首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We examined the relative contributions of LFA-1, Mac-1, and ICAM-3 to homotypic neutrophil adhesion over the time course of formyl peptide stimulation at shear rates ranging from 100 to 800 s-1. Isolated human neutrophils were sheared in a cone-plate viscometer and the kinetics of aggregate formation was measured by flow cytometry. The efficiency of cell adhesion was computed by fitting the aggregate formation rates with a model based on two-body collision theory. Neutrophil homotypic adhesion kinetics varied with shear rate and was most efficient at 800 s-1, where approximately 40% of the collisions resulted in adhesion. A panel of blocking Abs to LFA-1, Mac-1, and ICAM-3 was added to assess the relative contributions of these molecules. We report that 1) LFA-1 binds ICAM-3 as its primary ligand supporting homotypic adhesion, although the possibility of other ligands was also detected. 2) Mac-1 binding to an unidentified ligand supports homotypic adhesion with an efficiency comparable to LFA-1 at low shear rates of approximately 100 s-1. Above 300 s-1, however, Mac-1 and not LFA-1 were the predominant molecules supporting cell adhesion. This is in contrast to neutrophil adhesion to ICAM-1-transfected cells, where LFA-1 binds with a higher avidity than Mac-1 to ICAM-1. 3) Following stimulation, the capacity of LFA-1 to support aggregate formation decreases with time at a rate approximately 3-fold faster than that of Mac-1. The results suggest that the relative contributions of beta2 integrins and ICAM-3 to neutrophil adhesion is regulated by the magnitude of fluid shear and time of stimulus over a range of blood flow conditions typical of the venular microcirculation.  相似文献   

3.
P-selectin and intercellular adhesion molecule-1 (ICAM-1) mediate early interaction and adhesion of neutrophils to coronary endothelial cells and myocytes after myocardial ischemia and reperfusion. In the present study, we examined the physiological consequences of genetic deletions of ICAM-1 and P-selectin in mice. In wild-type mice, after 1 h of ischemia followed by reperfusion, neutrophil influx into the area of ischemia was increased by 3 h with a peak at 24 h and a decline by 72 h. ICAM-1/P-selectin-deficient mice showed a significant reduction in neutrophils by immunohistochemistry or by myeloperoxidase activity at 24 h but no significant difference at 3 h. Infarct size (area of necrosis/area at risk) assessed 24 h after reperfusion was not different between wild-type and deficient mice after 30 min and 1 h of occlusion. Mice with a deficiency in both ICAM-1 and P-selectin have impaired neutrophil trafficking without a difference in infarct size due to myocardial ischemia-reperfusion.  相似文献   

4.
5.
Tumor infiltrating neutrophil granulocytes do not only exhibit tumor eliminating functions but also promote tumor progression. We have recently shown that neutrophil granulocytes can serve as linking cells for the adhesion of MDA-MB-468 breast carcinoma cells to pulmonary endothelium. Neutrophil granulocytes but not MDA-MB-468 cells express β2-integrins, the ligands of the intercellular adhesion molecule (ICAM)-1, whereas ICAM-1 is strongly expressed on MDA-MB-468 cells. Consequently, the herein presented study was performed to investigate if this interaction has also an influence on the migratory activity of the tumor cells and whether ICAM-1 signaling plays a role in this process, too. We found that the continuous release of interleukin-8 (IL-8) and GRO-α by MDA-MB-468 cells increases the migratory activity of neutrophil granulocytes and attracts these cells towards the tumor cells which enables direct cell-cell interactions. These interactions in turn increase the migratory activity of the tumor cells in an ICAM-1 clustering-dependent mechanism since transfection of the tumor cells with specific siRNA against ICAM-1 abolished the effect. Moreover, ICAM-1 cross-linking on tumor cells induces the phosphorylation of focal adhesion components such as focal adhesion kinase and paxillin via src kinase as well as the activation of the p38 MAPK pathway via Rho kinase in a time-dependent manner. Our results provide evidence that ICAM-1 is coupled to intracellular signaling pathways involved in tumor cell migration. Thus, neutrophil granulocytes can act as modulators of the metastatic capability of tumor cells by ligation of ICAM-1.  相似文献   

6.
Expression of endothelial and leukocyte cell adhesion molecules is a principal determinant of polymorphonuclear neutrophil (PMN) recruitment during inflammation. It has been demonstrated that pharmacological inhibition of these molecules can attenuate PMN influx and subsequent tissue injury. We determined the temporal expression of alpha-granule membrane protein-40 (P-selectin), endothelial leukocyte adhesion molecule 1 (E-selectin), and intercellular cell adhesion molecule 1 (ICAM-1) after coronary artery occlusion and up to 3 days of reperfusion. The expression of all of these cell adhesion molecules peaked around 24 h of reperfusion. We determined the extent to which these molecules contribute to PMN infiltration by utilizing mice deficient (-/-) in P-selectin, E-selectin, ICAM-1, and CD18. Each group underwent 30 min of in vivo, regional, left anterior descending (LAD) coronary artery ischemia and 24 h of reperfusion. PMN accumulation in the ischemic-reperfused (I/R) zone was assessed using histological techniques. Deficiencies of P-selectin, E-selectin, ICAM-1, or CD18 resulted in significant (P < 0.05) attenuation of PMN infiltration into the I/R myocardium (MI/R). In addition, P-selectin, E-selectin, ICAM-1, and CD18 -/- mice exhibited significantly (P < 0.05) smaller areas of necrosis after MI/R compared with wild-type mice. These data demonstrate that MI/R induces coronary vascular expression of P-selectin, E-selectin, and ICAM-1 in mice. Furthermore, genetic deficiency of P-selectin, E-selectin, ICAM-1, or CD18 attenuates PMN sequestration and myocardial injury after in vivo MI/R. We conclude that P-selectin, E-selectin, ICAM-1, and CD18 are involved in the pathogenesis of MI/R injury in mice.  相似文献   

7.
In the present study, we addressed the role of intercellular adhesion molecule type 1 (ICAM-1/CD54) in neutrophil migration to inflammatory site and whether the inhibitory effect of nitric oxide (NO) upon the neutrophil rolling, adhesion and migration involves down-modulation of ICAM-1 expression through a cyclic GMP (cGMP) dependent mechanism. It was observed that neutrophil migration induced by intraperitoneal administration of endotoxin (LPS), carrageenan (Cg) or N-formyl peptide (fMLP) in ICAM-1 deficient (ICAM-1-/-) is similar to that observed in wild type (WT) mice. The treatment of mice with NO synthase (NOS) inhibitors, NG-nitro-l-arginine, aminoguanidine or with a soluble guanylate cyclase (sGC) inhibitor, ODQ enhanced LPS- or Cg-induced neutrophil migration, rolling and adhesion on venular endothelium. These parameters induced by LPS were also enhanced by 1400 W, a specific iNOS inhibitor, treatment. On the other hand, the treatment of the mice with S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, reduced these parameters induced by LPS or Cg by a mechanism sensitive to ODQ pretreatment. The NOS inhibitors did not enhance LPS-, Cg- or fMLP-induced migration and adhesion in ICAM-1-/- mice. Moreover, genetic (iNOS-/- mice) or pharmacological inhibition of NOS or of sGC enhanced LPS-induced ICAM-1 expression on mesenteric microcirculation vessels of WT mice. By contrast, SNAP reduced the ICAM-1 expression by a mechanism dependent on cGMP. In conclusion, the results suggest that although during inflammation, ICAM-1 does not contribute to neutrophil migration, it is necessary for the down-modulatory effect of inflammation-released NO on the adhesion and transmigration of neutrophils. Moreover, these NO effects are mediated via cGMP.  相似文献   

8.
Cocaine treatment of mice with viral myocarditis significantly increases neutrophil infiltration into the myocardium and exacerbates the inflammatory response. The mechanisms of these effects are unknown; however, it may be that cocaine increases circulating catecholamines and consequently increases inflammatory cell adhesion to the coronary endothelium. Here, we examined the hypothesis that cocaine enhances inflammatory cell infiltration via catecholamine-induced upregulation of cell adhesion molecule (CAM) expression in adult BALB/c mouse hearts. Intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial leukocyte adhesion molecule-1 (E-selectin), and leukocyte adhesion molecule-1 (L-selectin) were detected by gene array analysis, RT-PCR, Western blotting, and immunohistochemical staining. CAMs were significantly upregulated in cocaine-treated mouse hearts. beta-Adrenergic stimulation with epinephrine also upregulated CAM expression, confirming the effects obtained with cocaine. Beta-adrenergic blockade with propranolol inhibited epinephrine-induced CAM expression. In hearts infused with polymorphonuclear neutrophils (PMN), an increased adhesion of PMN to the coronary endothelium was observed in cocaine-treated and epinephrine-treated mouse hearts compared with control hearts. Blocking antibodies against ICAM-1, E-selectin, and L-selectin significantly inhibited epinephrine-enhanced PMN adhesion, whereas anti-VCAM-1 had lesser effects. Our findings suggest that cocaine-induced neutrophil infiltration is mediated by beta-adrenergic stimulation through upregulation of CAM expression, which enhances PMN adhesion. Conversely, beta-adrenergic blockade with propranolol inhibits the effects of cocaine and epinephrine on CAM expression and decreases PMN adhesion to the coronary endothelium. These observations may be of significance for the development of preventative and therapeutic approaches to patients with cocaine- or catecholamine-induced myocarditis.  相似文献   

9.
Neutrophil recruitment into lung constitutes a major response to airborne endotoxins. In many tissues endothelial intercellular adhesion molecule-1 (ICAM-1) interacts with lymphocyte function associated antigen-1 (LFA-1) on neutrophils, and this interaction plays a critical role in neutrophil recruitment. There are conflicting reports about the role of ICAM-1 in neutrophil recruitment into lungs. We studied neutrophil recruitment into alveolar space in a murine model of aerosolized LPS-induced lung inflammation. LPS induces at least a 100-fold increase in neutrophil numbers in alveolar space, as determined by flow cytometry of bronchoalveolar lavage fluid. Neutrophil recruitment was reduced by 54% in ICAM-1 null mice and by 45% in LFA-1 null mice. In wild-type mice treated with anti-ICAM-1 and anti-LFA-1 antibodies, there was 51 and 58% reduction in the neutrophil recruitment, respectively. In chimeric mice, generated by the transplantation of mixtures of bone marrows from LFA-1 null and wild-type mice, the normalized recruitment of LFA-1 null neutrophils was reduced by 60% compared with wild-type neutrophils. Neither the treatment of ICAM-1 null mice with a function-blocking antibody to LFA-1 nor the treatment of LFA-1 null mice with anti-ICAM-1 antibody resulted in further reduction in the recruitment compared with untreated ICAM-1 null and LFA-1 null mice. We conclude that ICAM-1 and LFA-1 play critical roles in the recruitment of neutrophils into the alveolar space in aerosolized LPS-induced lung inflammation, and LFA-1 serves as a ligand of ICAM-1 in the lung.  相似文献   

10.
Neutrophils unexpectedly display flow-enhanced adhesion (hydrodynamic thresholding) to L-selectin in rolling or aggregation assays. We report that the primary collision efficiency (epsilon) of flowing neutrophils with preadhered neutrophils on intercellular adhesion molecule-1 (ICAM-1) or fibrinogen also displayed a maximum of epsilon approximately 0.4-0.45 at a wall shear rate of 100 s(-1), an example of thresholding. Primary collision lifetime with no detectable bonding decreased from 130 to 10 ms as wall shear rate increased from 30 to 300 s(-1), whereas collision lifetimes with bonding decreased from 300 to 100 ms over this shear range using preadhered neutrophils on ICAM-1, with similar results for fibrinogen. Antibodies against L-selectin, but not against CD11a, CD11b, or CD18, reduced epsilon at 100 s(-1) by >85%. High resolution imaging detected large scale deformation of the flowing neutrophil during the collision at 100 s(-1) with the apparent contact area increasing up to approximately 40 microm(2). We observed the formation of long linear string assemblies of neutrophils downstream of neutrophils preadhered to ICAM-1, but not fibrinogen, with a maximum in string formation at 100 s(-1). Secondary capture events to the ICAM-1 or fibrinogen coated surfaces after primary collisions were infrequent and short lived, typically lasting from 500 to 3500 ms. Between 5 and 20% of neutrophil interactions with ICAM-1 substrate converted to firm arrest (>3500 ms) and greatly exceeded that observed for fibrinogen, thus defining the root cause of poor string formation on fibrinogen at all shear rates. Additionally, neutrophils mobilized calcium after incorporation into strings. Static adhesion also caused calcium mobilization, as did the subsequent onset of flow. To our knowledge, this is the first report of 1). hydrodynamic thresholding in neutrophil string formation; 2). string formation on ICAM-1 but not on fibrinogen; 3). large cellular deformation due to collisions at a venous shear rate; and 4), mechanosensing through neutrophil beta(2)-integrin/adhesion. The increased contact area during deformation was likely responsible for the hydrodynamic threshold observed in the primary collision efficiency since no increase in primary collision lifetime was detected as shear forces were increased (for either surface coating).  相似文献   

11.
On inflamed endothelium selectins support neutrophil capture and rolling that leads to firm adhesion through the activation and binding of beta 2 integrin. The primary mechanism of cell activation involves ligation of chemotactic agonists presented on the endothelium. We have pursued a second mechanism involving signal transduction through binding of selectins while neutrophils tether in shear flow. We assessed whether neutrophil rolling on E-selectin led to cell activation and arrest via beta 2integrins. Neutrophils were introduced into a parallel plate flow chamber having as a substrate an L cell monolayer coexpressing E-selectin and ICAM-1 (E/I). At shears >/=0.1 dyne/cm2, neutrophils rolled on the E/I. A step increase to 4.0 dynes/cm2 revealed that approximately 60% of the interacting cells remained firmly adherent, as compared with approximately 10% on L cells expressing E-selectin or ICAM-1 alone. Cell arrest was dependent on application of shear and activation of Mac-1 and LFA-1 to bind ICAM-1. Firm adhesion was inhibited by blocking E-selectin, L-selectin, or PSGL-1 with Abs and by inhibitors to the mitogen-activated protein kinases. A chimeric soluble E-selectin-IgG molecule specifically bound sialylated ligands on neutrophils and activated adhesion that was also inhibited by blocking the mitogen-activated protein kinases. We conclude that neutrophils rolling on E-selectin undergo signal transduction leading to activation of cell arrest through beta 2 integrins binding to ICAM-1.  相似文献   

12.
Both intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) have been implicated in neutrophil-mediated lung and liver injury during sepsis. However, the role of these adhesion molecules as well as the contribution of neutrophils in myocardial dysfunction during sepsis remains to be determined. The purpose of this study was to examine the role of ICAM-1, VCAM-1, and neutrophils in lipopolysaccharide (LPS)-induced myocardial dysfunction. Mice were subjected to LPS (0.5 mg/kg ip) or vehicle (normal saline), and left ventricular developed pressure (LVDP) was determined by the Langendorff technique. LVDP was depressed by nearly 40% at 6 h after LPS. Immunofluorescent staining revealed a temporal increase in myocardial ICAM-1/VCAM-1 expression and neutrophils after LPS. Antibody blockade of VCAM-1 reduced myocardial neutrophil accumulation and abrogated LPS-induced cardiac dysfunction. Antibody blockade or absence of ICAM-1 (gene knockout) also abrogated LPS-induced cardiac dysfunction but did not reduce neutrophil accumulation. Neutrophil depletion (vinblastine or antibody) did not protect from LPS-induced myocardial dysfunction. Our results suggest that although endotoxemic myocardial dysfunction requires both ICAM-1 and VCAM-1, it occurs independent of neutrophil accumulation.  相似文献   

13.
Leukocyte locomotion over the lumen of inflamed endothelial cells is a critical step, following firm adhesion, in the inflammatory response. Once firmly adherent, the cell will spread and will either undergo diapedesis through individual vascular endothelial cells or will migrate to tight junctions before extravasating to the site of injury or infection. Little is known about the mechanisms of neutrophil spreading or locomotion, or how motility is affected by the physical environment. We performed a systematic study to investigate the effect of the type of adhesive ligand and shear stress on neutrophil motility by employing a parallel-plate flow chamber with reconstituted protein surfaces of E-selectin, E-selectin/PECAM-1, and E-selectin/ICAM-1. We find that the level and type of adhesive ligand and the shear rate are intertwined in affecting several metrics of migration, such as the migration velocity, random motility, index of migration, and the percentage of cells moving in the direction of flow. On surfaces with high levels of PECAM-1, there is a near doubling in random motility at a shear rate of 180 s(-1) compared to the motility in the absence of flow. On surfaces with ICAM-1, neutrophil random motility exhibits a weaker response to shear rate, decreasing slightly when shear rate is increased from static conditions to 180 s(-1), and is only slightly higher at 1000 s(-1) than in the absence of flow. The random motility increases with increasing surface concentrations of E-selectin and PECAM-1 under static and flow conditions. Our findings illustrate that the endothelium may regulate neutrophil migration in postcapillary venules through the presentation of various adhesion ligands at sites of inflammation.  相似文献   

14.
Intercellular adhesion molecule 1 (ICAM-1) and beta2 integrins play critical roles in immune responses. ICAM-1 may also participate in regulation of energy balance because ICAM-1-deficient mice become obese on a high-fat diet. We show that mice deficient in these adhesion receptors are unable to respond to fasting by up-regulation of fatty acid oxidation. Normal mice, when fasted, exhibit reduced circulating neutrophil counts and increased ICAM-1 expression and neutrophil recruitment in liver. Mice lacking ICAM-1 or beta2 integrins fail to show these responses--instead they become hypoglycemic with steatotic livers. Fasting ICAM-1-deficient mice reduce insulin more slowly than wild-type mice. This produces fasting hyperinsulinemia that prevents activation of adenosine mono-phosphate (AMP)-activated protein kinase in muscles and liver, which results in decreased import of long chain fatty acids into mitochondria. Thus, we show a new role for immune cells and their adhesion receptors in regulating metabolic response to fasting.  相似文献   

15.
16.

Background

The role of viral infections in the pathogenesis of atherosclerosis remains controversial largely due to inconsistent detection of the virus in atherosclerotic lesions. However, viral infections elicit a pro-inflammatory cascade known to be atherogenic and to precipitate acute ischemic events. We have published in vitro data that provide the foundation for a mechanism that reconciles these conflicting observations. To determine the relation between an early viral protein, deoxyuridine triphosphate nucleotidohydrolase (dUTPase), produced following reactivation of Epstein Barr Virus (EBV) to circulating pro-inflammatory cytokines, intercellular adhesion molecule-1 (ICAM-1) and acute coronary events.

Methodology/Principal Findings

Blood samples were obtained from 299 patients undergoing percutaneous coronary intervention for stable angina (SA), unstable angina (UA), or acute myocardial infarction (AMI). Plasma concentrations of pro-inflammatory cytokines and neutralizing antibody against EBV-encoded dUTPase were compared in the three patient groups. AMI was associated with the highest measures of interleukin-6 (ANOVA p<0.05; 4.6±2.6 pg/mL in patients with AMI vs. 3.2±2.3 pg/mL in SA). ICAM-1 was significantly higher in patients with AMI (ANOVA p<0.05; 304±116 pg/mL in AMI vs. 265±86 pg/mL SA). The highest values of ICAM-1 were found in patients having an AMI and who were antibody positive for dUTPase (ANOVA p = 0.008; 369±183 pg/mL in AMI and positive for dUTPase vs. 249±70 pg/mL in SA negative for dUTPase antibody).

Conclusions/Significance

These clinical data support a model, based on in vitro studies, by which EBV may precipitate AMI even under conditions of low viral load through the pro-inflammatory action of the early protein dUTPase that is produced even during incomplete viral replication. They further support the putative role of viral infections in the pathogenesis of atherosclerosis and coronary artery events.  相似文献   

17.
Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression is an important mechanism underlying ischemia-reperfusion (I/R) induced neutrophil activation and tissue injury in other organs. However, I/R of the lungs has not been shown to upregulate ICAM-1 expression. We determined the time course profile of lung I/R-induced ICAM-1 expression and assessed the role of ICAM-1 in mediating neutrophil sequestration, transmigration, and I/R injury in the isolated blood-perfused rat lungs. I/R had a biphasic effect on ICAM-1 expression, an early downregulation and a late-phase upregulation. Superoxide dismutase and neutrophil depletion prevented the early ICAM-1 downregulation. The late-phase ICAM-1 upregulation coincided with the I/R-induced increase in pulmonary microvascular leakage index. ICAM-1 monoclonal antibody (MAb) reversed the I/R-induced increase in pulmonary microvascular leakage index, with control antibody being ineffective. Neither I/R nor ICAM-1 MAb affected lung MPO activity and circulating neutrophil count. Lung I/R significantly increased bronchoalveolar lavage fluid neutrophil count and the GSSG-to-(GSSG+GSH) ratio. ICAM-1 MAb blocked the I/R-induced increase in GSSG-to-(GSSG+GSH) ratio but had no effect on bronchoalveolar lavage fluid neutrophil count. Our results demonstrated that lung I/R up- and downregulates ICAM-1 expression depending on the duration of reperfusion. ICAM-1 upregulation is an important mechanism of I/R-induced pulmonary endothelial injury.  相似文献   

18.
Zhou SG  Xu LP  Liao DF  Lei XY  Yan FX  Zhu BY 《生理学报》2004,56(3):313-320
为研究环孢霉素A(cyclosporin A,CsA)对缺氧/复氧诱导人脐静脉内皮细胞(ECV-304)与中性粒细胞粘附的影响,本工作以缺氧/复氧诱导粘附为模型,采用D-N-乙酰氨基己糖苷酶比色法检测粘附率,流式细胞术检测ECV-304细胞表面粘附分子E-选择素(E-selectin)、细胞间粘附分子-1(ICAM-1)的表达,Fenton反应测定活性氧(reactive oxygen species,ROS)的含量,Westera-blot法检测ECV-304细胞亲环素A(cyclophilin A,CyPA)、磷酸化及总细胞外信号调节激酶(ERK1/2)蛋白的表达。结果发现,ECV-304细胞经缺氧/复氧处理后,ROS释放增多,E-selectin、ICAM-1的表达上调,其表面中性粒细胞的粘附增加,CsA能显著抑制缺氧/复氧的上述作用。缺氧/复氧后,CyPA蛋白表达明显上调,ERK1/2显著活化,细胞总ERK1/2蛋白表达无明显改变。CyPA抑制剂CsA以及CyPA反义寡核苷酸均明显减轻缺氧/复氧诱导的ERK1/2激活,显著减少ECV-304细胞与中性粒细胞柑附。ERK112信号通路特异性阻断剂PD98059亦显著抑制ECV-304细胞与中性粒细胞的粘附。上述结果提示,CsA抑制缺氧气/复氧诱导的ECV-304细胞与中性粒细胞粘附,并可能通过抑制ROS-Cyclophilin A-ERK112的信号转导途径实现。  相似文献   

19.
TNF-alpha can incite neutrophil-mediated endothelial cell damage and neutrophil H2O2 release. Both effects require adherent neutrophils. Using specific mAb, we showed in this in vitro study that the CD18 beta 2-chain and the CD11b alpha M-chain of the CD11/CD18 integrin heterodimer have a major role in both TNF-alpha-induced neutrophil-mediated detachment of human umbilical vein endothelial cells and H2O2 release by TNF-alpha-activated human neutrophils. In contrast to anti-CD18 mAb, which consistently prevented neutrophil activation, anti-CD11a mAb and two of three anti-CD11b mAb did not reduce endothelial cell detachment and neutrophil H2O2 release, although they decreased neutrophil adhesion to human umbilical vein endothelial cells. mAb 904, directed against the bacterial LPS binding region of CD11b, reduced endothelial cell detachment for about 40% and neutrophil H2O2 release for more than 50%, demonstrating that CD11b/CD18 is engaged in TNF-induced neutrophil activation. Dependence on CD11b/CD18 could not be overcome by CD18-independent anchoring of neutrophils via PHA. Additionally, neither induction of increased expression of the endothelial cell adhesion molecules ICAM-1 and ELAM-1, nor subsequent addition of specific mAb, influenced endothelial cell injury or H2O2 release by TNF-activated neutrophils. Interaction with ICAM-1 and ELAM-1 therefore appears not to induce additional activation of TNF-stimulated neutrophils. These studies suggest that a specific, CD11b/CD18-mediated signal, instead of adherence only, triggers toxicity of TNF-activated neutrophils.  相似文献   

20.
Endothelial cell junctional adhesion molecule (JAM)-C has been proposed to regulate neutrophil migration. In the current study, we used function-blocking mAbs against human JAM-C to determine its role in human leukocyte adhesion and transendothelial cell migration under flow conditions. JAM-C surface expression in HUVEC was uniformly low, and treatment with inflammatory cytokines TNF-alpha, IL-1beta, or LPS did not increase its surface expression as assessed by FACS analysis. By immunofluorescence microscopy, JAM-C staining showed sparse localization to cell-cell junctions on resting or cytokine-activated HUVEC. Surprisingly, staining of detergent-permeabilized HUVEC revealed a large intracellular pool of JAM-C that showed little colocalization with von Willebrand factor. Adhesion studies in an in vitro flow model showed that functional blocking JAM-C mAb alone had no inhibitory effect on polymorphonuclear leukocyte (PMN) adhesion or transmigration, whereas mAb to ICAM-1 significantly reduced transmigration. Interestingly, JAM-C-blocking mAbs synergized with a combination of PECAM-1, ICAM-1, and CD99-blocking mAbs to inhibit PMN transmigration. Overexpression of JAM-C by infection with a lentivirus JAM-C GFP fusion protein did not increase adhesion or extent of transmigration of PMN or evoke a role for JAM-C in transendothelial migration. These data suggest that JAM-C has a minimal role, if any, in PMN transmigration in this model and that ICAM-1 is the preferred endothelial-expressed ligand for PMN beta(2) integrins during transendothelial migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号