首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

After spinal cord injury (SCI), the formation of glial scar contributes to the failure of injured adult axons to regenerate past the lesion. Increasing evidence indicates that olfactory ensheathing cells (OECs) implanted into spinal cord are found to migrate into the lesion site and induce axons regeneration beyond glial scar and resumption of functions. However, little is known about the mechanisms of OECs migrating from injection site to glial scar/lesion site.

Methods and Findings

In the present study, we identified a link between OECs migration and reactive astrocytes in glial scar that was mediated by the tumor necrosis factor-α (TNF-α). Initially, the Boyden chamber migration assay showed that both glial scar tissue and reactive astrocyte-conditioned medium promoted OECs migration in vitro. Reactive astrocyte-derived TNF-α and its type 1 receptor TNFR1 expressed on OECs were identified to be responsible for the promoting effect on OECs migration. TNF-α-induced OECs migration was demonstrated depending on activation of the extracellular signal-regulated kinase (ERK) signaling cascades. Furthermore, TNF-α secreted by reactive astrocytes in glial scar was also showed to attract OECs migration in a spinal cord hemisection injury model of rat.

Conclusions

These findings showed that TNF-α was released by reactive astrocytes in glial scar and attracted OECs migration by interacting with TNFR1 expressed on OECs via regulation of ERK signaling. This migration-attracting effect of reactive astrocytes on OECs may suggest a mechanism for guiding OECs migration into glial scar, which is crucial for OECs-mediated axons regrowth beyond the spinal cord lesion site.  相似文献   

2.
Summary The terminal parts of radially directed neurite bundles growing out from chick embryo spinal cord in vitro have been examined by phase and electron-microscopy,A type of ending is described in which the terminal parts of the neurites are associated with a glial cell. The latter sends a single major process proximally towards the explant. Distally it is attached to the substrate, and the neurite ends are related to its dorsal (nonsubstrate) aspect. Appearances suggesting a mechanism of adhesion of neurites to each other and to the gial cell are described.Growth vesicles were found in both neurites and glia.It is suggested that movements of terminal glial cells may affect the pattern of outgrowth of their attached neurite bundles.We are grateful to the Medical Research Council for financial assistance, to Mr. A. Aldrich and Mr. D. Gunn for photography, to Mr. P. Howell and Miss 0. Chmyliwsky for technical assistance, and to Mrs. B. Fisher for valued secretarial help.  相似文献   

3.
1. The corpora pedunculata of the wood ant (Formica lugubris Zett.) contain densely packed neuron perikarya which are separated by ultrathin glial sheaths. 2. These glial sheaths are occasionally interrupted by round holes with an average surface area of 2.64 µ2. The holes are designated glial windows since they represent intracellular gaps of glial cytoplasm. 3. The glial windows allow soma-somatic interneuronal junctions. Of all adjacent neurons in a selected neuron pool, only 42% were interconnected by such junctions. 4. The intercellular space at the soma-somatic junctions has an average diameter of 30 A; occasionally, it is collapsed and an external compound membrane ensues. The junctional membranes are characterized by the presence of a subunit pattern of cross-directional electron-opaque lines with a 50- to 70-A periodicity. 5. Morphological signs of chemical transmission are absent in these junctions. On the other hand, there is a striking similarity in structural organization between soma-somatic junctions and electrical synapses described in other species. Therefore, it is suggested that these cell contacts of the ant's "cerebral cortex" are another form of electrical junction. 6. The close proximity of the junctions to the cell nucleus is noted. Its significance could not be ascertained. 7. The suggestion is made that glial windows may have dynamic properties and may intervene in the regulation of interneuronal transfer of information.  相似文献   

4.
Organisms are structurally robust, as cells accommodate changes preserving structural integrity and function. The molecular mechanisms underlying structural robustness and plasticity are poorly understood, but can be investigated by probing how cells respond to injury. Injury to the CNS induces proliferation of enwrapping glia, leading to axonal re-enwrapment and partial functional recovery. This glial regenerative response is found across species, and may reflect a common underlying genetic mechanism. Here, we show that injury to the Drosophila larval CNS induces glial proliferation, and we uncover a gene network controlling this response. It consists of the mutual maintenance between the cell cycle inhibitor Prospero (Pros) and the cell cycle activators Notch and NFκB. Together they maintain glia in the brink of dividing, they enable glial proliferation following injury, and subsequently they exert negative feedback on cell division restoring cell cycle arrest. Pros also promotes glial differentiation, resolving vacuolization, enabling debris clearance and axonal enwrapment. Disruption of this gene network prevents repair and induces tumourigenesis. Using wound area measurements across genotypes and time-lapse recordings we show that when glial proliferation and glial differentiation are abolished, both the size of the glial wound and neuropile vacuolization increase. When glial proliferation and differentiation are enabled, glial wound size decreases and injury-induced apoptosis and vacuolization are prevented. The uncovered gene network promotes regeneration of the glial lesion and neuropile repair. In the unharmed animal, it is most likely a homeostatic mechanism for structural robustness. This gene network may be of relevance to mammalian glia to promote repair upon CNS injury or disease.  相似文献   

5.
Summary The principal supportive elements of the nereid central nervous system are non-neuronal cells that are referred to as supportive glia. Supportive glial cells form a conspicuous cortex in the nerve cord. The inner region of this cortex consists of closely packed processes and cell bodies of fibrous supportive glial cells that are arranged in concentric layers around the perimeter of the neuropile. The fibrous appearance of the glial cells results from dense bundles of cytoplasmic filaments. Many fibrous glial processes penetrate the neuropile and ramify among the neuronal elements. Larger, irregularly shaped cells are the chief supportive glial elements of the peripheral region of the cortex where they line the stromal sheath (neural lamella) and invest the neuronal perikarya with extensive concentric systems of lamellate processes. These glial cells usually possess a relatively undifferentiated cytoplasm with scattered glycogen granules, but occasionally have a well developed Golgi apparatus, endoplasmic reticulum and densely packed particulate glycogen. The supportive glia exhibits numerous desmosomes as well as 5-layered (tight) and 7-layered (gap) junctions. Interspersed among the supportive glial cells are non-neuronal cells referred to as granulocytes. These cells have abundant large, granular inclusions, electron lucent vesicles, plasmalemmal infoldings and microtubules. The granulocytes may be derived from undifferentiated glial cells or may represent coelomocytes that have invaded the nervous tissue.Supported by USPHS Grants No. NIH 5P01 NS-07512, NIH 2T01 GM-00102, and NB-00840.The author acknowledges the excellent technical assistance of Sarah Wurzelmann and Stanley Brown, and thanks Dr. Berta Scharrer for many stimulating discussions.  相似文献   

6.
Homocysteine (Hcy), an independent risk factor for atherosclerosis, undergoes auto-oxidation and generates reactive oxygen species, which are thought to be main cause of Hcy neurotoxicity. However, the mechanisms leading to neurodegenerative disorders are poorly understood because studies that have investigated the potential neurotoxicity of hyperhomocysteinemia in vivo are scarce. The purpose of this study was to test whether daily administration of methionine, which induces hyperhomocysteinemia, causes glial hyperactivity, and also to investigate the protective effects of melatonin on the brain tissue against oxidative stress of Hcy in rats. There was a significant development of oxidative stress as indicated by an increase in malondialdehyde + 4-hydroxyalkenals in hippocampus and cortex of hyperhomocysteine mic rats, whereas significant reduction was found in the activity of glutathione peroxidase (GSH-Px). Co-treatment with melatonin inhibited the elevation of lipid peroxidation and significantly increased GSH-Px activity in the brain regions studied. Western blot analysis revealed an increase in glial fibrillary acidic protein (GFAP) contents both in hippocampus and frontal cortex (p < 0.001) of hyperhomocysteinemic rats compared to the controls. Administration of melatonin significantly decreased GFAP contents in hippocampus and cortex (p < 0.05). S100B contents increased only in frontal cortex in hyperhomocysteinemic rats compared to the control (p < 0.01) and was inhibited by melatonin treatment (p < 0.01). The present findings show that Hcy can sensitize glial cells, a mechanism which might contribute to the pathogenesis of neurodegenerative disorders, and further suggest that melatonin can be involved in protecting against the toxicity of Hcy by inhibiting free radical generation and stabilizing glial cell activity.  相似文献   

7.
The diffusion of neuroactive substances in the extracellular space (ECS) plays an important role in short- and long-distance communication between nerve cells and is the underlying mechanism of extrasynaptic (volume) transmission. The diffusion properties of the ECS are described by three parameters: 1. ECS volume fraction alpha (alpha=ECS volume/total tissue volume), 2. tortuosity lambda (lambda2=free/apparent diffusion coefficient), reflecting the presence of diffusion barriers represented by, e.g., fine neuronal and glial processes or extracellular matrix molecules and 3. nonspecific uptake k'. These diffusion parameters differ in various brain regions, and diffusion in the CNS is therefore inhomogeneous. Moreover, diffusion barriers may channel the migration of molecules in the ECS, so that diffusion is facilitated in a certain direction, i.e. diffusion in certain brain regions is anisotropic. Changes in the diffusion parameters have been found in many physiological and pathological states in which cell swelling, glial remodeling and extracellular matrix changes are key factors influencing diffusion. Changes in ECS volume, tortuosity and anisotropy significantly affect the accumulation and diffusion of neuroactive substances in the CNS and thus extrasynaptic transmission, neuron-glia communication, transmitter "spillover" and synaptic cross-talk as well as cell migration, drug delivery and treatment.  相似文献   

8.
The abdominal nerve cord of Periplaneta americana was studied utilizing light and electron microscopes. In the nerve cells, delicate granules, similar to those probably responsible for cytoplasmic basophilia, are evenly distributed in "dark" cells and clumped in "light" cells. Neuroglial cells are stained metachromatically by cresyl violet. The neuroglial cells have many processes which ramify extensively and are enmeshed to form overlapping layers. These imbricated processes ensheath the nerve cells; the inner layer of the sheath penetrates into the neuron and is responsible for the appearance of the trophospongium of Holmgren. Nerve fibers are embedded within glial cells and surrounded by extensions of the plasma membrane similar to mesaxons. Depending on their size, two or several nerve fibers may share a single glial cell. Nerve fibers near their terminations on other nerve fibers contain particles and numerous, large mitochondria. The ganglion is ensheathed by a thick feltwork of connective tissue and perilemmal cells. The abdominal connective has a thinner connective tissue sheath which is without perilemmal cells. The nerve fibers and sheaths in the connective become thinner as they pass through ganglia.  相似文献   

9.
The abdominal nerve cord of Periplaneta americana was studied utilizing light and electron microscopes. In the nerve cells, delicate granules, similar to those probably responsible for cytoplasmic basophilia, are evenly distributed in "dark" cells and clumped in "light" cells. Neuroglial cells are stained metachromatically by cresyl violet. The neuroglial cells have many processes which ramify extensively and are enmeshed to form overlapping layers. These imbricated processes ensheath the nerve cells; the inner layer of the sheath penetrates into the neuron and is responsible for the appearance of the trophospongium of Holmgren. Nerve fibers are embedded within glial cells and surrounded by extensions of the plasma membrane similar to mesaxons. Depending on their size, two or several nerve fibers may share a single glial cell. Nerve fibers near their terminations on other nerve fibers contain particles and numerous, large mitochondria. The ganglion is ensheathed by a thick feltwork of connective tissue and perilemmal cells. The abdominal connective has a thinner connective tissue sheath which is without perilemmal cells. The nerve fibers and sheaths in the connective become thinner as they pass through ganglia.  相似文献   

10.
Summary This review describes a novel class of heterocyclic GABA uptake inhibitor with no affinity for the GABA receptors. The parent compound nipecotic acid is a potent inhibitor of neuronal and glial GABA uptake, and nipecotic acid is a substrate for the transport carriers concerned. The structurally related cyclic amino acids guvacine and cis-4-hydroxynipecotic acid are also potent inhibitors of both GABA transport systems. Even minor structural alterations of these compounds result in considerable or complete loss of activity. Whereas homonipecotic acid is a weak but selective inhibitor of glial GABA uptake, homoguvacine is virtually inactive. Similarly the lower homologues of nipecotic acid and guvacine, -proline and 3-pyrroline-3-carboxylic acid, respectively, show some selectivity with respect to inhibition of glial GABA uptake, but these compounds are much weaker than the parent compounds. The bicyclic compounds THPO and THAO, in which the carboxyl groups of nipecotic acid and homonipecotic acid have been replaced by 3-isoxazolol units are moderately potent and practically specific inhibitors of glial GABA uptake. cis-4-Mercaptonipecotic acid is considerably weaker than the closely related analogue cis-4-hydroxynipecotic acid, but the former compound may interact irreversibly with the GABA transport carriers.The results demonstrate a pronounced substrate specificity of the glial and in particular the neuronal GABA transport system. It is evident that the GABA molecule is transported in a conformation different from that, in which it activates its receptors. These findings are of importance for the development of drugs for selective pharmacological regulation of the functions of central GABA-mediated synapses in certain neurological diseases.  相似文献   

11.
Mitterauer BJ 《Bio Systems》2003,72(3):209-215
I start out with the hypothesis that the basic symptoms of schizophrenia are caused by a loss of self-boundaries. Phenomenologically, schizophrenic symptoms are based on the inability of the brain to delimit conceptual boundaries. At the cellular level in the brain, I have in previous work attributed a spatio-temporal boundary setting function to the glial cells such that glial cells determine the grouping of neurons into functional units. Mutations in genes that result in non-splicing of introns can produce aberrant versions of neurotransmitter receptors that lack protein domains encoded by entire exons and can also have protein sequence encoded by introns that have not been properly spliced out. I propose that such "chimeric" receptors are generated in glial cells and that they cannot interact properly with their cognate neurotransmitters. The glia will then lose their inhibitory function with respect to the information processing within neuronal networks. The loss of glial boundary-setting may result in a 'borderless' generalization of information processing such that the structuring of the brain in functional domains is almost completely lost. This loss of glial boundary setting could be an explanation of the loss of self-boundaries in schizophrenia.  相似文献   

12.
Glia in the central nervous system (CNS) express diverse inward rectifying potassium channels (Kir). The major function of Kir is in establishing the high potassium (K+) selectivity of the glial cell membrane and strongly negative resting membrane potential (RMP), which are characteristic physiological properties of glia. The classical property of Kir is that K+ flows inwards when the RMP is negative to the equilibrium potential for K+ (E(K)), but at more positive potentials outward currents are inhibited. This provides the driving force for glial uptake of K+ released during neuronal activity, by the processes of "K+ spatial buffering" and "K+ siphoning", considered a key function of astrocytes, the main glial cell type in the CNS. Glia express multiple Kir channel subtypes, which are likely to have distinct functional roles related to their differences in conductance, and sensitivity to intracellular and extracellular factors, including pH, ATP, G-proteins, neurotransmitters and hormones. A feature of CNS glia is their specific expression of the Kir4.1 subtype, which is a major K+ conductance in glial cell membranes and has a key role in setting the glial RMP. It is proposed that Kir4.1 have a primary function in K+ regulation, both as homomeric channels and as heteromeric channels by co-assembly with Kir5.1 and probably Kir2.0 subtypes. Significantly, Kir4.1 are also expressed by oligodendrocytes, the myelin-forming cells of the CNS, and the genetic ablation of Kir4.1 results in severe hypomyelination. Hence, Kir, and in particular Kir4.1, are key regulators of glial functions, which in turn determine neuronal excitability and axonal conduction.  相似文献   

13.
Axon branch removal at developing synapses by axosome shedding   总被引:4,自引:0,他引:4  
Bishop DL  Misgeld T  Walsh MK  Gan WB  Lichtman JW 《Neuron》2004,44(4):651-661
In many parts of the developing nervous system, the number of axonal inputs to each postsynaptic cell is dramatically reduced. This synapse elimination has been extensively studied at the neuromuscular junction, but how axons are lost is unknown. Here, we combine time-lapse imaging of fluorescently labeled axons and serial electron microscopy to show that axons at neuromuscular junctions are removed by an unusual cellular mechanism. As axons disappear, they shed numerous membrane bound remnants. These "axosomes" contain a high density of synaptic organelles and are formed by engulfment of axon tips by Schwann cells. After this engulfment, the axosome's contents mix with the cytoplasm of the glial cell. Axosome shedding might underlie other forms of axon loss and may provide a pathway for interactions between axons and glia.  相似文献   

14.
Neuron-glia interactions are necessary for the formation of the longitudinal axon trajectories in the Drosophila central nervous system. Longitudinal glial cells are required for axon guidance and fasciculation, and pioneer neurons for trophic support of the glia. Neuregulin is a neuronal molecule that controls glial survival in the vertebrate nervous system. The Drosophila protein Vein has structural similarities with Neuregulin. We show here that Vein functions like a Neuregulin to maintain glial cell survival. We present direct in vivo evidence at single-cell resolution that Vein is produced by pioneer neurons and maintains the survival of neighboring longitudinal glia. This mechanism links axon guidance to control of glial cell number and may contribute to plasticity during the establishment of normal axonal trajectories.  相似文献   

15.
The optic nerve of Necturus maculosus consists of a homogeneous population of astroglia and bundles of unmyelinated axons. The glial cell processes ramify within the nerve roughly delineating fascicles of axons and come together at the periphery to form a complete external limiting membrane interrupted only by narrow clefts between adjacent processes. They are frequently "attached" to one another, forming specialized junctions. Blood vessels are entirely outside the nerve which is surrounded by a basal lamina. The temperature dependence of the glial membrane potential is accurately predicted by the Nernst relation. The membrane potential is unaffected by changes in Cl, Na, Li, and guanidinium which are apparently impermeant. The permeability of the glial membrane to other cations is in the sequence Tl greater than K greater than Rb greater than Cs greater than NH4. This suggests that the chemical nature of the site of potassium permeability in glial cells is similar to that in the neuron.  相似文献   

16.
In the Drosophila central nervous system (CNS) glial cells are known to be generated from glioblasts, which produce exclusively glia or neuroglioblasts that bifurcate to produce both neuronal and glial sublineages. We show that the genesis of a subset of glial cells, the subperineurial glia (SPGs), involves a new mechanism and requires Notch. We demonstrate that the SPGs share direct sibling relationships with neurones and are the products of asymmetric divisions. This mechanism of specifying glial cell fates within the CNS is novel and provides further insight into regulatory interactions leading to glial cell fate determination. Furthermore, we show that Notch signalling positively regulates glial cells missing (gcm) expression in the context of SPG development.  相似文献   

17.
Notch signaling represses the glial fate in fly PNS   总被引:4,自引:0,他引:4  
By using gain-of-function mutations it has been proposed that vertebrate Notch promotes the glial fate. We show in vivo that glial cells are produced at the expense of neurons in the peripheral nervous system of flies lacking Notch and that constitutively activated Notch produces the opposite phenotype. Notch acts as a genetic switch between neuronal and glial fates by negatively regulating glial cell deficient/glial cells missing, the gene required in the glial precursor to induce gliogenesis. Moreover, Notch represses neurogenesis or gliogenesis, depending on the sensory organ type. Numb, which is asymmetrically localized in the multipotent cell that produces the glial precursor, induces glial cells at the expense of neurons. Thus, a cell-autonomous mechanism inhibits Notch signaling.  相似文献   

18.
Injury-induced vesiculation and membrane redistribution in squid giant axon   总被引:5,自引:0,他引:5  
Injury of isolated squid giant axons in sea water by cutting or stretching initiates the following unreported processes: (i) vesiculation in the subaxolemmal region extending along the axon several mm from the site of injury, followed by (ii) vesicular fusions that result in the formation of large vesicles (20-50 micron diameter), 'axosomes', and finally (iii) axosomal migration to and accumulation at the injury site. Some axosomes emerge from a cut end, attaining sizes up to 250 microns in diameter. Axosomes did not form after axonal injury unless divalent cations (Ca2+ or Mg2+) were present (10mM) in the external solution. The requirement for Ca2+ and the action of other ions are similar to that for cut-end cytoskeletal constriction in transected squid axons (Gallant, P.E. (1988) J. Neurosci. 8, 1479-1484) and for electrical sealing in transected axons of the cockroach (Yawo, H. and Kuno, M. (1985) J. Neurosci. 5, 1626-1632). Axosomes probably consist of membrane from different sources (e.g., axolemma, organelles and Schwann cells); however, localization of axosomal formation to the inner region of the axolemma and the formation dependence on divalent cations suggest principal involvement of cisternae of endoplasmic reticulum. Patch clamp of excised patches from axosomes liberated spontaneously from cut ends of transected axons showed a 12-pS K+ channel and gave indications of other channel types. Injury-induced vesiculation and membrane redistribution seem to be fundamental processes in the short-term (minutes to hours) that precede axonal degeneration or repair and regeneration. Axosomal formation provides a membrane preparation for the study of ion channels and other membrane processes from inaccessible organelles.  相似文献   

19.
Larval behavioral patterns arise in a gradual fashion during late embryogenesis as the innervation of the somatic musculature and connectivity within the central nervous system develops. In this paper, we describe in a quantitative manner the maturation of behavioral patterns. Early movements are locally restricted "twitches" of the body wall, involving single segments or parts of segments. These twitches occur at a low frequency and have low amplitude, reflecting weak muscle contractions. Towards later stages twitches increase in frequency and amplitude and become integrated into coordinated movements of multiple segments. Most noticeable among these is the peristaltic wave of longitudinal segmental contractions by which the larva moves forward or backward. Besides becoming more complex as development proceeds, embryonic movements also acquire a pronounced rhythm. Thus, late embryonic movements occur in bursts, with phases of frequent movement separated by phases of no movement at all; early movements show no such periodicity. These data will serve as a baseline for future studies that address the function of embryonic lethal genes controlling neuronal connectivity and larval behavior. We have analyzed behavioral abnormalities in two embryonic lethal mutations with severe neural defects, tailless (tll), which lacks the protocerebrum, and glial cells missing (gcm), in which glial cells are absent. Our results reveal prominent alterations in embryonic motility for both of these mutations, indicating that the protocerebrum and glial cells play a crucial role in the neural mechanism controlling larval movement in Drosophila.  相似文献   

20.
Summary Recent reports have revealed that certain neurons do not survive in vitro in the presence of glucose, which is the primary substrate and exclusive source of energy in the brain. But these neurons can survive in the presence of low-molecular-weight agents such as pyruvate, which are supplied by glial cells (Selak et al. 1984). To test whether this result also holds true in vivo, we investigated the distribution of hexokinase, lipoic dehydrogenase, -hydroxybutyrate dehydrogenase, and glucose-6-phosphate dehydrogenase activities in the developing rat cerebellum. Hexokinase activity was relatively higher in glial cells than in neurons. After postnatal day 8, the activity of hexokinase could hardly be detected in Purkinje cells, whereas it was highest in Bergmann glial cells. Purkinje cells were the only type of neuron with high levels of lipoic dehydrogenase at all ages tested. -Hydroxybutylate dehydrogenase activity was also high in Purkinje cells, especially in those from young rats. Relatively high glucose-6-phosphate dehydrogenase activity was demonstrated in basket and stellate cells from adult brain. Thus, it appears that, in vivo, certain neurons utilize relatively little glucose, and it is indeed possible that glial cells may supply some substance(s) other than glucose, for example pyruvate, as the primary source of energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号