首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. The life cycles of 5 autogamous strains of Euplotes minuta are reported. Interautogamic intervals (measured as number of fissions) are quite variable among clones belonging to the same strain, while their variability is much reduced (15 fissions) among sublines of the same clone. By selecting the clone with the shortest immature period to start successive autogamous generations, it has been found that all clones undergo autogamy almost synchronously and have a very short period of immaturity at the 5th autogamous generation. Both conjugation and autogamy, however, are consistently followed by immature periods in all autogamous strains examined. Mating capacity as well as competence for autogamy are reached almost simultaneously in all clones of the strains studied with the exception of about 1/3 of the A-31 clones in which autogamy occurs significantly earlier than conjugation. The results are discussed from the genetic point of view and in relation to the sexual mechanisms operating in nature within different populations of the species.  相似文献   

2.
The clone of the ciliated protozoan Paramecium caudatum has the immaturity period of about 60 fissions and the lifespan of about 600 fissions. These life cycle figures have been depicted through laboratory experiments that allow continuous cell divisions for hundreds, which never occur in nature. We here constructed the nature-mimicking model culture that alternated the log- and stationary phases to allow conjugation, and computer-simulated the age structure modifying parameters such as cell distributions to start the culture, fission rates, death rates, immaturity periods, probabilities of conjugation, proportions of transplantation and so on. The average and maximum ages in the culture after thousands of alternations were converged to 43±2 and 140±5 fissions, respectively, when parameters for the immaturity period and the maximum clonal lifespan were set at 60 and 600 fissions. This result explains why cells collected in nature are usually young and vigorous. The average and maximum ages proportionally prolonged as the immaturity period was prolonged, as reported true for species of the ciliate. These results indicate the validity of our simulation. The average and maximum ages remained unchanged when the initial condition for starting the culture was changed from two complementary mating-type cells to a population with a quadratic-function distribution, and when the fission rate at the log-phase and the death rate at the stationary phase were modified for older ages. The average and maximum ages changed slightly when either the conjugation rate or the proportion of transplantation was somewhat lowered. Although they changed considerably when such parameters as the immaturity period, conjugation rate and death rate were extremely modified, no clones with the age over 230 fissions appeared in any simulations. These results indicate the robustness of the model, which provides us with fresh insight into the structural system of the clonal lifespan of P. caudatum in nature.  相似文献   

3.
The role of the micronucleus in the age-dependent increase in mortality after conjugation in Paramecium has been investigated using micronuclear transplantation. The clone of Paramecium caudatum used for this study had a lifespan of about 750 fissions. In this clone, the fission rate began to decrease about 450 fissions after conjugation. Mortality after selfing conjugation also began to appear at about 450 fissions and gradually increased with clonal age. Cells at about 650 fissions showed 10–70% survival after selfing conjugation but when their micronuclei were transplanted into amicronucleate cells of about 450 fissions, the progeny survival increased to 70–90%. When micronuclei from cells 700–750 fissions old were transplanted into amicronucleate cells of 100–150 fissions, however, increase in progeny survival was very rare. The results indicate that micronuclei in cells up to the age of 650 fissions can function normally if the cytoplasmic environment is young.  相似文献   

4.
Abstract. Paramecium bursaria , a freshwater protozoan, typically harbors hundreds of symbiotic algae ( Chlorella sp.) in its cytoplasm. The relationship between host paramecia and symbiotic algae is stable and mutually beneficial in natural environments. We recently collected an aposymbiotic strain of P. bursaria . Infection experiments revealed that the natural aposymbiotic strain (Ysa2) showed unstable symbiosis with Chlorella sp. The algae aggregated at the posterior region of the host, resulting in aposymbiotic cell production after cell division. Cross-breeding analyses were performed to determine the heritability of the aposymbiotic condition. In crosses of Ysa2 with symbiotic strains of P. bursaria , F1 progeny were able to form stable symbioses with Chlorella sp. However, unstable symbiosis, resembling Ysa2 infection, occurred in some F2 progeny of sibling crosses between symbiotic F1 clones. Infection experiments using aposymbiotic F2 cells showed that these F2 subclones have limited ability to reestablish the symbiosis. These results indicate that the maintenance of stable symbiosis is genetically controlled and heritable, and that Ysa2 is a mutant lacking the mechanisms to establish stable symbiosis with Chlorella sp.  相似文献   

5.
SYNOPSIS. Eighteen strains of algae, including 17 exsymbiotic from Paramecium bursaria , were tested for infectivity for P. bursaria , syngen 2 aposymbiotes, and Concanavalin A (Con A) agglutinability. All 6 infective algal strains were relatively resistant to agglutination by Con A, suggesting that algal surface characteristics are correlated with infectivity. Among the noninfective strains, high and low agglutinability were about equally represented, indicating that the Con A titer alone is not a sufficient indicator of infectivity. It is suggested that noninfective algal strains are the progeny of mutations occurring within the endozoic population and fortuitously selected by the external culture medium.  相似文献   

6.
This is the first attempt to resolve the phylogenetic relationship between different syngens of Paramecium bursaria and to investigate at a molecular level the intraspecific differentiation of strains originating from very distant geographical locations. Herein we introduce a new collection of five P. bursaria syngens maintained at St Petersburg State University, as the international collection of syngens was lost in the 1960s. To analyze the degree of speciation within Paramecium bursaria, we examined 26 strains belonging to five different syngens from distant and geographically isolated localities using rDNA (ITS1-5.8S-ITS2-5'LSU) fragments, mitochondrial cytochrome c oxidase subunit I (COI), and H4 gene fragments. It was shown that P. bursaria strains of the same syngens cluster together in all three inferred molecular phylogenies. The genetic diversity among the studied P. bursaria strains based on rDNA sequences was rather low. The COI divergence of Paramecium bursaria was also definitely lower than that observed in the Paramecium aurelia complex. The nucleotide sequences of the H4 gene analyzed in the present study indicate the extent of genetic differences between the syngens of Paramecium bursaria. Our study demonstrates the diagnostic value of molecular markers, which are important tools in the identification of Paramecium bursaria syngens.  相似文献   

7.
The ciliate Paramecium bursaria living in mutualistic relationship with the unicellular green alga Chlorella is known to be easily infected by various potential symbionts/parasites such as bacteria, yeasts and other algae. Permanent symbiosis, however, seems to be restricted to Chlorella taxa. To test the specificity of this association, we designed infection experiments with two aposymbiotic P. bursaria strains and Chlorella symbionts isolated from four Paramecium strains, seven other ciliate hosts and two Hydra strains, as well as three free-living Chlorella species. Paramecium bursaria established stable symbioses with all tested Chlorella symbionts of ciliates, but never with symbiotic Chlorella of Hydra viridissima or with free-living Chlorella. Furthermore, we tested the infection specificity of P. bursaria with a 1:1:1 mixture of three compatible Chlorella strains, including the native symbiont, and then identified the strain of the newly established symbiosis by sequencing the internal transcribed spacer region 1 of the 18S rRNA gene. The results indicated that P. bursaria established symbiosis with its native symbiont. We conclude that despite clear preferences for their native Chlorella, the host-symbiont relationship in P. bursaria is flexible.  相似文献   

8.
The macronucleus of Paramecium caudatum controls most cellular activities, including sexual immaturity after conjugation. Exconjugant cells have two macronuclear forms: (1) fragments of the maternal macronucleus, and (2) the new macronuclei that develop from the division products of a fertilization micronucleus. The fragments are distributed into daughter cells without nuclear division and persist for at least eight cell cycles after conjugation. Conjugation between heterokaryons revealed that the fragmented maternal macronuclei continued to express genetic information for up to eight cell cycles. When the newly developed macronucleus was removed artificially within four cell cycles after conjugation, the clones regenerated the macronuclear fragments (macronuclear regeneration; MR) and showed mating reactivity, because they were sexually mature. However, when the new macronucleus was removed during later stages, many MR clones did not show mating reactivity. In some extreme cases, immaturity continued for more than 50 fissions after conjugation, as seen with normal clones that had new macronuclei derived from a fertilization micronucleus. These results indicate that the immaturity determined by the new macronucleus is not annulled by the regenerated maternal macronucleus. Mature macronuclear fragments may be "reprogrammed" in the presence of the new macronucleus, resulting in their expression of "immaturity."  相似文献   

9.
10.
A circadian clock mutant of Neurospora crassa with a period length of about 25.8 hours (4 hr longer than wild type) has been isolated after mutagenesis of the band strain. This mutant, called frq-5, segregates as a single nuclear gene, maps near the centromere on linkage group III, and is unlinked to four previously described clock mutants clustered on linkage group VII R (Feldman and Hoyle 1973, 1976). frq-5 differs from the other clock mutants in at least two other respects: (1) it is recessive in heterokaryons, and (2) it grows at about 60% the rate of the parent band strain on both minimal and complete media. Double mutants between frq-5 and each of the other clock mutants show additivity of period length--two long period mutants produce a double mutant whose period length is longer than either of the two single mutants, while a long and a short period double mutant has an intermediate period length. Although slow growth and long periodicity of frq-5 have segregated together among more than 300 progeny, slow growth per se is not responsible for the long period, since all the double mutants have the slow growth characteristic of frq-5, but have period lengths both shorter and longer than wild type.  相似文献   

11.
ABSTRACT An improved method has been developed for the induction of selfing conjugation in Paramecium. Methyl cellulose induces selfing conjugation simply and efficiently in all species examined. Induction of conjugation by methyl cellulose was characterized in P. caudatum , where it occurred only in sexually mature, mating reactive cells. Conjugation produced sexual offspring and the time course of nuclear processes was substantially the same as that in natural conjugation between cells of complementary mating types. The method is useful for genetic studies in a wide variety of Paramecium species including P. caudatum, P. tetraurelia, P. multimicronucleatum and P. bursaria.  相似文献   

12.
SYNOPSIS. Twenty-one different stocks of Paramecittm bursaria , belonging t o 4 separate varieties (syngens), whose endosymbiotic chorellae had been removed, were tested for reinfection by several strains of Chorella , some previously isolated from P. bursaria , and others free-living. In addition, infection of P. bursaria by a single strain of the green alga Scenedesmus sp., and an unidentified strain of yeast was attempted. Most combinations involving Chlorella yielded infected paramecia, and all those with Scenedesmus or the yeast did so. The failures with Chlorella were attributed to low infectibility of the stocks of Paramecium concerned, rather than to inability of the Chlorella to survive inside the paramecia. Little evidence was found that the strains of P. bursaria differed genetically in ability to maintain the symbiotic organisms.  相似文献   

13.
Paramecium bursaria shows a circadian rhythm of photoaccumulation: photoaccumulation is stronger during the day than at night. We obtained five strains of P. bursaria having different circadian periods under continuous light conditions, ranging from 20.9 to 27.9 h. Various physiological activities were compared in the cells of these strains. The periods of contractile vacuole contraction were in the range 10–15 s, which was almost proportional to the periods of the circadian rhythm in each strain. Swimming velocities were inversely proportional to the circadian period; i.e. swimming velocities were high in strains whose circadian periods were short. Resting membrane potential was more depolarized in strains with longer circadian periods. Finally, the membrane resistance of the resting state was reduced in proportion to the increase of the circadian period. Such correlation between the cellular properties and the circadian period suggests that the circadian clock mechanism is associated with various physiological activities of the cell.  相似文献   

14.
Cell populations of Paramecium bursaria show mating reactivity in the light period, but not in the dark period, when exposed to a light-dark cycle (LD 12:12). After they are transferred to constant-light (LL) conditions (1,000 lux), they continue to show a circadian rhythm of mating reactivity. The rhythm gradually dampens in LL so that mating reactivity in populations becomes arrhythmic in LL within 2 weeks. We wanted to know whether the arrhythmicity of this population was due to the absence of circadian rhythmicity within each individual cell, or merely due to asynchrony of a population of individually rhythmic cells. Therefore, single cells were isolated randomly from an arrhythmic population that had been in LL for a long time. Then the mating reactivity of these single cells was individually tested every 3 hr for 2 days. Each single cell showed a circadian mating rhythm in LL. This shows that the disappearance of the mating rhythm in cell populations under LL is not caused by disappearance of circadian rhythmicity within individual cells, but is due to desynchronization among cells in a population. When an arrhythmic population in LL is darkened for 9 hr, the mating reactivity rhythm of the cell population reappears. This occurs by resynchronization of the rhythms among individual cells, as can be shown by exposing single cells to pulses of 9 hr of darkness. This dark treatment causes phase shifts of single-cell rhythms, and a phase response curve is obtained for this stimulus. This phase-shifting behavior explains the efficacy of 9-hr dark pulses in restoring the population's rhythm.  相似文献   

15.
Synopsis.
Eighteen strains of algae, including 17 formerly symbiotic with Paramecium bursaria , were tested for capacity to release sugar. Detectable amounts of sugar were found in the supernatant fluids from 10 strains, including 6 strains infective for aposymbiotic P. bursaria syngen 2. The other 4 sugar-releasing strains were noninfective and released ˜26–46 g sugar/mg dry cell weight compared to ˜90–175 g sugar/mg dry cell weight for infective strains. This relationship of infectivity with capacity to release sugar supplements data that indicate a relationship of infectivity with resistance to Con A agglutination. The correlation is completed if we assume that resistance to Con A agglutination and capacity for sugar release must both be present in an algal strain for infectivity. The data thus strongly suggest that these 2 characteristics must be present for infectivity by any algal strains for aposymbiotic P. bursaria syngen 2.  相似文献   

16.
Przyboś E  Tarcz S  Potekhin A  Rautian M  Prajer M 《Protist》2012,163(2):263-273
Paramecium calkinsi (Ciliophora, Protozoa) is a euryhaline species which was first identified in freshwater habitats, but subsequently several strains were also collected from brackish water. It is characterized by clockwise spiral swimming movement and the general morphology of the "bursaria type." The present paper is the first molecular characterization of P. calkinsi strains recently collected in distant regions in Russia using ITS1-5.8S- ITS2-5'LSU rDNA (1100bp) and COI (620bp) mtDNA sequenced gene fragments. For comparison, our molecular analysis includes P. bursaria, exhibiting a similar "bursaria morphotype" as well as species representing the "aurelia type," i.e., P. caudatum, P. multimicronucleatum, P. jenningsi, and P. schewiakoffi, and some species of the P. aurelia species complex (P. primaurelia, P. tetraurelia, P. sexaurelia, and P. tredecaurelia). We also use data from GenBank concerning other species in the genus Paramecium and Tetrahymena (which used as an outgroup). The division of the genus Paramecium into four subgenera (proposed by Fokin et al. 2004) is clearly presented by the trees. There is a clear separation between P. calkinsi strains collected from different regions (races). Consequently, given the molecular distances between them, it seems that these races may represent different syngens within the species.  相似文献   

17.
In Paramecium, age is defined as the number of mitotic divisions which have elapsed since the previous cross-fertilization (conjugation) or self-fertilization (autogamy). As the mitotic interval between fertilizations increases, the percentage of nonviable progeny clones increases. In the current study, resolution of conflicting previous reports on the pattern of increase of death and reduced viability in progeny from aging parent cells is found. Some exautogamous clones exhibit a high mortality at young clonal ages, others show no mortality throughout their life span, but most (73%) show an abrupt increase in the percent death and reduced viability in progeny from cells 50–80 fissions old.

Ultraviolet-irradiation-induced micronuclear mutations, repairable by photoreactivation, increased with increased clonal age when monitored by percent death and reduced viability of exautogamous progeny of irradiated cells. Loss of dark repair is considered a contributor to the increased expression of micronuclear mutations with increased clonal age.

  相似文献   

18.
SYNOPSIS. Endosymbiotic algae from Paramecium bursaria when added to the culture medium are ingested by Chlorella -bearing P. bursaria at a rate of 2,000 algae/organism/day. That the ingested algae are digested and assimilated by the ciliates is suggested by the more rapid growth of Paramecium when algae are added to the medium ( G = 40 hr with algae compared to 190 hr without). The digestion by the ciliates of exogenous algae contrasts with the survival of these algae under normal growth conditions. It is suggested that the protection of the endogenous algae is related to their location in peripheral perialgal vacuoles.  相似文献   

19.
The life styles of ciliated protists are particularly suitable for experimental analyses of certain aspects of developmental and genetic biology. The progression from sexual immaturity to maturity to senescence represents one of the most intriguing aspects of developmental programs. The extent to which progeny clones, their subclones, and testers used in the assay result in different lengths of immaturity has been investigated in Euplotes crassus. Six subclones from each of 12 progeny clones from a cross between stocks EC1 and EC2 were tested for maturity with stocks EC3, EC4, and EC5 on every transfer. Analysis of variance was used to partition the total variation in fissions to maturity into parts due to clones, subclones, and testers and the interactions between these levels. The error, interaction of subclones and testers, corresponds to a standard deviation of only 4.1 fissions, while the within clone within tester means range from 15.2 to 46.7 fissions; all levels except testers contribute significantly to the total variation. Most of the variability is attributable to clones (66%), the next most to error (16%), the next most to interaction of clones by testers (13%), and the least to subclones (5%). An a posteriori analysis examined whether the differences among clones were due to the cytoplasm of the clone ancestor (exconjugant), its mat (mating-type) locus genotype, or the mated pair it came from. None of these characteristics was able to interpret simply the large variability among clones. These results provide evidence that the transition from immaturity to maturity is quantitative and complex rather than a jump from one well-defined state to another.  相似文献   

20.
Methods for inducing selfing, and the relation between selfing and the life cycle of Euplotes woodruffi syngen 3 are reported. Three intercrossing stocks were used in this experiment. Selfing was induced with several treatments as follows: cell-free fluid from the cultures of complementary mating types; intact cells of GI or S phase in the cell cycle; heat-killed cells, and lysed cells of GI-, S-, and D-phase cells which were prepared by freeze-thawing. Stock SJ-27 was used as a parental stock from which Fl clones were originated through selfing. The other two stocks, SJ-8 and SJ-19, were used as testers. The period of immaturity varied from clone to clone. The heterotypic conjugation of clones with cells of stock SJ-8 seems to occur earlier in the life cycle than with cells of stock SJ-19. This result shows that this syngen has an adolescent period in the life cycle. The length of selfing immaturity seems to be different from that of crossing immaturity, and selfing appeared slightly later than crossing with testers. But the clones in which selfing 1st occurred are considered to be in adolescence or maturity, not in senility. Once selfing appeared in any clone, the clone continued to produce selfing pairs till just before clonal death. The viability of selfing and of outcrossing were compared and found not significantly different. Inbreeding depression took place in some of the F2 clones by successive selfing. The viability of F2 clones from young parents was significantly higher than that from old parents (220 to 230 fissions) both in selfing and outcrossing. The total life spans which were studied in three F1 clones were 168 to 264 fissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号