首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic relatedness and group size in an aggregation economy   总被引:3,自引:0,他引:3  
Summary We use Hamilton's Rule to investigate effects of genetic relatedness on the predicted size of social groups. We assume an aggregation economy; individual fitness initially increases with group size, but in sufficiently large groups each member's individual fitness declines with further increments in the size of the group. We model two processes of group formation, designated free entry and group-controlled entry. The first model assumes that solitary individuals decide to join groups or remain alone; group size equilibrates when solitaries no longer choose to join. The second model allows group members to regulate the size of the group, so that the predicted group size results from members' decisions to repel or accept intruding solitaries. Both the Nash equilibrium group size and any change in the equilibrium caused by varying the level of relatedness depend on the particular entry rule assumed. The largest equilibrium group size occurs when solitaries choose between joining or not joining and individuals are unrelated. Increasing genetic relatedness may reduce and can never increase, equilibrium group size when this entry rule applies. The smallest equilibrium group size occurs when group members choose between repelling or accepting intruders and individuals are unrelated. Under this entry rule, increasing genetic relatedness can increase and can never decrease, equilibrium group size. We extend the models' predictions to suggest when individuals should prefer kin vs non-kin as members of the same group.  相似文献   

2.
How task specialization, individual task performance and within-group behavioural variation affects fitness is a longstanding and unresolved problem in our understanding of animal societies. In the temperate social spider, Anelosimus studiosus, colony members exhibit a behavioural polymorphism; females either exhibit an aggressive 'asocial' or docile 'social' phenotype. We assessed individual prey-capture success for both phenotypes, and the role of phenotypic composition on group-level prey-capture success for three prey size classes. We then estimated the effect of group phenotypic composition on fitness in a common garden, as inferred from individual egg-case masses. On average, asocial females were more successful than social females at capturing large prey, and colony-level prey-capture success was positively associated with the frequency of the asocial phenotype. Asocial colony members were also more likely to engage in prey-capture behaviour in group-foraging situations. Interestingly, our fitness estimates indicate females of both phenotypes experience increased fitness when occupying colonies containing unlike individuals. These results imply a reciprocal fitness benefit of within-colony behavioural variation, and perhaps division of labour in a spider society.  相似文献   

3.
Social interactions often have major fitness consequences, but little is known about how specific interacting phenotypes affect the strength of natural selection. Social influences on the evolutionary process can be assessed using a multilevel selection approach that partitions the effects of social partner phenotypes on fitness (referred to as social or group selection) from those of the traits of a focal individual (nonsocial or individual selection). To quantify the contribution of social selection to total selection affecting a trait, the patterns of phenotypic association among interactants must also be considered. We estimated selection gradients on male body size in a wild population of forked fungus beetles (Bolitotherus cornutus). We detected positive nonsocial selection and negative social selection on body size operating through differences in copulation success, indicating that large males with small social partners had highest fitness. In addition, we found that, in low-density demes, the phenotypes of focal individuals were negatively correlated with those of their social partners. This pattern reversed the negative effect of group selection on body size and led to stronger positive selection for body size. Our results demonstrate multilevel selection in nature and stress the importance of considering social selection whenever conspecific interactions occur nonrandomly.  相似文献   

4.
Recent work has shown that certain plants can identify their kin in competitive settings through root recognition, and react by decreasing root growth when competing with relatives. Although this may be a necessary step in kin selection, no clear associated improvement in individual or group fitness has been reported to qualify as such. We designed an experiment to address whether genetic relatedness between neighbouring plants affects individual or group fitness in artificial populations. Seeds of Lupinus angustifolius were sown in groups of siblings, groups of different genotypes from the same population and groups of genotypes from different populations. Both plants surrounded by siblings and by genotypes from the same population had lower individual fitness and produced fewer flowers and less vegetative biomass as a group. We conclude that genetic relatedness entails decreased individual and group fitness in L. angustifolius. This, together with earlier work, precludes the generalization that kin recognition may act as a widespread, major microevolutionary mechanism in plants.  相似文献   

5.
Cooperative breeders serve as a model to study the evolution of cooperation, where costs and benefits of helping are typically scrutinized at the level of group membership. However, cooperation is often observed in multi-level social organizations involving interactions among individuals at various levels. Here, we argue that a full understanding of the adaptive value of cooperation and the evolution of complex social organization requires identifying the effect of different levels of social organization on direct and indirect fitness components. Our long-term field data show that in the cooperatively breeding, colonial cichlid fish Neolamprologus pulcher, both large group size and high colony density significantly raised group persistence. Neither group size nor density affected survival at the individual level, but they had interactive effects on reproductive output; large group size raised productivity when local population density was low, whereas in contrast, small groups were more productive at high densities. Fitness estimates of individually marked fish revealed indirect fitness benefits associated with staying in large groups. Inclusive fitness, however, was not significantly affected by group size, because the direct fitness component was not increased in larger groups. Together, our findings highlight that the reproductive output of groups may be affected in opposite directions by different levels of sociality, and that complex forms of sociality and costly cooperation may evolve in the absence of large indirect fitness benefits and the influence of kin selection.  相似文献   

6.
Summary Cooperation need not be expressed identically among individuals in a group to enhance the fitness of all. Complementary tasks can be allocated differentially, with task assignment differentially affecting individual absolute fitness. Such differential task assignment is often considered a consequence of social competition to avoid fitness-limiting tasks. I suggest an alternative, evoking an area of evolutionary game theory often overlooked in analyses of cooperation, where task assignment can be fundamentally arbitrary relative to competitive ability. Dominance, implied, ritual or actual, need not be a consequence of social competition for resources within groups.  相似文献   

7.
Eusocial Hymenoptera are often characterized by having facultatively or obligately sterile worker castes. However, findings across an increasing number of species are that some workers are non-natal—they have ‘drifted’ away from where they were born and raised. Moreover, drifters are often indistinguishable from natal workers in the work and benefits provided to joined groups. This seems an evolutionary paradox of providing benefits to potentially unrelated individuals over close kin. Rather than being mistakes, drifting is proposed to be adaptive if joiners either gain inclusive fitness by preferentially moving to other kin groups or through generalized reciprocity in which exchanging workers across groups raises group-level genetic diversity and creates social heterosis. It is unclear, however, if reciprocity is unlikely because of a susceptibility to cheating. In resolving this question, a series of evolutionary simulations show: (1) Reciprocity can persist under a range of genetic assumptions and scenarios of cheating, (2) cheating almost always evolves, but can be expressed in a variety of ways that are not always predictable, (3) the inclusive fitness hypothesis is equally or more susceptible to cheating. Moreover, existing data in Hymenoptera (although not extensive) are more consistent with generalized reciprocity. This supports a hypothesis that drifting, as a phenomenon, may more often reflect maximization of group and parental fitness rather than fitness gains for the individual drifters.  相似文献   

8.
9.
The genetic diversity in social insect colonies that is generated by multiple mating or multiple queens has been hypothesized to promote worker task specialization and therefore facilitate division of labour. However, few studies have actually examined the mechanisms by which genotype may influence individual worker behaviour. In this study, we dissect possible genetic effects on worker task performance in the desert leaf-cutter ant. We hypothesize that genotype could affect worker behaviour via (1) the rate of age-related task switching (age polyethism schedule), (2) individual task preference, and/or (3) task performance rates. To discriminate among these possible mechanisms, we generated composite colonies of workers from different genetic sources and followed the behaviour of individually marked workers over their lifetimes. We found significant differences among matrilines (offspring of different queens) in overall task performance. In particular, we found a negative covariance in likelihood of foraging versus tending fungus inside the nest. Workers of different matrilines also varied in the age of transition from inside the nest to foraging, but did not vary in task performance rates. Our results suggest that division of labour in this system is affected by genetic influences on individual task preference and age-related task choice, but not on variation in activity level.  相似文献   

10.
The group-size paradox: effects of learning and patch departure rules   总被引:3,自引:2,他引:1  
In many species, foraging in groups can enhance individual fitness.However, groups are often predicted to be larger than the sizethat maximizes individual fitness. This is because individualforagers are expected to continue joining a group until thefitness in the group falls to the level experienced by solitaryforagers. If such a process were pervasive, social foraging,paradoxically, would provide little evolutionary advantages.We propose a solution to the group-size paradox by allowingforagers to learn about habitat quality and leave food patcheswhen their current intake rate falls below that expected forthe whole habitat. By using a simulation model, we show thatunder a wide range of population sizes, foragers using suchrules abandon under- and overcrowded patches, ensuring thatgroup size remains close to the optimal value. The results holdin habitats with varying patch quality, but we note that thelack of food renewal in patches can disrupt the process of groupformation. We conclude that groups of optimal sizes can occurfrequently if fitness functions are peaked and resources patchilydistributed, without the need to invoke relatedness betweenjoiners and established group members, group defense againstjoiners, or other mechanisms that were proposed earlier to preventgroups from becoming too large.  相似文献   

11.
Individuals within complex social groups often experience reduced reproduction owing to coercive or suppressive actions of other group members. However, the nature of social and ecological environments that favour individual acceptance of such costs of sociality is not well understood. Taxa with short periods of direct social interaction, such as some communal egg layers, are interesting models for study of the cost of social interaction because opportunities to control reproduction of others are limited to brief periods of reproduction. To understand the conditions under which communal egg layers are in fitness conflict and thus likely to influence each other's reproduction, we develop an optimality model involving a brood guarding 'host' and a nonguarding disperser, or 'egg dumper'. The model shows that when, where intermediate-sized broods have highest survival, lifetime inclusive fitnesses of hosts and dumpers are often optimized with different numbers of dumped eggs. We hypothesize that resolution of this conflict may involve attempts by one party to manipulate the other's reproduction. To test model predictions we used a lace bug (Heteroptera: Tingidae) that shows both hosts and egg dumpers as well as increased offspring survival in response to communal egg laying. We found that egg-dumping lace bugs oviposit a number of eggs that very closely matches predicted fitness optimum for hosts rather than predicted optimum of dumpers. This result suggests that dumpers pay a social cost for communal egg laying, a cost that may occur through host suppression of dumper reproduction. Although dumper allocation of eggs is thus sub-optimal for dumpers, previous models show that the decision to egg dump is nevertheless evolutionarily stable, possibly because hosts permit just enough dumper oviposition to encourage commitment to the behaviour.  相似文献   

12.
Reproductive partitioning is a key component of social organization in groups of cooperative organisms. In colonies of permanently social spiders of the genus Stegodyphus less than half of the females reproduce, while all females, including nonreproducers, perform suicidal allo‐maternal care. Some theoretical models suggest that reproductive skew is a result of contest competition within colonies, leading to size hierarchies where only the largest females become reproducers. We investigated the effect of competition on within‐group body size variation over six months in S. dumicola, by manipulating food level and colony size. We found no evidence that competition leads to increased size asymmetry within colonies, suggesting that contest competition may not be the proximate explanation for reproductive skew. Within‐colony body size variation was high already in the juvenile stage, and did not increase over the course of the experiment, suggesting that body size variation is shaped at an early stage. This might facilitate task specialization within colonies and ensure colony‐level reproductive output by early allocation of reproductive roles. We suggest that reproductive skew in social spiders may be an adaptation to sociality selected through inclusive fitness benefits of allo‐maternal care as well as colony‐level benefits maximizing colony survival and production.  相似文献   

13.
In birds, as in many other taxa, higher genetic similarity of mates has long been known to reduce offspring fitness. To date, the majority of avian studies have focused on examination whether the genetic similarity of social mates predicts hatching success. Yet, increased genetic similarity of mates may also reduce offspring fitness during later life stages, including the nestling period and beyond. Here, we investigated whether parental genetic similarity influences offspring performance using data from free‐living blue tits (Cyanistes caeruleus) collected across three breeding seasons. Additionally, we tested whether brood size manipulation affects the magnitude and direction of the relationship between genetic similarity of mates and offspring performance. Sixteen microsatellite markers were used to measure genetic similarity between biological parents. We found that the genetic similarity of parents negatively affects offspring immune response and this effect was independent of the experimental brood size manipulation.  相似文献   

14.
Individuals of social and partially social species typically reduce their vigilance activity when foraging in groups. As a result, per capita risk of predation decreases and individuals allocate more time to foraging and other fitness rewarding activities. Reduction of per capita risk is hypothesized to occur because there are more individuals to detect potential predators. If so, collective (i.e. total) vigilance is expected to increase with foraging group size. Increased surveillance during group foraging may occur if group members scan independently of one another, or sequentially to avoid the overlapping of their vigilance bouts. Intriguingly, such coordinated vigilance assumes that individuals monitor not only the presence, but the vigilance behaviour of group mates. We used seasonal records on time budget and grouping patterns of individually marked degus (Octodon degus), a social rodent, to examine if (a) individual vigilance decreases and/or foraging increases with group size, (b) collective vigilance increases with group size and (c) foraging degus coordinate their vigilance. When foraging, degus decreased their individual vigilance and increased their foraging time when in larger groups. Despite this, degus in larger groups increased their collective vigilance, supporting the hypothesis that socially foraging degus decrease predation risk through an improved ability to detect and escape potential predators. Additionally, patterns of collective vigilance suggested that degus scan independently of each other and so, they do not coordinate their vigilance to prevent its temporal overlapping. This finding does not support that foraging degus monitor the vigilance activity of group mates.  相似文献   

15.
1. Understanding how variation in fitness relates to variation in group living remains critical to determine whether this major aspect of social behaviour is currently adaptive. 2. Available evidence in social mammals aimed to examine this issue remains controversial. Studies show positive (i.e. potentially adaptive), neutral or even negative fitness effects of group living. 3. Attempts to explain this variation rely on intrinsic and extrinsic factors to social groups. Thus, relatively more positive fitness effects are predicted in singularly breeding as opposed to plural breeding species. Fitness effects of sociality in turn may depend on ecological conditions (i.e. extrinsic factors) that influence associated benefits and costs. 4. We used meta-analytic tools to review how breeding strategy or ecological conditions influence the effect size associated with direct fitness-sociality relationships reported in the mammalian literature. Additionally, we determined how taxonomic affiliation of species studied, different fitness and sociality measures used, and major climatic conditions of study sites explained any variation in direct fitness effect size. 5. We found group living had modest, yet positive effects on direct fitness. This generally adaptive scenario was contingent not only upon breeding strategy and climate of study sites, but also on fitness measures examined. Thus, positive and significant effects characterized singular as opposed to plural breeding strategies. 6. We found more positive fitness effects on studies conducted in tropical as opposed to temperate or arid climates. More positive and significant effects were noted on studies that relied on group fecundity, male fecundity and offspring survival as measures of fitness. 7. To conclude, direct fitness consequences of mammalian group living are driven by interspecific differences in breeding strategy and climate conditions. Other factors not examined in this study, namely individual variation in direct and indirect fitness benefits and potential interactions between social and ecological conditions, may be important and require further studies.  相似文献   

16.
The response threshold model is a potential mechanism for task allocation in social insects, and it assumes that workers vary in the levels of task stimuli to which they respond. Furthermore, response thresholds of individual workers may change over time through self-reinforcement (experience), such that workers become more sensitive to task stimuli. However, in addition to self-reinforcement, aging is another process that occurs through time. Distinguishing whether response thresholds change within workers due to self-reinforcement or aging may give insight into the flexibility of this task allocation mechanism. Using a ventilation paradigm, we manipulated workers of Bombus impatiens to have either repeated or lack of exposures to increases in nest air temperature, thereby allowing us to manipulate experience and thus self-reinforcement. Nest air temperature was the task stimulus, and ventilation (fanning) was the behavioral response. We found that ventilation response thresholds do not decrease either with age or experience in workers of B. impatiens, contrary to what has been reported for B. terrestris workers (Weidenmüller, 2004). Instead, we found high levels of intra-individual variation in response thresholds. Our results also show that workers with lower average response thresholds respond to heating events with higher probability than those with higher ventilation thresholds. These results provide insight into the role of the response threshold framework for task allocation; we also discuss how response probabilities may play a role in task allocation among workers.  相似文献   

17.
Some social insects exhibit an exceptionally high degree of polyandry. Alternative hypotheses exist to explain the benefits of multiple mating through enhanced colony performance. This study critically extends theoretical analyses of the hypothesis that enhanced division of labour confers fitness benefits to the queen that are sufficient to explain the observed mating frequencies of social insects. The effects of widely varying numbers of tasks and matings were systematically investigated in two alternative computer simulation models. One model was based on tasks that have to be performed to maintain an optimal trait value, while the other model was based on tasks that only have to be sufficiently performed to exceed a minimum trait value to confer full fitness returns. Both model versions were evaluated assuming a broad and a narrow response threshold distribution. The results consistently suggest a beneficial effect of multiple mating on colony performance, albeit with quickly diminishing returns. An increasing number of tasks decreased performance of colonies with few patrilines but not of more genetically diverse colonies. Instead, a performance maximum was found for intermediate task numbers. The results from the two model versions and two response threshold distributions did not fundamentally differ, suggesting that the type of tasks and the breadth of response thresholds do not affect the benefit of multiple mating. In general, our results corroborate previous models that have evaluated simpler task/patriline scenarios. Furthermore, selection for an intermediate number of tasks is indicated that could constrain the degree of division of labour. We conclude that enhanced division of labour may have favoured the evolution of multiple mating but is insufficient to explain the extreme mating numbers observed in some social insects, even in complex task scenarios.  相似文献   

18.
Plants often compete with closely related individuals due to limited dispersal, leading to two commonly invoked predictions on competitive outcomes. Kin selection, from evolutionary theory, predicts that competition between relatives will likely be weaker. The niche partitioning hypothesis, from ecological theory, predicts that competition between close relatives will likely be stronger. We tested for evidence consistent with either of these predictions by growing an annual legume in kin and nonkin groups in the greenhouse. We grew plant groups in treatments of symbiotic nitrogen fixing bacteria differing in strain identity and composition to determine if differences in the microbial environment can facilitate or obscure plant competition patterns consistent with kin selection or niche partitioning. Nonkin groups had lower fitness than expected, based on fitness estimates of the same genotypes grown among kin. Higher fitness among kin groups was observed in mixtures of N‐fixing bacteria strains compared to single inoculations of bacteria strains present in the soil, which increased fitness differences between kin and nonkin groups. Lower fitness in nonkin groups was likely caused by increased competitive asymmetry in nonkin groups due to genetic differences in plant size combined with saturating relationships with plant size and fitness‐ i.e. Jensen's inequality. Our study suggests that microbial soil symbionts alter competitive dynamics among kin and nonkin. Our study also suggests that kin groups can have higher fitness, as predicted by kin selection theory, through a commonly heritable trait (plant size), without requiring kin recognition mechanisms.  相似文献   

19.
Social heterosis and the maintenance of genetic diversity   总被引:1,自引:0,他引:1  
Genetic diversity in species is often high in spite of directional selection or strong genetic drift. One resolution to this paradox may be through fitness benefits arising from interactions of genetically diverse individuals. Advantageous phenotypes that are impossible in single individuals (e.g. being simultaneously bold and shy) can be expressed by groups composed of genetically different individuals. Genetic diversity, therefore, can produce mutualistic benefits shared by all group members. We define this effect as 'social heterosis', and mathematically demonstrate maintenance of allelic diversity when diverse groups or neighbourhoods are more reproductively successful than homogenous ones. Through social heterosis, genetic diversity persists without: frequency dependence within groups, migration, balancing selection, genetic linkages, overdominance, antagonistic pleiotropy or nonrandom allele assortment. Social heterosis may also offer an alternative evolutionary pathway to cooperation that does not require clustering of related individuals, nepotistic favouritism towards kin, or overt reciprocity.  相似文献   

20.
Evidence that the social environment at critical stages of life-history shapes individual trajectories is accumulating. Previous studies have identified either current or delayed effects of social environments on fitness components, but no study has yet analysed fitness consequences of social environments at different life stages simultaneously. To fill the gap, we use an extensive dataset collected during a 24-year intensive monitoring of a population of Alpine marmots (Marmota marmota), a long-lived social rodent. We test whether the number of helpers in early life and over the dominance tenure length has an impact on litter size at weaning, juvenile survival, longevity and lifetime reproductive success (LRS) of dominant females. Dominant females, who were born into a group containing many helpers and experiencing a high number of accumulated helpers over dominance tenure length showed an increased LRS through an increased longevity. We provide evidence that in a wild vertebrate, both early and adult social environments influence individual fitness, acting additionally and independently. These findings demonstrate that helpers have both short- and long-term effects on dominant female Alpine marmots and that the social environment at the time of birth can play a key role in shaping individual fitness in social vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号