首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 793 毫秒
1.
The cell surface of African trypanosomes is covered by a densely packed monolayer of a single protein, the variant surface glycoprotein (VSG). The VSG protects the trypanosome cell surface from effector molecules of the host immune system and is the mediator of antigenic variation. The sequence divergence between VSGs that is necessary for antigenic variation can only occur within the constraints imposed by the structural features necessary to form the monolayer barrier. Here, the structures of the two domains that together comprise the C-terminal di-domain of VSG ILTat1.24 have been determined. The first domain has a structure similar to the single C-terminal domain of VSG MITat1.2 and provides proof of structural conservation in VSG C-terminal domains complementing the conservation of structure present in the N-terminal domain. The second domain, although based on the same fold, is a minimized version missing several structural features. The structure of the second domain contains the C-terminal residue that in the native VSG is attached to a glycosylphosphatidylinositol (GPI) anchor that retains the VSG on the external face of the plasma membrane. The solution structures of this domain and a VSG GPI glycan have been combined to produce the first structure-based model of a GPI-anchored protein. The model suggests that the core glycan of the GPI anchor lies in a groove on the surface of the domain and that there is a close association between the GPI glycan and protein. More widely, the GPI glycan may be an integral part of the structure of other GPI-anchored proteins.  相似文献   

2.
3.
The trypanosome variant surface glycoprotein (VSG), like many other eukaryotic cell surface proteins, is anchored to the plasma membrane by a glycosyl-phosphatidylinositol (GPI) moiety. This glycolipid is assembled first as a precursor (glycolipid A) that is then covalently attached to the newly synthesized polypeptide. We have developed a trypanosome cell-free system capable of performing all of the steps in the biosynthesis of the glycan portion of glycolipid A. Using [3H]sugar nucleotides as substrates, several biosynthetic intermediates have been identified. From structural analyses of these intermediates, we propose a pathway for GPI biosynthesis. Based on comparisons between the VSG GPI anchor and similar structures in other cells, we believe that this same pathway will apply to the GPI anchors, and the related insulin-mediator compound, of higher eukaryotes.  相似文献   

4.
Many eukaryotic surface glycoproteins, including the variant surface glycoproteins (VSGs) of Trypanosoma brucei, are synthesized with a carboxyl-terminal hydrophobic peptide extension that is cleaved and replaced by a complex glycosylphosphatidylinositol (GPI) membrane anchor within 1-5 min of the completion of polypeptide synthesis. We have reported the purification and partial characterization of candidate precursor glycolipids (P2 and P3) from T. brucei. P2 and P3 contain ethanolamine-phosphate-Man alpha 1-2Man alpha 1-6Man alpha 1-GlcN linked glycosidically to an inositol residue, as do all the GPI anchors that have been structurally characterized. The anchors on mature VSGs contain a heterogenously branched galactose structure attached alpha 1-3 to the mannose residue adjacent to the glucosamine. We report the identification of free GPIs that appear to be similarly galactosylated. These glycolipids contain diacylglycerol and alpha-galactosidase-sensitive glycan structures which are indistinguishable from the glycans derived from galactosylated VSG GPI anchors. We discuss the relevance of these galactosylated GPIs to the biosynthesis of VSG GPI anchors.  相似文献   

5.
Using transformed procyclic trypanosomes, the synthesis, intracellular transport and secretion of wild-type and mutant variant surface glycoprotein (VSG) is characterized. We find no impediment to the expression of this bloodstream stage protein in insect stage cells. VSG receives a procyclic-type phosphatidylinositol-specific phospholipase C-resistant glycosyl phosphatidylinositol (GPI) anchor, dimerizes and is N-glycosylated. It is transported to the plasma membrane with rapid kinetics (t(1/2) approximately 1 h) and then released by a cell surface zinc-dependent metalloendoprotease activity, a possible homolog of leishmanial gp63. Deletion of the C-terminal GPI addition signal generates a soluble form of VSG that is exported with greatly reduced kinetics (t(1/2) approximately 5 h). Fusion of the procyclic acidic repetitive protein (PARP) GPI anchor signal to the C-terminus of the truncated VSG reporter restores both GPI addition and transport competence, suggesting that GPI anchors play a critical role in the folding and/or forward transport of newly synthesized VSG. The VSG-PARP fusion is also processed near the C-terminus by events that do not involve N-linked oligosaccharides and which are consistent with GPI side chain modification. This unexpected result suggests that GPI processing may be influenced by adjacent peptide sequence or conformation.  相似文献   

6.
The major surface antigen of the mammalian bloodstream form of Trypanosoma brucei, the variant surface glycoprotein (VSG), is attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. The VSG anchor is susceptible to phosphatidylinositol-specific phospholipase C (PI-PLC). Candidate precursor glycolipids, P2 and P3, which are PI-PLC-sensitive and -resistant respectively, have been characterized in the bloodstream stage. In the insect midgut stage, the major surface glycoprotein, procyclic acidic repetitive glycoprotein, is also GPI-anchored but is resistant to PI-PLC. To determine how the structure of the GPI anchor is altered at different life stages, we characterized candidate GPI molecules in procyclic T. brucei. The structure of a major procyclic GPI, PP1, is ethanolamine-PO4-Man alpha 1-2Man alpha 1-6 Man alpha 1-GlcN-acylinositol, linked to lysophosphatidic acid. The inositol can be labeled with [3H]palmitic acid, and the glyceride with [3H]stearic acid. We have also found that all detectable ethanolamine-containing GPIs from procyclic cells contain acylinositol and are resistant to cleavage by PI-PLC. This suggests that the procyclic acidic repetitive glycoprotein GPI anchor structure differs from that of the VSG by virtue of the structures of the GPIs available for transfer.  相似文献   

7.
The 1G7-antigen is expressed by the infective metacyclic trypomastigote stage of the protozoan parasite Trypanosoma cruzi. The 1G7-antigen is a 90-kDa glycoprotein, present at about 40,000 copies/cell, which is anchored in the plasma membrane via a glycosylphosphatidylinositol (GPI) membrane anchor. The glycan of the GPI anchor has been isolated from immunopurified 1G7-antigen and its structure determined using a combination of methylation linkage analysis and exoglycosidase sequencing. The structure of the glycan is Man alpha 1-2Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcNH2. The glucosamine residue is in glycosidic linkage to a phosphatidylinositol moiety. The penultimate nonreducing alpha-Man residue is substituted with phosphate, which is most likely part of an ethanolamine phosphate bridge linking the GPI anchor to the 1G7-antigen polypeptide. The glycan sequence was obtained from 1.1 nmol of glycoprotein isolated from a detergent lysate of whole cells. The procedures reported here represent a high sensitivity protocol for determining GPI glycan structures from small quantities of biological material. The structure of the 1G7-antigen GPI anchor is consistent with the conserved core structure of all GPI anchors analyzed to date and is similar to that of the T. cruzi lipopeptidophosphoglycan. The biosynthesis of GPI anchors and lipopeptidophosphoglycan in T. cruzi is discussed in the light of this structural homology.  相似文献   

8.
The compound diisopropylfluorophosphate (DFP) selectively inhibits an inositol deacylase activity in living trypanosomes that, together with the previously described phenylmethylsulfonyl fluoride (PMSF)-sensitive inositol acyltransferase, maintains a dynamic equilibrium between the glycosylphosphatidylinositol (GPI) anchor precursor, glycolipid A [NH2(CH2)2PO4-6Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol-1-PO4-sn-1,2-dimyristoylglycerol], and its inositol acylated form, glycolipid C. Experiments using DFP in living trypanosomes and a trypanosome cell-free system suggest that earlier GPI intermediates are also in equilibrium between their inositol acylated and nonacylated forms. However, unlike mammalian and yeast cells, bloodstream form trypanosomes do not appear to produce an inositol acylated form of glucosaminylphosphatidylinositol (GlcN-PI). A specific function of inositol acylation in trypanosomes may be to enhance the efficiency of ethanolamine phosphate addition to the Man3GlcN-(acyl)PI intermediate. Inositol deacylation appears to be a prerequisite for fatty acid remodelling of GPI intermediates that leads to the exclusive presence of myristic acid in glycolipid A and, ultimately, in the variant surface glycoprotein (VSG). In the presence of DFP, the de novo synthesis of GPI precursors cannot proceed beyond glycolipid C' (the unremodelled version of glycolipid C) and lyso-glycolipid C'. Under these conditions glycolipid C'-type GPI anchors appear on newly synthesized VSG molecules. However, the efficiencies of both anchor addition to VSG and N-glycosylation of VSG were significantly reduced. A modified model of the GPI biosynthetic pathway in bloodstream form African trypanosomes incorporating these findings is presented.  相似文献   

9.
The variant surface glycoprotein (VSG) of the ILTat 1.3 variant of Trypanosoma brucei has two asparagine-linked glycan moieties, as well as a phosphatidylinositol glycan membrane anchor. We have investigated the structure and processing of each of these oligosaccharides through analysis of the intact protein and of glycopeptides. Processing has been examined by comparing glycan structures purified from an immature intracellular form (58 kDa) of VSG with those of the mature form (59 kDa) found on the parasite surface. We find exclusively high mannose oligosaccharides (Man4-7-GlcNAc2) at Asn-432 in both the immature 58-kDa and mature 59-kDa forms. In contrast, the "core" oligosaccharide of Asn-419 (Man3-GlcNAc2) appears to be nearly quantitatively processed to a complex biantennary structure [Gal-GlcNAc-Man)2-Man-GlcNAc2) during VSG maturation. The asparagine-linked structures at Asn-419, but not those at Asn-432, are resistant to endo-beta-N-acetylglucosaminidase H within 30 s of biosynthesis. This suggests possible novel and selective mechanisms for glycosylation in African trypanosomes. Finally, we show that the carboxyl-terminal glycolipid is galactosylated (3-4 residues) relatively late in VSG biosynthesis. Phosphatidylinositol glycans have been identified on a growing number of eukaryotic membrane proteins. This report provides a direct demonstration of the processing of such a glycolipid anchor following its attachment to protein.  相似文献   

10.
Four major glycolipids were extracted from Toxoplasma gondii tachyzoites which were metabolically labeled with tritiated glucosamine, mannose, palmitic and myristic acid, ethanolamine, and inositol. Judging from their sensitivity to a set of enzymatic and chemical tests, these glycolipids share the following properties with the glycolipid moiety of the glycosylphosphatidylinositol anchor (GPI anchor) of the major surface protein, P30, of T. gondii: 1) a nonacetylated glucosamine-inositol phosphate linkage; 2) sensitivity toward phosphatidylinositol-specific phospholipase C and nitrous acid; 3) identity of HF-dephosphorylated GPI glycan backbone between three glycolipids and the HF-dephosphorylated core glycan of the GPI anchor of the major surface protein P30; 4) the presence of a linear core glycan structure blocked by an ethanolamine phosphate residue(s). Taken together with the nature of radiolabeled precursors incorporated into these glycolipids, the data indicate that these GPIs are involved in the biosynthesis of the GPI-membrane anchors of T. gondii.  相似文献   

11.
Paulick MG  Bertozzi CR 《Biochemistry》2008,47(27):6991-7000
Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphatidylinositol (GPI) anchor is a posttranslational modification that anchors the modified protein in the outer leaflet of the cell membrane. The GPI anchor is a complex structure comprising a phosphoethanolamine linker, glycan core, and phospholipid tail. GPI-anchored proteins are structurally and functionally diverse and play vital roles in numerous biological processes. While several GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. This review discusses the structural diversity of the GPI anchor and its putative cellular functions, including involvement in lipid raft partitioning, signal transduction, targeting to the apical membrane, and prion disease pathogenesis. We specifically highlight studies in which chemically synthesized GPI anchors and analogues have been employed to study the roles of this unique posttranslational modification.  相似文献   

12.
We established an in vitro assay for the addition of glycosyl-phosphatidylinositol (GPI) anchors to proteins using procyclic trypanosomes engineered to express GPI-anchored variant surface glycoprotein (VSG). The assay is based on the premise that small nucleophiles, such as hydrazine, can substitute for the GPI moiety and effect displacement of the membrane anchor of a GPI-anchored protein or pro-protein causing release of the protein into the aqueous medium. Cell membranes containing pulse-radiolabeled VSG were incubated with hydrazine, and the VSG released from the membranes was measured by carbonate extraction, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis/fluorography. Release of VSG was time- and temperature-dependent, was stimulated by hydrazine, and occurred only for VSG molecules situated in early compartments of the secretory pathway. No nucleophile-induced VSG release was seen in membranes prepared from cells expressing a VSG variant with a conventional transmembrane anchor (i.e. a nonfunctional GPI signal sequence). Pro-VSG was shown to be a substrate in the reaction by assaying membranes prepared from cells treated with mannosamine, a GPI biosynthesis inhibitor. When a biotinylated derivative of hydrazine was used instead of hydrazine, the released VSG could be precipitated with streptavidin-agarose, indicating that the biotin moiety was covalently incorporated into the protein. Hydrazine was shown to block the C terminus of the released VSG hydrazide because the released material, unlike a truncated form of VSG lacking a GPI signal sequence, was not susceptible to proteolysis by carboxypeptidases. These results firmly establish that the released material in our assay is VSG hydrazide and strengthen the proof that GPI anchoring proceeds via a transamidation reaction mechanism. The reaction could be inhibited with sulfhydryl alkylating reagents, suggesting that the transamidase enzyme contains a functionally important sulfhydryl residue.  相似文献   

13.
In common with many other plasma membrane glycoproteins of eukaryotic origin, the promastigote surface protease (PSP) of the protozoan parasite Leishmania contains a glycosyl-phosphatidylinositol (GPI) membrane anchor. The GPI anchor of Leishmania major PSP was purified following proteolysis of the PSP and analyzed by two-dimensional 1H-1H NMR, compositional and methylation linkage analyses, chemical and enzymatic modifications, and amino acid sequencing. From these results, the structure of the GPI-containing peptide was found to be Asp-Gly-Gly-Asn-ethanolamine-PO4-6Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol-1-PO4-(1-alkyl-2-acyl-glycerol). The glycan structure is identical to the conserved glycan core regions of the GPI anchor of Trypanosoma brucei variant surface glycoprotein and rat brain Thy-1 antigen, supporting the notion that this portion of GPIs are highly conserved. The phosphatidylinositol moiety of the PSP anchor is unusual, containing a fully saturated, unbranched 1-O-alkyl chain (mainly C24:0) and a mixture of fully saturated unbranched 2-O-acyl chains (C12:0, C14:0, C16:0, and C18:0). This lipid composition differs significantly from those of the GPIs of T. brucei variant surface glycoprotein and mammalian erythrocyte acetylcholinesterase but is similar to that of a family of glycosylated phosphoinositides found uniquely in Leishmania.  相似文献   

14.
The trypanosome variant surface glycoprotein (VSG) is anchored to the plasma membrane via a glycosyl phosphatidylinositol (GPI). The GPI is synthesized as a precursor, glycolipid A, that is subsequently linked to the VSG polypeptide. The VSG anchor is unusual, compared with anchors in other cell types, in that its fatty acid moieties are exclusively myristic acid. To investigate the mechanism for myristate specificity we used a cell-free system for GPI biosynthesis. One product of this system, glycolipid A', is indistinguishable from glycolipid A except that its fatty acids are more hydrophobic than myristate. Glycolipid A' is converted to glycolipid A through highly specific fatty acid remodeling reactions involving deacylation and subsequent reacylation with myristate. Therefore, myristoylation occurs in the final phase of trypanosome GPI biosynthesis.  相似文献   

15.
The African trypanosome, Trypanosoma brucei, expresses two abundant stage-specific glycosylphosphatidylinositol (GPI)-anchored glycoproteins, the procyclic acidic repetitive protein (PARP or procyclin) in the procyclic form, and the variant surface glycoprotein (VSG) in the mammalian bloodstream form. The GPI anchor of VSG can be readily cleaved by phosphatidylinositol (PI)-specific phospholipase C (PI-PLC), whereas that of PARP cannot, due to the presence of a fatty acid esterified to the inositol. In the bloodstream form trypanosome, a number of GPIs which are structurally related to the VSG GPI anchor have been identified. In addition, several structurally homologous GPIs have been described, both in vivo and in vitro, that contain acyl-inositol. In vivo the procyclic stage trypanosome synthesizes a GPI that is structurally homologous to the PARP GPI anchor, i.e. contains acyl-inositol. No PI-PLC-sensitive GPIs have been detected in the procyclic form. Using a membrane preparation from procyclic trypanosomes which is capable of synthesizing GPI lipids upon the addition of nucleotide sugars we find that intermediate glycolipids are predominantly of the acyl-inositol type, and the mature ethanolamine-phosphate-containing precursors are exclusively acylated. We suggest that the differences between the bloodstream and procyclic form GPI biosynthetic intermediates can be accounted for by the developmental regulation of an inositol acylhydrolase, which is active only in the bloodstream form, and a glyceride fatty acid remodeling system, which is only partially functional in the procyclic form.  相似文献   

16.
Mann KJ  Sevlever D 《Biochemistry》2001,40(5):1205-1213
The glycosylphosphatidylinositol (GPI) moiety is widely used to anchor a functionally diverse group of proteins to the plasma membrane of eukaryotes. In mammals, the predominant glycan structure of the GPI anchor consists of EthN-P-Man-Man-(EthN-P)Man-GlcN attached to an inositol phospholipid. In a smaller percentage of anchors analyzed to date, a third P-EthN group linked to the middle mannosyl residue was found. The transfer of the three P-EthN groups present in the GPI glycan core is likely to be carried out by three different GPI-phosphoethanolamine transferases (GPI-PETs). Here we report that 1,10-phenanthroline (PNT), a commonly used inhibitor of metalloproteases, is a novel inhibitor of GPI anchor synthesis. Addition of PNT to cells caused the accumulation of GPI anchor intermediates that are substrates for GPI-PETs, suggesting that these enzymes are the targets of PNT. ZnCl(2) blocked the effect of PNT, a known Zn chelator, and Zn itself was able to stimulate the GPI anchor synthesis, indicating that this cation is likely to be required for GPI-PET activity. PNT acutely inhibited the synthesis of GPI-anchored proteins, but the synthesis was rapidly restored once the inhibitor was washed out. Therefore, PNT will be a useful tool to study the metabolism and trafficking of GPI anchor intermediates by providing a switch to turn the pathway on and off.  相似文献   

17.
Alkaline phosphatase is anchored to the membrane via glycosylphosphatidylinositol (GPI). Mannose residues of the GPI glycan are suggested to be derived from dolichol-P-mannose. In the present study we examined the effect of 2-fluoro-2-deoxy-D-glucose (F-Glc), an inhibitor of dolichol-P-mannose synthesis, on the biosynthesis and processing of alkaline phosphatase in JEG-3 cells. In control cells, a proform precursor (64.5 kDa) with a hydrophobic peptide domain at the COOH terminus was immediately processed into an intermediate form (63 kDa) by proteolytic removal of the COOH-terminal extension and replacement with the GPI anchor, and then to a mature form (66 kDa) by terminal glycosylation of its N-linked oligosaccharides. In contrast, when cells were treated with F-Glc (1 mM), the protein was synthesized as a proform of 61 kDa. The reduction in its molecular mass was mostly due to the inhibition in maturation of N-linked oligosaccharides by F-Glc. The 61-kDa proform identified by antibodies to the COOH-terminal peptide was detectable even at 3 h after the synthesis, and was gradually processed to doublet forms of 58-59 kDa which were finally secreted into the medium. None of these forms were labeled with [3H]ethanolamine and [3H]stearic acid, components of the GPI anchor, and expressed on the cell surface as a membrane-bound form. Taken together, these results suggest that the inhibition of the GPI synthesis causes a prolonged accumulation of the proform, which is then gradually processed into secretory forms by proteolytic removal of the COOH-terminal hydrophobic peptide.  相似文献   

18.
Some of the acute actions of insulin may be mediated by an enzyme-modulating inositol phosphate glycan, produced by the insulin-sensitive hydrolysis of glycosyl-phosphatidylinositol (GPI) that is structurally similar to a membrane protein anchor. An inositol glycan fragment from the structurally characterized Trypanosoma brucei variant surface glycoprotein GPI anchor is evaluated for insulin-mimetic antilipolytic activity. The fragment specifically and dose-dependently inhibits isoproterenol-stimulated lipolysis. Like the effect of insulin, glycan-induced antilipolysis is blocked by the low Km cAMP phosphodiesterase inhibitor imazodan (CI-914) and the serine/threonine phosphatase inhibitor, okadaic acid, suggesting that the activation of both cAMP phosphodiesterase and serine/threonine protein phosphatases are necessary. Moreover, this fragment causes a specific and dose-dependent inhibition of both microsomal glucose-6-phosphatase (EC 3.1.3.9) and cytosolic fructose-1,6-bisphosphatase (EC 3.1.3.11) activity. Additionally, direct addition of the glycan to hepatocytes caused marked inhibition of glucose production from pyruvate. These results suggest that the direct modification of the activities of these two gluconeogenic enzymes by an inositol glycan may play a role in the inhibition of glucose output by insulin and provide the first evidence for the insulin-mimetic properties of a chemically characterized inositol glycan.  相似文献   

19.
Many eukaryotic cell surface proteins are bound to the membrane via the glycosylphosphatidylinositol (GPI) anchor that is covalently linked to their carboxy-terminus. The GPI anchor precursor is synthesized in the endoplasmic reticulum (ER) and post-translationally linked to protein. We cloned a human gene termed PIG-B (phosphatidylinositol glycan of complementation class B) that is involved in transferring the third mannose. PIG-B encodes a 554 amino acid, ER transmembrane protein with an amino-terminal portion of approximately 60 amino acids on the cytoplasmic side and a large carboxy-terminal portion of 470 amino acids within the ER lumen. A mutant PIG-B lacking the cytoplasmic portion remains active, indicating that the functional site of PIG-B resides on the lumenal side of the ER membrane. The PIG-B gene was localized to chromosome 15 at q21-q22. This autosomal location would explain why PIG-B is not involved in the defective GPI anchor synthesis in paroxysmal nocturnal hemoglobinuria, which is always caused by a somatic mutation of the X-linked PIG-A gene.  相似文献   

20.
The glycosylphosphatidylinositol (GPI) anchor is a lipid and glycan modification added to the C terminus of certain proteins in the endoplasmic reticulum by the activity of a multiple subunit enzyme complex known as the GPI transamidase (GPIT). Several subunits of GPIT have increased expression levels in breast carcinoma. In an effort to identify GPI-anchored proteins and understand the possible role of these proteins in breast cancer progression, we employed a combination of strategies. First, alpha toxin from Clostridium septicum was used to capture GPI-anchored proteins from human breast cancer tissues, cells, and serum for proteomic analysis. We also expressed short interfering RNAs targeting the expression of the GPAA1 and PIGT subunits of GPIT in breast cancer cell lines to identify proteins in which membrane localization is dependent on GPI anchor addition. Comparative membrane proteomics using nano-ESI-RPLC-MS/MS led to the discovery of several new potential diagnostic and therapeutic targets for breast cancer. Furthermore, we provide evidence that increased levels of GPI anchor addition in malignant breast epithelial cells promotes the dedifferentiation of malignant breast epithelial cells in part by increasing the levels of cell surface markers associated with mesenchymal stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号