首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using FTIR spectroscopy, perturbations of several residues and internal water molecules have been detected when light transforms all-trans bacteriorhodopsin (BR) to its L intermediate having a 13-cis chromophore. Illumination of L at 80 K results in an intermediate L' absorbing around 550 nm. L' thermally converts to the original BR only at >130 K. In this study, we used the light-induced transformation of L to L' at 80 K to identify some amino acid residues and water molecules that closely interact with the chromophore and distinguish them from those residues not affected by the photoreaction. The L minus L' FTIR difference spectrum shows that the chromophore in L' is in the all-trans configuration. The perturbed states of Asp96 and Val49 and of the environment along the aliphatic part of the retinal and Lys216 seen in L are not affected by the L --> L' photoreaction. On the other hand, the environments of the Schiff base of the chromophore, of Asp115, and of water molecules close to Asp85 returned in L' to their state in which they originally had existed in BR. The water molecules that are affected by the mutations of Thr46 and Asp96 also change to a different state in the L --> L' transition, as indicated by transformation of a water O-H vibrational band at 3497 cm-1 in L into an intense peak at 3549 cm-1 in L'. Notably, this change of water bands in the L --> L' transition at 80 K is entirely different from the changes observed in the BR --> K photoreaction at the same temperature, which does not show such intense bands. These results suggest that these water molecules move closer to the Schiff base as a hydrogen bonding cluster in L and L', presumably to stabilize its protonated state during the BR to L transition. They may contribute to the structural constraints that prevent L from returning to the initial BR upon illumination at 80 K.  相似文献   

2.
Shibata M  Kandori H 《Biochemistry》2005,44(20):7406-7413
In a light-driven proton pump protein, bacteriorhodopsin (BR), three water molecules participate in a pentagonal cluster that stabilizes an electric quadrupole buried inside the protein. Previously, low-temperature Fourier-transform infrared (FTIR) difference spectra between BR and the K photointermediate in D(2)O revealed six O-D stretches of water in BR at 2690, 2636, 2599, 2323, 2292, and 2171 cm(-)(1), while five water bands were observed at 2684, 2675, 2662, 2359, and 2265 cm(-)(1) for the K intermediate. The frequencies are widely distributed over the possible range of stretching vibrations of water, and water molecules at <2400 cm(-)(1) were suggested to hydrate negative charges because of their extremely strong hydrogen bonds. In this paper, we aimed to reveal the origin of these water bands in the K minus BR spectra by use of various mutant proteins. The water bands were not affected by the mutations at the cytoplasmic side, such as T46V, D96N, and D115N, implying that the water molecules in the cytoplasmic domain do not change their hydrogen bonds in the BR to K transition. In contrast, significant modifications of the water bands were observed for the mutations in the Schiff base region and at the extracellular side, such as R82Q, D85N, T89A, Y185F, D212N, R82Q/D212N, and E204Q. From these results, we concluded that the six O-D stretches of BR originate from three water molecules, water401, -402, and -406, involved in the pentagonal cluster. Two stretching modes of each water molecule are highly separate (300-470 cm(-)(1) for O-D stretches and 500-770 cm(-)(1) for O-H stretches), which is consistent with the previous QM/MM calculation. The small amplitudes of vibrational coupling are presumably due to strong association of the waters to negative charges of Asp85 and Asp212. Among various mutant proteins, only D85N and D212N lack strongly hydrogen-bonded water molecules (<2400 cm(-)(1)) and proton pumpimg activity. We thus infer that the presence of a strong hydrogen bond of water is a prerequisite for proton pumping in BR. Internal water molecules in such a specific environment are discussed in terms of functional importance for rhodopsins.  相似文献   

3.
Maeda A  Gennis RB  Balashov SP  Ebrey TG 《Biochemistry》2005,44(16):5960-5968
A key event in light-driven proton pumping by bacteriorhodopsin is the formation of the L intermediate, whose transition to M is accompanied by the first proton transfer step, from the Schiff base to Asp85 on the extracellular side. Subsequent reprotonation of the Schiff base from the other side of the membrane to form the N intermediate is crucial for unidirectional proton transport. Previous FTIR studies have suggested that the intense water O-D stretching vibration bands which appear in L at 2589, 2605, and 2621 cm(-)(1) are due to a cluster of polarized water molecules connecting the Schiff base to the Thr46-Asp96 region closer to the cytoplasmic surface. In the present study the difference spectrum was obtained of the N intermediate with its photoproduct N', formed after irradiating N at 80 K. The water O-D stretching vibrations of N appear as a broad feature in a similar frequency region with a similar intensity to those of L. This feature is also affected by T46V like in L. However, the intensities of these water vibrations of N nearly returned to the initial unphotolyzed state upon formation of N', unlike those of L which are preserved in L'. An exception was V49A, which preserved the intense water vibrations of N in N'. The results suggest that both L and N have a water cluster extending from the Schiff base to Thr46. The surrounding protein moiety stabilizes the water cluster in L, but in N it is stabilized mostly by interaction with the Schiff base.  相似文献   

4.
In aqueous suspensions of purple membranes (pH 10.2, 0.4 M KCl) an intermediate having an absorption maximum at 570-575 nm (at -196 degrees C) was produced by first heating the M intermediate up to -30 degrees C and then stabilizing it by subsequent cooling to -60 degrees C. We suggest that this species is the intermediate N (or P or R) found and characterized earlier near room temperature. Upon illumination at -196 degrees C N is transformed into a bathochromically absorbing species KN which has an absorption maximum near 605 nm and an extinction 1.35 times that of N. This light reaction is photoreversible. The quantum yield ratio for the forward and back reaction is 0.18 +/- 0.02. The maximum photo steady state concentration of KN is about 0.24. The N intermediate was also trapped in water suspensions of purple membranes at neutral pH and low salt concentration by illumination at lambda greater than 620 nm during cooling. In addition to N another intermediate absorbing in the red (maximum at 610-620 nm) was accumulated in smaller amounts. It is not photoactive at -196 degrees C and apparently is the O intermediate or a photoproduct of N.  相似文献   

5.
P Ormos  K Chu  J Mourant 《Biochemistry》1992,31(30):6933-6937
Infrared spectroscopy is used to characterize the transitions in the photocycle of bR involving the M intermediate. It has been shown previously that in this part of the photocycle a large protein conformational change takes place that is important for proton pumping. In this work we separate the spectra of the L, M, and N intermediates in order to better describe the timing of the molecular changes. We use the photoreaction of the M intermediate to separate its spectrum from those of L and N. At temperatures between 220 and 270 K a mixture of M and L or N is produced by illumination with green light. Subsequent blue illumination selectively drives M back into the ground state and the difference between the spectra before and after blue excitation yields the spectrum of M. Below about 250 K and L/M mixture is separated; at higher temperatures an M/N mixture is seen. We find that the spectrum of M is identical in the two temperature regions. The large protein conformational change is seen to occur during the M to N transition. Our results confirm that Asp-96 is transiently deprotonated in the L state. The only aspartic protonation changes between M and bR are the protonation of Asp-85 and Asp-212 that occur simultaneously during the L to M transition. Blue-light excitation of M results in deprotonation of both. The results suggest a quadrupolelike interaction of the Schiff base, Asp-85, Asp-212, and an additional positive charge in bR.  相似文献   

6.
We present time-resolved room-temperature infrared difference spectra for the bacteriorhodopsin (bR) photocycle at 8 cm (-1) spectral and 5 micros temporal resolution, from 4000 to 800 cm (-1). An in situ hydration method allowed for a controlled and stable sample hydration (92% relative humidity), largely improving the quality of the data without affecting the functionality of bR. Experiments in both H 2 (16)O and H 2 (18)O were conducted to assign bands to internal water molecules. Room-temperature difference spectra of the L and M intermediates minus the bR ground state (L-BR and M-BR, respectively) were comprehensively compared with their low-temperature counterparts. The room-temperature M-BR spectrum was almost identical to that obtained at 230 K, except for a continuum band. The continuum band contains water vibrations from this spectral comparison between H 2 (16)O and H 2 (18)O, and no continuum band at 230 K suggests that the protein/solvent dynamics are insufficient for deprotonation of the water cluster. On the other hand, an intense positive broadband in the low-temperature L-BR spectrum (170 K) assigned to the formation of a water cavity in the cytoplasmic domain is absent at room temperature. This water cavity, proposed to be an essential feature for the formation of L, seems now to be a low-temperature artifact caused by restricted protein dynamics at 170 K. The observed differences between low- and room-temperature FTIR spectra are further discussed in light of previously reported dynamic transitions in bR. Finally, we show that the kinetics of the transient heat relaxation of bR after photoexcitation proceeds as a thermal diffusion process, uncorrelated with the photocycle itself.  相似文献   

7.
Bacteriorhodopsin (bR) and halorhodopsin (hR) are light-induced ion pumps in the cell membrane of Halobacterium salinarium. Under normal conditions bR is an outward proton transporter, whereas hR is an inward Cl- transporter. There is strong evidence that at very low pH and in the presence of Cl-, bR transports Cl- ions into the cell, similarly to hR. The chloride pumping activity of bR is connected to the so-called acid purple state. To account for the observed effects in bR a tentative complex counterion was suggested for the protonated Schiff base of the retinal chromophore. It would consist of three charged residues: Asp-85, Asp-212, and Arg-82. This quadruplet (including the Schiff base) would also serve as a Cl- binding site at low pH. We used Fourier transform infrared difference spectroscopy to study the structural changes during the transitions between the normal, acid blue, and acid purple states. Asp-85 and Asp-212 were shown to participate in the transitions. During the normal-to-acid blue transition, Asp-85 protonates. When the pH is further lowered in the presence of Cl-, Cl- binds and Asp-212 also protonates. The binding of Cl- and the protonation of Asp-212 occur simultaneously, but take place only when Asp-85 is already protonated. It is suggested that HCl is taken up in undissociated form in exchange for a neutral water molecule.  相似文献   

8.
The primary stage of photoexcitation of bacteriorhodopsin from Halobacterium halobium upon the action of ultrashort (tau equal to 25 ps) laser impulse of 530 nm wavelength and of energy 2.5.10(-3) J has been studied. The primary photoproduct with a maximum of 630 nm is shown to occur in the differential spectrum in a time less than 25 ps both at room temperature (+20 degrees C) and at a low temperature (-150 degrees C).  相似文献   

9.
Internal water molecules are considered to play a crucial role in the functional processes of proton pump proteins. They may participate in hydrogen-bonding networks inside proteins that constitute proton pathways. In addition, they could participate in the switch reaction by mediating an essential proton transfer at the active site. Nevertheless, little has been known about the structure and function of internal water molecules in such proteins. Recent progress in infrared spectroscopy and X-ray crystallography provided new information on water molecules inside bacteriorhodopsin, the light-driven proton pump. The accumulated knowledge on bacteriorhodopsin in the last decade of the 20th century will lead to a realistic picture of internal water molecules at work in the 21st century. In this review, I describe how the role of water molecules has been studied in bacteriorhodopsin, and what should be known about the role of water molecules in the future.  相似文献   

10.
The proton-conducting pathway of bacteriorhodopsin (BR) contains at least nine internal water molecules that are thought to be key players in the proton translocation mechanism. Here, we report the results of a multinuclear (1H, 2H, 17O) magnetic relaxation dispersion (MRD) study with the primary goal of determining the rate of exchange of these internal water molecules with bulk water. This rate is of interest in current attempts to elucidate the molecular details of the proton translocation mechanism. The relevance of water exchange kinetics is underscored by recent crystallographic findings of substantial variations in the number and locations of internal water molecules during the photocycle. Moreover, internal water exchange is believed to be governed by conformational fluctuations in the protein and can therefore provide information about the thermal accessibility of functionally important conformational substates. The present 2H and 17O MRD data show that at least seven water molecules, or more if they are orientationally disordered, in BR have residence times (inverse exchange rate constant) in the range 0.1-10 micros at 277 K. At least five of these water molecules have residence times in the more restrictive range 0.1-0.5 micros. These results show that most or all of the deeply buried water molecules in BR exchange on a time-scale that is short compared to the rate-limiting step in the photocycle. The MRD measurements were performed on BR solubilized in micelles of octyl glucoside. From the MRD data, the rotational correlation time of detergent-solubilized BR was determined to 35 ns at 300 K, consistent with a monomeric protein in complex with about 150 detergent molecules. The solubilized protein was found to be stable in the dark for at least eight months at 277 K.  相似文献   

11.
The photoreaction of active-site-methylated, permethylated bacteriorhodopsin has been investigated by static and time-resolved UV-vis and infrared difference spectroscopy. Additional information on the isomeric composition of the initial state and of photoproducts was obtained by retinal extraction and subsequent HPLC analysis. The data show that the dark-adapted state contains only all-trans-retinal. Prolonged illumination produces a metastable state which contains essentially only 9-cis-retinal and which decays back to the dark-adapted initial state within 8 h. The time-resolved infrared difference spectra clearly demonstrate that laser flash excitation produces an intermediate that has all the characteristics of the L intermediate. It is demonstrated that the methyl group at the Schiff base nitrogen introduces a steric hindrance with the protein which inhibits a photoreaction at 80 K, but which allows the generation of an L-like intermediate at room temperature and 173 K.  相似文献   

12.
The electric response of a back photoreaction in the bacteriorhodopsin photocycle was investigated. The proton pumping activity of green flash excited bacteriorhodopsin stops if the M412 form is illuminated by blue light (Karvaly and Dancsházy, 1977). In the present work a fast negative displacement current signal was measured in an oriented membrane suspension system, indicative of back movement of protons from M412 to BR570. Quantitative evaluation of the data shows that there are at least two steps in the back reaction, with different rate constants. The temperature dependence of the rate constants show simple linear Arrhenius behavior between 5 degree and 40 degree C. The rate constants were slower by a factor of 1.8 in D2O suspension. The relevance of the protein electric response signals (PERS) observed in this paper to the early receptor potential is discussed.  相似文献   

13.
Ikeda D  Furutani Y  Kandori H 《Biochemistry》2007,46(18):5365-5373
Proteorhodopsin (PR), an archaeal-type rhodopsin found in marine bacteria, is a light-driven proton pump similar to bacteriorhodopsin (BR). It is known that Asp97, a counterion of the protonated Schiff base, possesses a higher pKa ( approximately 7) compared to that of homologous Asp85 in BR (<3). This suggests that PR has a hydrogen-bonding network different from that of BR. We previously reported that a strongly hydrogen-bonded water molecule is observed only in the alkaline form of PR, where Asp97 is deprotonated (Furutani, Y., Ikeda, D., Shibata, M., and Kandori, H. (2006) Chem. Phys. 324, 705-708). This is probably correlated with the pH-dependent proton pumping activity of PR. In this work, we studied the water-containing hydrogen-bonding network in the Schiff base region of PR by means of Fourier-transform infrared (FTIR) spectroscopy at 77 K. [zeta-15N]Lys-labeling and 18O water were used for assigning the Schiff base N-D and water O-D stretching vibrations in D2O, respectively. The frequency upshift of the N-D stretch in the primary K intermediate is much smaller for PR than for BR, indicating that the Schiff base forms a hydrogen bond after retinal photoisomerization. We then measured FTIR spectra of the mutants of Asp97 (D97N and D97E) and Asp227 (D227N and D227E) to identify the amino acid interacting with the Schiff base in the K state. The PRK minus PR spectra of D97N and D97E were similar to those of the acidic and alkaline forms, respectively, of the wild type implying that the structural changes upon retinal photoisomerization are not influenced by the mutation at Asp97. In contrast, clear spectral differences were observed in D227N and D227E, including vibrational bands of the Schiff base and water molecules. It is concluded that Asp227 plays a crucial role during the photoisomerization process, though Asp97 acts as the primary counterion in the unphotolyzed state of PR.  相似文献   

14.
In many retinal proteins the proton transfer from the Schiff base to the counterion represents a functionally important step of the photoreaction. In the signaling state of sensory rhodopsin II from Natronobacterium pharaonis this transfer has already occurred, but in the counterion mutant Asp75Asn it is blocked during all steps of the photocycle. Therefore, the study of the molecular changes during the photoreaction of this mutant should provide a deeper understanding of the activation mechanism, and for this, we have applied time-resolved step-scan FTIR spectroscopy. The photoreaction is drastically altered; only red-shifted intermediates are formed with a chromophore strongly twisted around the 14-15 single bond. In addition, the photocycle is shortened by 2 orders of magnitude. Nevertheless, a transition involving only protein changes similar to that of the wild type is observed, which has been correlated with the formation of the signaling state. However, whereas in the wild type this transition occurs in the millisecond range, it is shortened to 200 micros in the mutant. The results are discussed with respect to the altered electrostatic interactions, role of proton transfer, the published 3D structure, and physiological activity.  相似文献   

15.
16.
The increase in the rate of the primary back reaction on cooling the photoreaction center from Rhodospirillum rubrum was interpreted in terms of a model in which the peculiar temperature dependence of the rate results from a phase transition involving water. The primary back reaction is defined as the return of the electron from the reduced primary ubiquinone to the oxidized bacteriochlorophyll molecules following illumination. The dye 8-anilino-1-naphthalene sulfonate was used to detect the state of the water solvent as it transforms on cooling from a liquid to a solid glass. We inferred from studies with air-dried films of photoreaction center that the water which may be responsible for the unusual temperature dependence of the rate of the primary back reaction is not on the surface but is bound within the photoreaction center protein.  相似文献   

17.
Light-driven proton transport in bacteriorhodopsin (BR) is achieved by dynamic rearrangement of the hydrogen-bonding network inside the membrane protein. Arg82 is located between the Schiff base region and proton release group, and has a major influence on the pK(a) values of these groups. It is believed that Arg82 changes its hydrogen-bonding acceptors during the pump cycle of BR, stages of which are correlated with proton movement along the transport pathway. In this study, we compare low-temperature polarized FTIR spectra of [eta(1,2)-(15)N]arginine-labeled BR in the 2750-2000 cm(-1) region with those of unlabeled BR for the K, L, M, and N intermediates. In the K-minus-BR difference spectra, (15)N-shifted modes were found at 2292 (-)/2266 (+) cm(-1) and at 2579 (-)/2567 (+) cm(-1). The former corresponds to strong hydrogen bonding, while the latter corresponds to very weak hydrogen bonding. Both N-D stretches probably originate from Arg82, the former oriented toward water 406 and the latter toward the extracellular side, and both hydrogen bonds are somewhat strengthened upon retinal photoisomerization. This perturbation of arginine hydrogen bonding is entirely relaxed in the L intermediate where no (15)N-isotope shifts are observed in the difference spectrum. In the M intermediate, the frequency is not significantly altered from that in BR. However, the polarized FTIR spectra strongly suggest that the dipolar orientation of the strongly hydrogen bonded N-D group of Arg82 is changed from perpendicular to parallel to the membrane plane. Such a change is presumably related to the motion of the Arg82 side chain from the Schiff base region to the extracellular proton release group. Additional bands corresponding to weak hydrogen bonding were observed in both the M-minus-BR and N-minus-BR spectra. Changes in hydrogen-bonding structures involving Arg82 are discussed on the basis of these FTIR observations.  相似文献   

18.
The filamentous coliphage M13 can be transformed into a spherical particle (termed spheroid) by exposure to an interface of water and slightly polar but hydrophobic solvent such as chloroform-water at 24 degrees C. We report here that exposure of M13 filaments to a chloroform-water interface at 2 degrees C trapped the phage particles in forms morphologically intermediate to filaments and spheroids. These structures were rods 250 nm long and 15 nm wide, and each had a closed, slightly pointed end, an open flaired end, and a hollow central channel. The final contraction of these intermediates (termed I-forms) into spheroids was dependent upon both temperature and the presence of the solvent-water interface but was apparently independent of both the minor phage coat proteins and the virion DNA. Although stable in an aqueous environment, I-forms, in contrast to filaments, were readily disrupted by detergents, suggesting that the phage structure had been altered to a form more easily solubilized by membrane lipids. These solvent-induced changes might be related to the initial steps of phage penetration in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号