels enhanced or decreased the ability of uric acid to inhibit cell associated CD26/DPPIV, respectively. Finally, protein modeling demonstrates how triuret can act as a small molecule inhibitor of CD26/DPPIV activity. This is the first time that uric acid or a uric acid reaction product has been shown to affect enzymatic activity and suggests a novel avenue of research in the role of uric acid in the development of clinically important diseases.  相似文献   

14.
Cyclosporin A (CsA) improves the success rate of transplantation. The CD26/dipeptidylpeptidase IV (DPP IV) system plays a critical role in mobilizing endothelial progenitor cells (EPCs) from bone marrow. This study investigated whether CsA manipulates CD26/DPP IV activity and increases EPC mobilization. C57BL/6 mice were divided into control and CsA-treated groups. Before and after hindlimb ischemia was induced, circulating EPC number and serum levels of different cytokines were measured. Compared with the controls, CsA treatment significantly increased the blood levels of stroma-derived factor-1alpha and stem cell factor after ischemic stress (P < 0.001). The CsA group displayed a significant increase in the number of circulating EPCs (sca-1+KDR+ and c-kit+CD31+ EPCs, both P < 0.05). In vivo, CsA caused a significant increase in the numbers of EPCs incorporated into the Matrigel and ischemic limbs (P < 0.05). In the peripheral blood, CsA significantly decreased CD26+ cell numbers and attenuated the plasma CD26/DPP IV activity (P < 0.001). Furthermore, short-term CsA treatment significantly improved the perfusion of ischemic limbs and decreased the spontaneous digital amputation rate. In summary, CsA manipulates the mobilization of EPCs into the circulation via the CD26/DPP IV system. Short-term CsA treatment has beneficial effects on angiogenesis of ischemic tissues.  相似文献   

15.
Cloning and functional expression of the T cell activation antigen CD26.   总被引:14,自引:0,他引:14  
A cDNA encoding the T cell activation Ag CD26 was isolated from human PHA-activated T cells by using an expression cloning method. The nucleotide sequence obtained predicts a protein of 766 amino acids of type II membrane topology, with six amino acids in the cytoplasmic region. The predicted amino acid sequence of the Ag was 85% homologous to that of the dipeptidyl peptidase IV enzyme isolated from rat liver. Derivatives of the human leukemic T cell line Jurkat transfected with a CD26 expression plasmid were established. Characterization of the CD26 Ag expressed by the transfected Jurkat cells revealed that the Ag could be immunoprecipitated as a 110-kDa molecule similar to that found on peripheral blood T cells and that the Ag had dipeptidyl peptidase IV activity. Functional analysis of these Jurkat transfectants showed that cross-linking of the CD26 and CD3 Ag with their respective antibodies resulted in enhanced intracellular calcium mobilization and IL-2 production. These results provide direct evidence that the CD26 Ag plays a role in T cell activation.  相似文献   

16.
Wild-type diffusely adhering Escherichia coli (DAEC) harbouring afimbrial adhesin (Afa) or fimbrial Dr and F1845 adhesins (Afa/Dr DAEC) apically infecting the human intestinal epithelial cells promote injuries in the brush border of the cells. We report here that infection by Afa/Dr DAEC wild-type strains C1845 and IH11128 in polarized human fully differentiated Caco-2/TC7 cells dramatically impaired the enzyme activity of functional brush border-associated proteins sucrase-isomaltase (SI) and dipeptidylpeptidase IV (DPP IV). Blockers of the transduction signal molecules, previously found to be active against the Afa/Dr DAEC-induced cytoskeleton injury, were inactive against the Afa/Dr-induced decrease in sucrase enzyme activity. In parallel, Afa/Dr DAEC infection promotes the blockade of the biosynthesis of SI and DPP IV without affection enzyme stability. The observation that no changes occurred in mRNA levels of SI and DPP IV upon infection suggested that the decrease in biosynthesis probably resulted from a decrease in the translation rate. When the cells were infected with recombinant E. coli strains expressing homologous adhesins of the wild-type strains, neither a decrease in sucrase and DPP IV enzyme activities nor an inhibition of enzyme biosynthesis were observed. In conclusion, taken together, these data give new insights into the mechanisms by which the wild-type Afa/Dr DAEC strains induce functional injuries in polarized fully differentiated human intestinal cells. Moreover, the results revealed that other pathogenic factor(s) distinct from the Afa/Dr adhesins may play(s) a crucial role in this mechanism of pathogenicity.  相似文献   

17.
The association between CD26 expression, tumor cell adhesion, metastasis, and natural killer (NK) cell function was investigated in a CD26 mutant Fischer 344 (F344/DuCrj) substrain from Japanese breeders (F344JAP) in comparison with wild-type F344 substrains from US (F344/Crl) and Hannover (HAN; F344/Ztm) breeders. F344JAP rats lack the dipeptidyl peptidase IV activity of CD26 and show a reduced cell surface expression of the mutated CD26 glycoprotein. In vivo adhesion of vital dye-labeled MADB106 tumor cells, tumor colonization, CD26 enzymatic activity, and CD26 immunoreactivity in lungs and soluble CD26-like protein expression in serum were markedly reduced in F344JAP rats. These findings demonstrate that CD26 protein expression exerts a key role in lung metastasis. In addition, NK cell cytotoxicity against MADB106 cells was diminished in the mutant F344 substrain, suggesting that CD26 enzymatic activity sustains NK cytotoxicity. Interestingly, tumor cells lacked CD26 immunoreactivity in vitro, but displayed CD26 immunoreactivity in situ after in vivo inoculation as well as after incubation with rat serum, indicating that soluble CD26-like protein assembles in tumor cells during in vivo passage, which may interact with the process of tumor adhesion and metastasis. Overall, these findings indicate that altered expression and function of a single enzyme-the CD26 protein--can drastically change the outcome of metastatic disease.  相似文献   

18.
The rat thymocyte costimulating protein appears to be involved in the regulation of CD4-/CD8- thymocyte proliferation in vitro. We show that thymocyte costimulating protein is dipeptidyl peptidase IV (E.C.N.3.4.14.5) also known as CD26. Some bone marrow cells as well as CD4-/CD8- and, and to a lesser extent, more differentiated T cells respond by proliferating to a CD26 specific mAb-mediated costimulus that does not influence dipeptidyl dipeptidase IV enzyme activity. This suggests the existence of a CD26-linked regulatory mechanism of proliferation that is operational on granulocyte- and macrophage-lineage cells and throughout T cell development.  相似文献   

19.
Post-translational modification of proteins is an important regulatory event. Numerous biologically active peptides that play an essential role in cancerogenesis contain an evolutionary conserved proline residue as a proteolytic-processing regulatory element. Proline-specific proteases could therefore be viewed as important "check-points". Limited proteolysis of such peptides may lead to quantitative but, importantly, due to the change of receptor preference, also qualitative changes of their signaling potential.Dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5, identical with CD26) was for many years believed to be a unique cell membrane protease cleaving X-Pro dipeptides from the N-terminal end of peptides and proteins. Subsequently, a number of other molecules were discovered, exhibiting various degree of structural homology and DPP-IV-like enzyme activity, capable of cleaving similar set of substrates. These comprise for example, seprase, fibroblast activation protein alpha, DPP6, DPP8, DPP9, attractin, N-acetylated-alpha-linked-acidic dipeptidases I, II and L, quiescent cell proline dipeptidase, thymus-specific serine protease and DPP IV-beta. It is tempting to speculate their potential participation on DPP-IV biological function(s). Disrupted expression and enzymatic activity of "DPP-IV activity and/or structure homologues" (DASH) might corrupt the message carried by their substrates, promoting abnormal cell behavior. Consequently, modulation of particular enzyme activity using e.g. DASH inhibitors, specific antibodies or DASH expression modification may be an attractive therapeutic concept in cancer treatment. This review summarizes recent information on the interactions between DASH members and their substrates with respect to their possible role in cancer biology.  相似文献   

20.
γ-Glutamyltranspeptidase (GGT, syn. γ-Glutamyltransferase) and dipeptidylpeptidase-IV (DPP-IV) activity participates in metabolic and growth control of normal and tumor cells by processing biologically active peptides. Here, we report on up-regulation of these enzymes in human brain gliomas determined by catalytic enzyme histochemistry and immunocytochemistry. Higher activity of GGT was found in 50%, 68% and 81% of WHO grade II, III and IV tumors, respectively. The process started at/near the microvasculature, from where it spread to the parenchyma. On average, the enzyme activity in grade II, III and IV gliomas exceeded controls 2.0, 3.0 and 3.5-fold, respectively. Up-regulation of DPP-IV-like activity also started at the microvasculature, but mainly in pericytes and mononuclear-like cells around the vessels and dispersed in the parenchyma. Marked elevation of this enzyme activity, comprising also tumor parenchyma, occurred only in grade IV glioblastomas (65% patients; 3.6 times above controls) which can, therefore, help in their differentiation from grade III gliomas. The increase of total DPP-IV-like activity also included its two enzymatic homologs, the canonical DPP-IV/CD26 and FAP-1α. The increase in GGT is supposed to be a tumor grade dependent response of microvasculature and tumor astrocytes to stress induced by tissue hypoxia and/or the metabolic aberrancies. The increase in DPP-IV-like activity in high-grade tumors can be attributed to inflammatory/scavenging processes performed by the mononuclear-like cells and, in glioblastomas, also to regressive changes in the structure and function of the microvasculature and tumor parenchyma, including astrocyte stress response. The inverse relationship between DPP-IV-like activity and Ki67 in most glioblastomas and shorter survival time of patients with low activity of this enzyme also suggest its anti-oncogenic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号