共查询到20条相似文献,搜索用时 15 毫秒
1.
Judith A.K. Harmony Richard L. Jackson Jahei Ihm Jeff L. Ellsworth Rudy A. Demel 《生物化学与生物物理学报:生物膜》1982,690(2)
The interaction of a purified human plasma lipid transfer complex with cholesteryl ester, triacylglycerol and phosphatidylcholine in binary and ternary lipid monolayers was investigated. The lipid transfer complex, designated LTC, catalyzes the removal of cholesteryl oleate and triacylglycerol from phosphatidylcholine monolayers. Preincubation of LTC with p-chloromercuriphenyl sulfonate inhibits LTC-catalyzed removal of triacylglycerol; cholesteryl ester removal is not affected. The rate of LTC-facilitated removal of cholesteryl oleate from a phosphatidylcholine monolayer depends on the amount of LTC added to the subphase up to 100 μg protein. In addition, the rate of the LTC-catalyzed transfer of cholesteryl oleate to the subphase increases linearly as the amount of cholesteryl oleate in the monolayer increases to 6 mol%. LTC also removes cholesterol from phosphatidylcholine-cholesterol monolayers, albeit at a rate which is 15% of that for removal of cholesteryl oleate. The ability of LTC to facilitate triacylglycerol and cholesteryl ester removal depends on the composition of the monolayer. Phosphatidylcholine supports cholesteryl ester transfer whereas sphingomyelin-cholesteryl ester monolayers are almost refractory to LTC. In contrast, LTC removes triacylglycerol from either a phosphatidylcholine or a sphingomyelin monolayer. The results suggest the existence of at least two lipid transfer proteins, one of which catalyzes the removal of cholesteryl ester and the other triacylglycerol. The role of these proteins as they relate to lipoprotein metabolism is discussed. 相似文献
2.
Neuronal viability is affected by reactive oxygen species. Lipid peroxidation is often defined as a major reason for cellular breakdown. Additionally, certain indispensable proteins are possible targets for excessively formed reactive oxygen species. Evidence is given here that protease nexin-1(PN-1), an endogenous thrombin inhibitor and neurite outgrowth promoter, is inactivated by xanthine oxidase-derived free radicals. Varying protection by superoxide dismutase and catalase was observed, depending on the reaction conditions. The water-soluble a-tocopherol analogues MDL 74,406 (R(+)-3,4-dihydro-6-hydroxy-N,N,N- 2,5,7,8-heptamethyl-2H-1-benzopyran-2-ethanaminium 4-methylbenzenesulfonate), MDL 74,180DA (2,3- dihydro-2,2,4,6,7-pentamethyl-3-(4-methyl-piperazino)-1-benzofuran-5-ol dihydro-chloride) and trolox also protected PN-1. Neurodegeneration may be triggered by oxidative inactivation of protease inhibitors such as PN-1. Protection of PN-1 in Alzheimer's or Parkinson's diseases, could be a possible target for a therapeutic function of antioxidants in these diseases. 相似文献
3.
Reaction of formaldehyde and of methanol with xanthine oxidase 总被引:8,自引:0,他引:8
4.
Transfer of cholesteryl ester between triacylglycerol/phospholipid microemulsions catalyzed by human plasma lipid transfer protein was investigated with a pyrene-containing analogue of which fluorescent properties depend on its concentration in the core of the microemulsions. The transfer of pyrene-cholesteryl ester between the emulsions was increased by the transfer protein linearly with its concentration, but maximally only to the extent of twice as much as spontaneous transfer in the given experimental conditions. When human apolipoproteins A-I or A-II are present in the reaction mixture enough to saturate the surface of the emulsion, the enhancement of the pyrene-cholesteryl ester transfer reaction by the transfer protein was 7.5-times more than in the absence of the apolipoproteins while the rate of spontaneous transfer was not affected significantly by the apolipoproteins. Bovine serum albumin did not have such an effect. Furthermore, the enhancement of the lipid transfer protein reaction by apolipoprotein A-I was linearly proportional to the percent saturation of the surface of the microemulsion with the apolipoprotein. 相似文献
5.
Immunoprecipitation of lipid transfer protein activity by an antibody against human plasma lipid transfer protein-I 总被引:2,自引:0,他引:2
Two lipid transfer proteins, designated lipid transfer protein-I (Mr 69 000) and lipid transfer protein-II (Mr 55 000), each of which facilitates the transfer of radiolabelled cholesteryl ester, triacylglycerol and phosphatidylcholine between plasma lipoproteins, were purified from human plasma. Immunoglobulin G was prepared from goat antiserum to human lipid transfer protein-I (i.e., anti-human LTP-I IgG). The progressive addition of anti-human LTP-I IgG to buffered solutions containing either a highly purified mixture of human lipid transfer protein-I and lipid transfer protein-II, or highly purified rabbit lipid transfer protein (Abbey, M., Calvert, G.D. and Barter, P.J. (1984) Biochim. Biophys. Acta 793, 471-480) resulted in specific immunoprecipitation and the removal of increasing amounts, up to 100%, of cholesteryl ester, triacylglycerol and phosphatidylcholine transfer activities. However, similar precipitation studies on human and rabbit lipoprotein-free plasma resulted in the progressive removal of all cholesteryl ester and triacylglycerol transfer activities but only 30% (human) or 20% (rabbit) of phosphatidylcholine transfer activity. In all cases more anti-human LTP-I IgG was required to precipitate rabbit lipid transfer activity than human lipid transfer activity. These results suggest that lipid transfer protein-I and lipid transfer protein-II have antigenic sites in common, allowing precipitation of both proteins by specific antibody to lipid transfer protein-I. Most plasma phosphatidylcholine transfer activity is mediated by a protein (or proteins) other than lipid transfer protein-I and lipid transfer protein-II. In lipoprotein-free plasma all cholesteryl ester and triacylglycerol transfer activity, and some phosphatidylcholine transfer activity, is mediated by lipid transfer protein-I (or lipid transfer protein-I and an antigenically similar protein, lipid transfer protein-II. 相似文献
6.
Jankov RP Kantores C Pan J Belik J 《American journal of physiology. Lung cellular and molecular physiology》2008,294(2):L233-L245
Xanthine oxidase (XO)-derived reactive oxygen species (ROS) formation contributes to experimental chronic hypoxic pulmonary hypertension in adults, but its role in neonatal pulmonary hypertension has received little attention. In rats chronically exposed to hypoxia (13% O(2)) for 14 days from birth, we examined the effects of ROS scavengers (U74389G 10 mg.kg(-1).day(-1) or Tempol 100 mg.kg(-1).day(-1) ip) or a XO inhibitor, Allopurinol (50 mg.kg(-1).day(-1) ip). Both ROS scavengers limited oxidative stress in the lung and attenuated hypoxia-induced vascular remodeling, confirming a critical role for ROS in this model. However, both interventions also significantly inhibited somatic growth and normal cellular proliferation in distal air spaces. Hypoxia-exposed pups had evidence of increased serum and lung XO activity, increased vascular XO-derived superoxide production, and vascular nitrotyrosine formation. These changes were all prevented by treatment with Allopurinol, which also attenuated hypoxia-induced vascular remodeling and partially reversed inhibited endothelium-dependent arterial relaxation, without affecting normal growth and proliferation. Collectively, our findings suggest that XO-derived superoxide induces endothelial dysfunction, thus impairing pulmonary arterial relaxation, and contributes to vascular remodeling in hypoxia-exposed neonatal rats. Due to the potential for adverse effects on normal growth, targeting XO may represent a superior "antioxidant" strategy to ROS scavengers for neonates with pulmonary hypertension. 相似文献
7.
The human cholesteryl ester (CE) and triglyceride (TG) exchange protein (denoted LTC or lipid transfer complex) was isolated in a single step from plasma using immunoaffinity batch extraction. Antibodies were raised against two preparations of conventionally purified LTC. LTC-I and LTC-II (purified 20,000-fold and 3500-fold, respectively) were used as immunogens. The antiLTC antibodies were isolated by anion-exchange chromatography and coupled to Affi-Gel 10. Chromatography of plasma on antiLTC Affi-Gel removed all of the CE and TG transfer activity. Moreover, LTC prepared from both antiLTC-I and antiLTC-II-Affi-Gel matrices were identical when analyzed by sodium dodecyl sulfate-polyacrylamide gel LTC electrophoresis. LTC exhibited two protein bands of Mr (apparent) 67,000 and 58,000 and a broad, faintly staining region at greater than 150,000. Analysis of LTC by immunoblotting indicated that both antiLTC-I and antiLTC-II antibodies recognized the same LTC proteins. Isoelectric focussing of LTC gave two pI values, 5.2 and 8.7. These data suggest that LTC is a complex of specific proteins and perhaps lipid. Specific CE and TG exchange activities of immunoaffinity-purified LTC were comparable, although the activities were low with respect to that of the antigen used to generate antiLTC-I. This is not due to contamination of LTC by albumin, lecithin:cholesterol acyltransferase, or apolipoproteins AI, AII, B, CIII, D, or E. 相似文献
8.
Liu X Lin WM Yan XH Chen XH Hoidal JR Xu P 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2003,785(1):101-114
The XOR activity in human plasma was measured by quantifying the XOR-derived uric acid (UA) in plasma using the high-performance liquid chromatography (HPLC) equipped with a UV detector. Chromatographic separation consisted of the mobile phase (a mixture of 0.1% trifluoroacetic acid in Milli-Q water and 0.085% trifluoroacetic acid in acetonitrile in a mix ratio of 99:1) running through a Zorbax StableBond SB-C(18) column at a flow-rate of 1 ml/min. Deproteinization with heat-treatment of plasma samples after the reaction was used in the assay to avoid splitting of the UA and xanthine peaks caused by acid deproteinization that could interfere the accurate determination of human plasma XOR activity in our case. Based on the examination of the dependence of XOR activity on added amounts of xanthine and reaction times, the amount of xanthine and reaction time for XOR activity assay were determined to prevent the errors caused by the limiting effect of substrates and plateau phase of the reaction. Using this method, human plasma XOR activities of 25 healthy people were measured. The average human plasma XOR activity was 2.1+/-0.8 (x10(-3) U/ml). 相似文献
9.
1. The reaction of milk xanthine oxidase with iodoacetamide has been studied with the silver-silver iodide electrode. 2. The reaction proceeds considerably faster in the presence of xanthine than in its absence. Anaerobically, with excess of xanthine, the reaction takes place as a rapid phase in which the enzyme is inactivated and in which approx. 1 thiol group/mol. of enzyme reacts and as a slower phase in which about 12 groups/mol. react. 3. The rapid reaction appears to be first-order with respect to xanthine oxidase and iodoacetamide and independent of the xanthine concentration with more than about 3mol. of xanthine/mol. of enzyme. 4. The velocity constant of the rapid phase is 0.26min.(-1) at 25 degrees and pH7.0, with 1mm-iodoacetamide and 17mum-xanthine oxidase. The velocity constant for the slower phase is about one-hundredth of this value. 5. The velocities of both phases increase with increasing pH in the range 5.0-9.6. 6. Xanthine may be replaced by salicylaldehyde without affecting the rate of loss of enzymic activity. With sodium dithionite as reducing agent, the reaction is slightly faster. 7. The possible function of thiol groups in the reaction mechanism of the enzyme is discussed. 相似文献
10.
D Lapenna G Ciofani S D Pierdomenico M A Giamberardino F Cuccurullo 《Free radical biology & medicine》2001,31(3):331-335
The thiobarbituric acid (TBA) reactivity of human plasma was studied to evaluate its adequacy in quantifying lipid peroxidation as an index of systemic oxidative stress. Two spectrophotometric TBA tests based on the use of either phosphoric acid (pH 2.0, method A) or trichloroacetic plus hydrochloric acid (pH 0.9, method B) were employed with and without sodium sulfate (SS) to inhibit sialic acid (SA) reactivity with TBA. To correct for background absorption, the absorbance values at 572 nm were subtracted from those at 532 nm, which represent the absorption maximum of the TBA:MDA adduct. Method B gave values of TBA-reactive substances (TBARS) 2-fold higher than those detected with method A. SS lowered TBARS by about 50% with both methods, indicating a significant involvement of SA in plasma TBA reactivity. Standard SA, at a physiologically relevant concentration of 1.5 mM, reacted with TBA, creating interference problems, which were substantially eliminated by SS plus correction for background absorbance. When method B was carried out in the lipid and protein fraction of plasma, SS inhibited by 65% TBARS formation only in the latter. Protein TBARS may be largely ascribed to SA-containing glycoproteins and, to a minor extent, protein-bound MDA. Indeed, EDTA did not affect protein TBARS assessed in the presence of SS. TBA reactivity of whole plasma and of its lipid fraction was instead inhibited by EDTA, suggesting that lipoperoxides (and possibly monofunctional lipoperoxidation aldehydes) are involved as MDA precursors in the TBA test. Pretreatment of plasma with KI, a specific reductant of hydroperoxides, decreased TBARS by about 27%. Moreover, aspirin administration to humans to inhibit prostaglandin endoperoxide generation reduced plasma TBARS by 40%. In conclusion, reaction conditions affect the relationship between TBA reactivity and lipid peroxidation in human plasma. After correction for the interfering effects of SA in the TBA test, 40% of plasma TBARS appears related to in vivo generated prostaglandin endoperoxides and only about 60% to lipoperoxidation products. Thus, the TBA test is not totally specific to oxidant-driven lipid peroxidation in human plasma. 相似文献
11.
Tetsuya Yamamoto Yuji Moriwaki Sumio Takahashi Zennta Tsutsumi Jun-ichi Yamakita Yumiko Nasako Keisai Hiroishi Kazuya Higashino 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1996,681(2):395
An assay for human plasma xanthine oxidase activity was developed with pterin as the substrate and the separation of product (isoxanthopterin) by high-performance liquid chromatography with a fluorescence detector. The reaction mixture consists of 60 μl of plasma and 240 μl of 0.2 M Tris-HCl buffer (pH 9.0) containing 113 μM pterin. With this assay, the activity of plasma xanthine oxidase could be easily determined despite its low activity. As a result, it could be demonstrated that the intravenous administration of heparin or the oral administration of ethanol did not increase plasma xanthine oxidase activity in normal subjects, and also that plasma xanthine oxidase activity was higher in patients with hepatitis C virus infection than in healthy subjects or patients with gout. In addition, a single patient with von Gierke's disease showed a marked increase in the plasma activity of this enzyme, relative to that apparent in normal subjects. 相似文献
12.
Aranda R Doménech E Rus AD Real JT Sastre J Viña J Pallardó FV 《Free radical research》2007,41(11):1195-1200
This study assessed the role of xanthine oxidase in vascular ageing. A positive correlation between xanthine oxidase activity and age was found in human plasma. Similar results were found in rat plasma. Xanthine oxidase expression and activity in homogenates from the aortic wall were significantly higher in samples from old rats than in their young counterparts (p < 0.01). In rat skeletal muscle homogenates both xanthine oxidase expression and activity showed a similar age-related profile. Superoxide production by xanthine oxidase in aortic rings was higher in aged rats. Uric acid, the final product of xanthine oxidase has been proposed as a risk factor for coronary heart disease and an independent marker of worse prognosis in patients with moderate-to-severe chronic heart failure. These results give a possible explanation for this correlation and underscore the role of xanthine oxidase in ageing. 相似文献
13.
Rafael Aranda Elena Doménech Ariana Diana Rus José T. Real Juan Sastre José Viña 《Free radical research》2013,47(11):1195-1200
This study assessed the role of xanthine oxidase in vascular ageing. A positive correlation between xanthine oxidase activity and age was found in human plasma. Similar results were found in rat plasma. Xanthine oxidase expression and activity in homogenates from the aortic wall were significantly higher in samples from old rats than in their young counterparts (p<0.01). In rat skeletal muscle homogenates both xanthine oxidase expression and activity showed a similar age-related profile. Superoxide production by xanthine oxidase in aortic rings was higher in aged rats. Uric acid, the final product of xanthine oxidase has been proposed as a risk factor for coronary heart disease and an independent marker of worse prognosis in patients with moderate-to-severe chronic heart failure. These results give a possible explanation for this correlation and underscore the role of xanthine oxidase in ageing. 相似文献
14.
15.
Clare L. Hawkins Philip E. Morgan Michael J. Davies 《Free radical biology & medicine》2009,46(8):965-988
Proteins are major targets for oxidative damage due to their abundance and rapid rates of reaction with a wide range of radicals and excited state species, such as singlet oxygen. Exposure of proteins to these oxidants results in loss of the parent amino acid residue, formation of unstable intermediates, and the generation of stable products. Each of these events can be used, to a greater or lesser extent, to quantify damage to proteins. In this review the advantages and disadvantages of a number of these approaches are discussed, with an emphasis on methods that yield absolute quantitative data on the extent of protein modification. Detailed methods sheets are provided for many of these techniques. 相似文献
16.
Reaction of human skin chymotrypsin-like proteinase chymase with plasma proteinase inhibitors 总被引:4,自引:0,他引:4
N M Schechter J L Sprows O L Schoenberger G S Lazarus B S Cooperman H Rubin 《The Journal of biological chemistry》1989,264(35):21308-21315
The ability of plasma proteinase inhibitors to inactivate human chymase, a chymotrypsin-like proteinase stored within mast cell secretory granules, was investigated. Incubation with plasma resulted in over 80% inhibition of chymase hydrolytic activity for small substrates, suggesting that inhibitors other than alpha 2-macroglobulin were primarily responsible for chymase inactivation. Depletion of specific inhibitors from plasma by immunoadsorption using antisera against individual inhibitors established that alpha 1-antichymotrypsin (alpha 1-AC) and alpha 1-proteinase inhibitor (alpha 1-PI) were responsible for the inactivation. Characterization of the reaction between chymase and each inhibitor demonstrated in both cases the presence of two concurrent reactions proceeding at fixed relative rates. One reaction, which led to inhibitor inactivation, was about 3.5 and 4.0-fold faster than the other, which led to chymase inactivation. This was demonstrated in linear titrations of proteinase activity which exhibited endpoint stoichiometries of 4.5 (alpha 1-AC) and 5.0 (alpha 1-PI) instead of unity, and SDS gels of reaction products which exhibited a banding pattern indicative of both an SDS-stable proteinase-inhibitor complex and two lower Mr inhibitor degradation products which appear to have formed by hydrolysis within the reactive loop of each inhibitor. At inhibitor concentrations approaching those in plasma where inhibitor to chymase concentration ratios were in far excess of 4.5 and 5.0, the rate of chymase inactivation by both serpin inhibitors appeared to follow pseudo-first order kinetics. The "apparent" second order rate constants of inactivation determined from these data were about 3000-fold lower than the rate constants reported for human neutrophil cathepsin G and elastase with alpha 1-AC and alpha 1-PI, respectively. This suggests that chymase would be inhibited about 650-fold more slowly than these proteinases when released into plasma. These studies demonstrate that although chymase is inactivated by serpin inhibitors of plasma, both inhibitors are better substrates for the proteinase than they are inhibitors. This finding along with the slow rates of inactivation indicates that regulation of human chymase activity may not be a primary function of plasma. 相似文献
17.
Interaction of endotoxic lipid A and lipid X with purified human platelet protein kinase C 总被引:3,自引:0,他引:3
Lipid A, the toxic principle of endotoxic lipopolysaccharide, and its precursor, Lipid X, interact with human platelets and modulate protein kinase C therein (Grabarek, J., Timmons, S., and Hawiger, J. (1988) J. Clin. Invest. 82, 964-971). We have now purified protein kinase C from human platelets and studied its interaction with endotoxic Lipids A and X. Protein kinase C-dependent phosphorylation of histone III-S was increased 15 times in the presence of Lipid A and 300 microM Ca2+. The Ca2+ requirement for such activation was lower when 4 beta-phorbol 12-myristate 13-acetate (PMA) or 1,2-diolein were added. Lipid A also induced autophosphorylation of protein kinase C, and its activation was enhanced by phosphatidylserine without reducing the Ca2+ requirement. Kinetic analysis of protein kinase C activation induced by Lipid A, in regard to ATP as a substrate, demonstrated that Lipid A increased the rate of the reaction (Vmax) without modifying the affinity of the enzyme (Km) for the substrate. Lipid X inhibited the activation of the enzyme induced by Lipid A. Lipid X also inhibited protein kinase C activation by phosphatidylserine, 1,2-diolein, and PMA. However, 10 times more of Lipid X was required for 50% inhibition (IC50) when PMA was used as an activator of protein kinase C in the presence of phosphatidylserine than when Lipid A and 1,2-diolein were used. These results support the hypothesis that endotoxic Lipid A and Lipid X exert their biological effect in platelets through direct interactions with protein kinase C. 相似文献
18.
Erdei N Tóth A Pásztor ET Papp Z Edes I Koller A Bagi Z 《American journal of physiology. Heart and circulatory physiology》2006,291(5):H2107-H2115
Obesity frequently leads to the development of hypertension. We hypothesized that high-fat diet (HFD)-induced obesity impairs the endothelium-dependent dilation of arterioles. Male Wistar rats were fed with normal (control) or HFD (60% of saturated fat, for 10 wk). In rats with HFD, body weight, mean arterial blood pressure, and serum insulin, cholesterol, and glucose were elevated. In isolated gracilis muscle arterioles (diameter: approximately 160 microm) of HFD, rat dilations to ACh (at 1 microM, maximum: 83 +/- 3%) and histamine (at 10 microM, maximum: 16 +/- 4%) were significantly (P < 0.05) decreased compared with those of control responses (maximum: 90 +/- 2 and 46 +/- 4%, respectively). Dilations to the NO donor sodium nitroprusside were similar in the two groups. Inhibition of NO synthesis by N(omega)-nitro-l-arginine methyl ester reduced ACh- and histamine-induced dilations in control arterioles but had no effect on microvessels of HFD rats. The superoxide dismutase mimetic Tiron or xanthine oxidase inhibitor allopurinol enhanced ACh (maximum: 90 +/- 2 and 93 +/- 2%, respectively)- and histamine (maximum: 30 +/- 7 and 37 +/- 8%, respectively)-induced dilations in HFD arterioles, whereas the NAD(P)H oxidase inhibitor apocynin had no significant effect. Correspondingly, in carotid arteries of HFD rats, an enhanced superoxide production was shown by lucigenin-enhanced chemiluminescence, in association with an increased xanthine oxidase, but not NAD(P)H oxidase activity. In addition, a marked xanthine oxidase immunostaining was detected in the endothelial layer of the gracilis arterioles of HFD, but not in control rats. These findings suggest that, in obese rats, NO mediation of endothelium-dependent dilation of skeletal muscle arterioles is reduced because of an enhanced xanthine oxidase-derived superoxide production. These alterations demonstrate substantial dysregulation of arteriolar tone by the endothelium in HFD-induced obesity, which may contribute to disturbed tissue blood flow and development of increased peripheral resistance. 相似文献
19.
Activated polymorphonuclear neutrophils (PMN) and macrophages generate oxidizing agents similar to or identical with N-chloroamines. Mimicking this oxidation in normal human plasma by usage of chloramine T (CT), we observed an oxidant concentration-dependent inactivating effect on plasma alpha 2-plasmin inhibitor (alpha 2-PI), antithrombin III (AT III), and alpha 1-proteinase inhibitor (alpha 1-PI). 20-50 mumol CT/ml plasma are necessary for almost complete inactivation of alpha 2-PI and AT III-activity, i.e. about 2-5 times the dose necessary for inactivation of alpha 1-PI which has already been classified as "oxidant sensitive". The inactivation of alpha 1-PI, alpha 2-PI and AT III in plasma by oxidants is the result of a specific oxidative damage since C1-inhibitor, serine proteinases and complexes of plasmin and alpha 2-PI were chloramine resistant under the conditions used. According to our results, the amount of chloramines released by 1 x 10(6) activated PMN, namely ca. 10 nmol (see Weiss et al. Science 222 625-628, 1983) would be sufficient to destroy alpha 1-PI and alpha 2-PI activity of 1.5 and 0.4 microliter of human plasma, respectively. Consequently, activated leukocytes may be able to create a microenvironment in which elastase as well as plasmin and thrombin can display their proteolytic activity unchecked by their regulator proteins. Oxidation may provide a general basis for altering enzyme/inhibitor balances. 相似文献
20.
Myelin basic protein (MBP), isolated from normal human myelin, was glycosylated with UDP-N-acetyl-D-galactosamine and a glycosyltransferase isolated from porcine submaxillary glands. MBP containing 0.85 mol of N-acetyl-D-galactosamine per mole of protein was oxidized at carbon 6 by galactose oxidase and complexed with a spin-label, Tempoamine, in order to study its interactions with lipids. When the spin-labeled MBP was reacted with lipid vesicles consisting of DSPG, DPPG, and DMPG, most of the spin-label was motionally restricted in the gel phase, with a correlation time greater than 10(-8)s. The motion increased with increasing temperature and was sensitive to the lipid phase transition. Interaction with the gel phase of DPPA caused much less motional restriction of the probe. However, melting of the lipid allowed increased interaction and motional restriction of the probe, which was only partially reversed on cooling back to the gel phase. The motional restriction of the probe in these lipids is attributed to its penetration partway into the lipid bilayer in both the gel and liquid-crystalline phases. The fact that the probe bound to the protein can penetrate partway into the bilayer suggests that other hydrophobic side chains and residues of the protein can similarly penetrate into the bilayer. Additional evidence for penetration was provided by digestion of the lipid-bound protein with endoproteinase Lys-C. When nonglycosylated and glycosylated MBP in solution was treated with Lys-C, extensive digestion occurred. A single radioactive peptide which eluted at 25 min was identified as residues 92-105.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献