首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Varicose veins are the most common vascular disease in humans. Veins have valves that help the blood return gradually to the heart without leaking blood. When these valves become weak, blood and fluid collect and pool by pressing against the walls of the veins, causing varicose veins. In the cardiovascular system, mechanical forces are important determinants of vascular homeostasis and pathological processes. Blood vessels are constantly exposed to a variety of hemodynamic forces, including shear stress and environmental strains caused by the blood flow. In varicose veins within the leg, venous blood pressure rises in the vein of the lower extremities due to prolonged standing, creating a peripheral tension in the vessel wall thereby causing mechanical stimulation of endothelial cells and vascular smooth muscle. Studies have shown that long-term increased exposure to vascular wall tension is associated with the overexpression of HIF-1α and HIF-2α and increased levels of MMP-2 and MMP-9, thereby reducing venous contraction and progressive venous dilatation, which is involved in the development of varicose veins. Following the expression of metalloproteinase, the expression of type 1 collagen increases, and the amount of type 3 collagen decreases. Therefore, collagen imbalance will cause the varicose veins to not stretch. Loss of structural proteins (type 3 collagen and elastin) in the vessel wall causes the loss of the biophysical properties of the varicose vein wall. This review article tries to elaborate on the effect of mechanical forces and sensors of these forces on the vascular wall in creating the mechanism of mechanosignaling, as well as the role of the onset of molecular signaling cascades in the pathology of varicose veins.  相似文献   

2.
Extensive extracellular matrix remodeling of the vein wall is involved in varicose veins pathogenesis. This process is controlled by numerous factors, including peptide growth factors. The aim of the study was to evaluate influence of thrombophlebitis on TGF-β1 and its signaling pathway in the vein wall. TGF-β1 mRNAlevels, growth factor content and its expression were evaluated by RT-PCR, ELISA, and western blot methods, respectively, in the walls of normal veins, varicose veins and varicose veins complicated by thrombophlebitis. Western blot analysis was used to assess TGF-β receptor type II (TGF-β RII) and p-Smad2/3 protein expression in the investigated material. Unchanged mRNA levels of TGF-β1, decreased TGF-β1 content, as well as decreased expression of latent and active forms of TGF-β1 were found in varicose veins. Increased expression of TGF-β RII and p-Smad2/3 were found in varicose veins. Thrombophlebitis led to increased protein expression of the TGF-β1 active form and p-Smad2/3 in the vein wall compared to varicose veins. TGF-β1 may play a role in the disease pathogenesis because of increased expression and activation of its receptor in the wall of varicose veins. Thrombophlebitis accelerates activation of TGF-β1 and activity of its receptor in the varicose vein wall.  相似文献   

3.
An increase in the activity of lysosomal enzymes in varicose veins has been suggested in the literature, as well as an alteration of collagen fibrils situated near muscle cells. In view of these results, we have compared the free amino acid contents of varicose veins with those of healthy veins removed few hours after death. The amino acid analyses of extracts have shown that the varicose vein appears to contain about 2.7 times more free amino acids than normal one, except in the case of phosphoethanolamine. Controls have shown that this discrepancy can be ascribed to a rapid liakage of the amino acids after death. The absence of hydroxyproline suggests that collagen does not seem liable to degradation in the varicose vein. On the other hand, the constant phosphoethanolamine content found can be attributed to a much higher concentration of this compound in the varicose vein or alternatively, to a postmortem process of degradation, compensating for the losses due to diffusion.  相似文献   

4.
This study was designed to evaluate the role of the smooth muscle cell and the apoptosis in the pathogenesis of the varicose vein. Segments of saphenous vein were obtained from healthy subjects and from those with varicose veins. The vein specimens were subdivided according to subject age (younger or older than 50 years) and according to the varicose vein source (distal or proximal). Morphological, ultrastructural, cell proliferation (anti-PCNA method) and cell death (TUNEL method) analysis were performed. The walls of healthy, control vein specimens acquired a more collagenous and papillomatous appearance with age. A slight increase in the number of TUNEL-positive cells was also observed in specimens from older subjects. The proportion of apoptotic cells was much greater in the varicose veins than in control specimens. Most cellular alterations were seen in proximal varicose segments obtained from young subjects. These specimens showed hypertrophic areas with a high degree of cellularity (both in the media and in the thickened intima). The highest proportion of apoptotic cells and collagenisation were also observed in these areas. The enhanced number of apoptotic cells in varicose veins observed mainly in proximal/young vein specimens could be responsible, at least in part, for the acceleration of the final fibrosclerotic process characteristic of the varicose vein wall.  相似文献   

5.
目的:探究改良曲张静脉点式剥除术在治疗中老年下肢静脉曲张的临床疗效。方法:收集我院已确诊为下肢静脉曲张的中老年患者37例,分成实验组与对照组。对照组18例行传统曲张静脉点式剥除术,实验组19例行改良曲张静脉点式剥除术。对比两组患者手术后的下肢静脉曲张的治疗效果。结果:实验组有效率(94.7%)显著高于对照组(72.2%),差异具有统计学意义(P0.05);与对照组相比,实验组患者手术时间较短、术中出血量较少、下床活动时间较早,术后并发症总治愈率较高,复发率、术后并发症发生率较低,其差异均有统计学意义(P0.05)。结论:采用改良曲张静脉点式剥除术治疗中老年下肢静脉曲张的患者能够更彻底的剥除曲张额静脉,有效的改善患肢症状,明显降低复发率。  相似文献   

6.
7.
Arteriovenous fistulae have been previously created by our group, through implantation of e-PTFE grafts between the carotid artery and jugular vein in healthy pigs, to gather comprehensive data on the time-course of the adapted geometry, composition, and biomechanical properties of the venous wall exposed to chronic increases in pressure and flow. The aim of this study was to mathematically assess the biomechanical adaptation of venous wall, by characterizing our previous in vitro inflation/extension testing data obtained 2, 4, and 12 weeks post-fistula, using a microstructure-based material model. Our choice for such a model considered a quadratic function for elastin with a four-fiber family term for collagen, and permitted realistic data characterization for both overloaded and control veins. As structural validation to the hemodynamically-driven differences in the material response, computerized histology was employed to quantitate the composition and orientation of collagen and elastin-fiber networks. The parameter values optimized showed marked differences among the overloaded and control veins, namely decrease in the quadratic function parameters and increase in the four-fiber family parameters. Differences among the two vein types were highlighted with respect to the underlying microstructure, namely the reduced elastin and increased collagen contents induced by pressure and flow-overload. Explicit correlations were found of the material parameters with the two basic scleroprotein contents, substantiating the material model used and the characterization findings presented. Our results are expected to improve the current understanding of the dynamics of venous adaptation under sustained pressure- and flow-overload conditions, for which data are largely unavailable and contradictory.  相似文献   

8.
In varicose veins, vascular smooth muscle cells (VSMCs) often show abnormal proliferative and migratory rates and phenotypic transition. This study aimed to investigate whether microRNA (miR)-202 and its potential target, peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α), were involved in VSMC phenotypic transition. miR-202 expression was analyzed in varicose veins and in VSMCs conditioned with platelet-derived growth factor. The effect of miR-202 on cell proliferation and migration was assessed. Furthermore, contractile marker SM-22α, synthetic markers vimentin and collagen I, and PGC-1α were analyzed by Western blot analysis. The modulation of PGC-1α expression by miR-202 was also evaluated. In varicose veins and proliferative VSMCs, miR-202 expression was upregulated, with decreased SM-22α expression and increased vimentin and collagen I expression. Transfection with a miR-202 mimic induced VSMC proliferation and migration, whereas a miR-202 inhibitor reduced cell proliferation and migration. miR-202 mimic constrained luciferase activity in HEK293 cells that were cotransfected with the PGC-1α 3′-untranslated region (3′-UTR) but not those with mutated 3′-UTR. miR-202 suppressed PGC-1α protein expression, with no influence on its messenger RNA expression. PGC-1α mediated VSMC phenotypic transition and was correlated with reactive oxygen species production. In conclusion, miR-202 affects VSMC phenotypic transition by targeting PGC-1α expression, providing a novel target for varicose vein therapy.  相似文献   

9.
10.
The changes in crosslink contents in tissues after formalin fixation   总被引:1,自引:0,他引:1  
The aim of this study was to detect crosslinks of collagen and elastin in formalin-fixed tissue, to perform quantification of these crosslinks, and to investigate the effects of formalin fixation on crosslink contents in human yellow ligament and cartilage. Pyridinoline (Pyr) is a stable and nonreducible crosslink of collagen. Pentosidine (Pen) is a senescent crosslink formed between arginine and lysine in matrix proteins, including collagen. Desmosine (Des) and its isomer isodesmosine (Isodes) are crosslinks specifically found in elastin. It is useful to measure crosslink contents of collagen and elastin as a way of investigating the properties of various tissues or their pathological changes. If it is possible to evaluate crosslinks of collagen and elastin in formalin-fixed tissues, we can investigate crosslinks in a wide variety of tissues. We used HPLC to compare the concentrations of Pyr, Pen, Des, and Isodes in the formalin-fixed tissues with their concentrations in the frozen tissues. Pyr and Pen were detected in both the formalin-fixed yellow ligament and the cartilage, and their concentrations were not significantly affected by or related to the duration of formalin fixation. Des and Isodes were detected in the formalin-fixed yellow ligament but in significantly lower amounts compared to the frozen samples. We concluded that crosslinks of collagen were preserved in formalin, but crosslinks of elastin were not preserved in it. The reason for this might be that formalin did not fix elastin tissues sufficiently or it destroyed, masked, or altered elastin crosslinks.  相似文献   

11.
Decreased elastin in mice (Eln+/?) yields a functioning vascular system with elevated blood pressure and increased arterial stiffness that is morphologically distinct from wild-type mice (WT). Yet, function is retained enough that there is no appreciable effect on life span and some mechanical properties are maintained constant. It is not understood how the mouse modifies the normal developmental process to produce a functioning vascular system despite a deficiency in elastin. To quantify changes in mechanical properties, we have applied a fiber-based constitutive model to mechanical data from the ascending aorta during postnatal development of WT and Eln+/? mice. Results indicate that the fiber-based constitutive model is capable of distinguishing elastin amounts and identifying trends during development. We observe an increase in predicted circumferential stress contribution from elastin with age, which correlates with increased elastin amounts from protein quantification data. The model also predicts changes in the unloaded collagen fiber orientation with age, which must be verified in future work. In Eln+/? mice, elastin amounts are decreased at each age, along with the predicted circumferential stress contribution of elastin. Collagen amounts in Eln+/? aorta are comparable to WT, but the predicted circumferential stress contribution of collagen is increased. This may be due to altered organization or structure of the collagen fibers. Relating quantifiable changes in arterial mechanics with changes in extracellular matrix (ECM) protein amounts will help in understanding developmental remodeling and in producing treatments for human diseases affecting ECM proteins.  相似文献   

12.
The aim of this study was to determine the effect that a thermal renal denervation cycle has on the mechanical properties of the arterial wall. Porcine arterial tissue specimens were tested in three groups: native tissue, decellularized tissue, decellularized with collagen digestion (e.g. elastin only). One arterial specimen was used as an unheated control specimen while another paired specimen was subjected to a thermal cycle of 70 °C for 120 s (n=10). The specimens were subjected to tensile loading and a shrinkage analysis. We observed two key results: The mechanical properties associated with the elastin extracellular matrix (ECM) were not affected by the thermal cycle. The effect of the thermal cycle on the collagen (ECM) was significant, in both the native and decellularized groups the thermal cycle caused a statistically significant decrease in stiffness, and failure strength, moreover the native tissue demonstrated a 27% reduction in lumen area post exposure to the thermal cycle. We have demonstrated that a renal denervation thermal cycle can significantly affect the mechanical properties of an arterial wall, and these changes in stiffness and failure strength were associated with alterations to the collagen rather than the elastin extracellular matrix component.  相似文献   

13.
In the large arteries, it is believed that elastin provides the resistance to stretch at low pressure, while collagen provides the resistance to stretch at high pressure. It is also thought that elastin is responsible for the low energy loss observed with cyclic loading. These tenets are supported through experiments that alter component amounts through protease digestion, vessel remodeling, normal growth, or in different artery types. Genetic engineering provides the opportunity to revisit these tenets through the loss of expression of specific wall components. We used newborn mice lacking elastin (Eln−/−) or two key proteins (lysyl oxidase, Lox−/−, or fibulin-4, Fbln4−/−) that are necessary for the assembly of mechanically-functional elastic fibers to investigate the contributions of elastic fibers to large artery mechanics. We determined component content and organization and quantified the nonlinear and viscoelastic mechanical behavior of Eln−/−, Lox−/−, and Fbln4−/− ascending aorta and their respective controls. We confirmed that the lack of elastin, fibulin-4, or lysyl oxidase leads to absent or highly fragmented elastic fibers in the aortic wall and a 56–97% decrease in crosslinked elastin amounts. We found that the resistance to stretch at low pressure is decreased only in Eln−/− aorta, confirming the role of elastin in the nonlinear mechanical behavior of the aortic wall. Dissipated energy with cyclic loading and unloading is increased 53–387% in Eln−/−, Lox−/−, and Fbln4−/− aorta, indicating that not only elastin, but properly assembled and crosslinked elastic fibers, are necessary for low energy loss in the aorta.  相似文献   

14.
Despite the high prevalence of varicose veins, the underlying pathogenesis of this disease remains unclear. The present study aims to explore the role of insulin-like growth factor binding protein 6 (IGFBP6) in vascular smooth muscle cells (VSMCs). Using a protein array approach, we identified several differentially expressed proteins between varicose great saphenous veins and normal great saphenous veins. Bioinformatic analysis showed that IGFBP6 was closely related to cell proliferation. Further validation confirmed that IGFBP6 was one of the most highly expressed proteins in varicose vein tissue. Knocking down IGFBP6 in VSMCs significantly attenuated cell proliferation and induced the S phase arrest during the cell cycle. Further experiments demonstrated that IGFBP6 knockdown increased cyclin E ubiquitination, which reduced expression of cyclin E and phosphorylation of CDK2. Furthermore, IGFBP6 knockdown arrested centrosome replication, which subsequently influenced VSMC morphology. Ultimately, IGFBP6 was validated to be involved in VSMC proliferation in varicose vein tissues. The present study reveals that IGFBP6 is closely correlated with VSMC biological function and provides unprecedented insights into the underlying pathogenesis of varicose veins.  相似文献   

15.
Certain regional peculiarities are noted in the development process of the human principle trunks of the subcutaneous veins during antenatal period. In the fetuses of all ages the wall thickness of the subcutaneous veins is the greatest in the femur, and the middle tunic is better developed in the shin. The vein structure depends on the type of architectonics: at the magistral type (86%) the walls in the large and minor subcutaneous veins are thick with well developed smooth myocytes and connective tissue fibers; at the reticulate type (14%) the walls are thin, their elements are poorly developed. When there is mentioned varicosity of the lower extremity veins in the parents' anamnesis, in fetuses (57%) all the tunics in the venous wall develop more poorly, there is retardation in formation of smooth myocytes and in maturation of collagen fibers. This results in less amount of contractile structures in the middle tunic and optic density of collagen is less manifected.  相似文献   

16.
We show here that cultured neonatal-rabbit aortic smooth-muscle cells produce and accumulate significant amounts of insoluble elastin. When grown in the presence of ascorbic acid, the amount of insoluble elastin in these cultures decreases, whereas the accumulation of collagen increases. These changes have been attributed to increased hydroxylation of proline in elastin. The function of ascorbic acid in proline hydroxylation is thought to be that of a reductive cofactor that maintains the proper oxidation state of molecular iron in the enzyme complex. This study shows that both ascorbic and isoascorbic acids act similarly to modify the accumulation of elastin and collagen in culture. On the other hand, cultures grown in the presence of dithiothreitol, a reducing agent previously shown to act as a cofactor for prolyl hydroxylase, do not demonstrate altered elastin accumulation. These studies are consistent with the suggestion that there is a specific role for ascorbic acid in this cellular system that cannot be replaced by other reducing cofactors.  相似文献   

17.
The state of the vascular system of the mother and of placenta is known to exert a great influence on intrauterinal development of the fetus. Pre-eclampsia is the most common pathological syndrome connected with pregnancy. Since collagen is one of the main constituents of the vessel wall a comparison was made with collagen content and its molecular polymorphism in umbilical cord veins of newborns from healthy and pre-eclamptic mothers. It was found that umbilical cord veins of newborns from mothers with pre-eclampsia contained 18% less collagen than those of the newborns from normal pregnancies. This decrease was accompanied by a slight decrease of collagen solubility, but all its types (I, II, IV, V and VI) were present. However, the umbilical vein wall of newborns from mothers with pre-eclampsia contained relatively less of type I and more of type III collagen than the normal umbilical cord. These differences may be connected with a disturbance of blood flow in fetus of a woman with pre-eclampsia.  相似文献   

18.
The vascular wall exhibits nonlinear anisotropic mechanical properties. The identification of a strain energy function (SEF) is the preferred method to describe its complex nonlinear elastic properties. Earlier constituent-based SEF models, where elastin is modeled as an isotropic material, failed in describing accurately the tissue response to inflation–extension loading. We hypothesized that these shortcomings are partly due to unaccounted anisotropic properties of elastin. We performed inflation–extension tests on common carotid of rabbits before and after enzymatic degradation of elastin and applied constituent-based SEFs, with both an isotropic and an anisotropic elastin part, on the experimental data. We used transmission electron microscopy (TEM) and serial block-face scanning electron microscopy (SBFSEM) to provide direct structural evidence of the assumed anisotropy. In intact arteries, the SEF including anisotropic elastin with one family of fibers in the circumferential direction fitted better the inflation–extension data than the isotropic SEF. This was supported by TEM and SBFSEM imaging, which showed interlamellar elastin fibers in the circumferential direction. In elastin-degraded arteries, both SEFs succeeded equally well in predicting anisotropic wall behavior. In elastase-treated arteries fitted with the anisotropic SEF for elastin, collagen engaged later than in intact arteries. We conclude that constituent-based models with an anisotropic elastin part characterize more accurately the mechanical properties of the arterial wall when compared to models with simply an isotropic elastin. Microstructural imaging based on electron microscopy techniques provided evidence for elastin anisotropy. Finally, the model suggests a later and less abrupt collagen engagement after elastase treatment.  相似文献   

19.
Arteries are capable of producing significantly larger quantities of protacyclin than are veins. To test the hypothesis, whether prostacyclin production by the vessel wall is related to blood pressure and flow, we measured the amounts of PGI2 released and synthesized by venous segments transplanted for 6 weeks into the arterial circulation. These results were compared with the production of prostacyclin by normal veins and arteries. In 20 dogs a segment of jugular vein was interposed into the carotid system; a sham dissection was done on the opposite side. “Arterialized” vein grafts showed prominent intima lined by endothelium, medial smooth muscle cell proliferation and fibrotic proliferation in adventitia. Spontaneous and arachidonic acid- stimulated prostacyclin production (measured by radioimmunoassay for 6-keto-PGF) was not significantly different between arterialized venous autografts and jugular veins. Significantly larger amounts of prostacyclin were synthesized by the carotid artery. Thus, histologic changes and rheologic effects occurring in vein grafts transposed to the arterial site do not affect prostacyclin production.  相似文献   

20.
Elastin and collagen are the principal scleroproteins of the aortic wall, and they largely determine its physical and mechanical properties. During perinatal development of the aorta, elastin and collagen accumulate rapidly, being present as inverse gradients by the time of birth. Elastin is most prevalent in the thoracic aorta, decreasing distally, while collagen shows the opposite trend. The present studies have determined the relative and absolute rates of collagen and elastin synthesis in the porcine aorta between 60 days of fetal development (mid-gestation) and 110 days after birth. Although there was measurable elastin synthesis in the upper thoracic aorta at the earliest time evaluated, there was a fourfold increase in relative elastin synthesis (from 4 to 16% of total protein synthesis) between 60 fetal days and birth. Elastin synthesis was maximal in successively distal segments between 1 and 3 weeks after birth. Relative collagen synthesis progressively increased in distal aortic regions between 90 fetal days and 60 days postpartum. Greater than twofold increases over thoracic levels were measured. Both elastin and collagen synthesis largely subsided by 110 days of development. When expressed as absolute rates of protein synthesis, these scleroproteins were maximally expressed in the first 3 postnatal weeks. Elastin mRNA levels were determined with a cloned sheep gene fragment by molecular hybridization. Gradients of elastin message were present at 60 fetal days and at 4 and 14 days after birth, elastin mRNA levels being maximal in the upper thoracic aorta at 14 days after birth. The differentiation of the aortic wall thus follows discrete patterns of phenotypic change which may be coupled to the rheologic stresses accompanying development of the circulatory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号