首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mineralocorticoid receptor (MR) binding is tightly regulated by the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSDII) which selectively metabolizes glucocorticoids to inactive metabolites, thus allowing for MR activation by aldosterone. To examine whether this enzyme is involved in the pathophysiology of salt-sensitive hypertension, 11β-HSDII activity and messenger RNA (mRNA) levels were determined in blood vessels of Dahl Iwai salt-sensitive (DS) and salt-resistant (DR) rats. Decreased 11β-HSDII activity and mRNA levels in mesenteric arteries were observed in 8-week-old DS rats on a high-salt diet, indicating that 11β-HSDII may play a significant role in salt sensitivity and hypertension. It has been suggested that mineralocorticoids act on blood vessels, leading to increased vasoreactivity and peripheral resistance. We present direct evidence that blood vessels are aldosteronogenic. The production of aldosterone in blood vessels was compared between stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto (WKY) rats. Vascular aldosterone and CYP11B2 mRNA levels were significantly increased in 2-week-old SHRSP versus WKY rats. However, the vascular aldosterone levels in 4- and 9-week-old SHRSP and WKY rats were similar. High sodium intake further increased both blood pressure and vascular aldosterone synthesis in the SHRSPs. Both the local renin–angiotensin–aldosterone system (RAAS) and the vascular 11β-HSDII level are critically important in the pathophysiology of cardiovascular disorders.  相似文献   

2.
High-salt diets decrease insulin sensitivity in salt-sensitive hypertensive rats, and glucocorticoids promote adipocyte growth and may have pathophysiological roles in the metabolic syndrome. The aim of this study was to clarify the relationship between high-salt diet and the adipocyte glucocorticoid hormones in salt-sensitive hypertensive rats. Six-week-old Dahl salt-sensitive (DS) hypertensive rats and salt-resistant (DR) rats were fed a high-salt diet or a normal-salt diet for 4 weeks. Fasting blood glucose (FBG), serum adiponectin, plasma insulin, and corticosterone in plasma and in visceral adipose tissues, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activities in adipose tissues and glucose uptake in isolated muscle were measured. Animals underwent an oral glucose tolerance test (OGTT). The expression of mRNA for glucocorticoid receptor (GR), 11β-HSD1 and tumor necrosis factor-α (TNF-α) in adipose tissues were measured using a real-time PCR. A high-salt diet did not influence FBG; however, decreased 2-deoxy glucose uptake and plasma insulin during OGTT in DS rats. The high-salt diet increased significantly adipose tissue corticosterone concentration and 11β-HSD1 activities, gene expression for GR, 11β-HSD1 and TNF-α in adipose tissues in DS rats compared with DR rats (p < 0.05). The high-salt diet did not influence plasma corticosterone and serum adiponectin concentration in DS and DR rats. These results suggest that changes in GR and 11β-HSD1 in adipose tissue may contribute to insulin sensitivity in salt-sensitive hypertensive rats.  相似文献   

3.
Epithelial sodium channel (ENaC) plays a crucial role in controlling sodium reabsorption in the kidney keeping the normal blood pressure. We previously reported that the expression of ENaC mRNA in the kidney of Dahl salt-sensitive (DS) rats was abnormally regulated by aldosterone, however it is unknown if dietary sodium affects the expression of ENaC and serum and glucocorticoid-regulated kinase 1 (SGK1), which plays an important role in ENaC activation, in DS rats. In the present study, we investigated whether dietary sodium abnormally affects the expression of ENaC and SGK1 mRNA in DS rats. DS and Dahl salt-resistant (DR) rats (8 weeks old) were divided into three different groups, respectively: (1) low sodium diet (0.005% NaCl), (2) normal sodium diet (0.3% NaCl), and (3) high sodium diet (8% NaCl). The high sodium diet for 4 weeks in DS rats elevated the systolic blood pressure, but did not in any other groups. The expression of alpha-ENaC mRNA in DS rats was abnormally increased by high sodium diet in contrast to DR rats, while it was normally increased by low sodium diet in DS rats similar to DR rats. The expression of beta- and gamma-ENaC mRNA in DS rats was also abnormally increased by high sodium diet unlike DR rats. The expression of SGK1 mRNA was elevated by high sodium diet in DS rats, but it was decreased in DR rats. These observations indicate that the expression of ENaC and SGK1 mRNA is abnormally regulated by dietary sodium in salt-sensitively hypertensive rats, and that this abnormal expression would be one of the factors causing salt-sensitive hypertension.  相似文献   

4.
The role of altered vascular smooth muscle function in the etiology of essential hypertension has been extensively studied by a number of investigators. The results obtained from in vivo studies do not always correlate with results from in vitro studies and it is not always apparent whether the results reflect differences related to hypertension or to the genetic background of the animal model. In vitro and perfused vascular bed studies in our laboratory have utilized the spontaneously hypertensive rat (SHR), the normotensive Wistar Kyoto rat (WKY), genetically related crossbred rats (F1, F2, and BC1), and also Dahl salt-sensitive (DS) and salt-resistant (DR) rats. The role of altered smooth muscle function in relation to the development of the elevated blood pressure (BP) of the SHR or DS rat was studied and emphasis was placed on determining the role of altered neuronal uptake1 (U1) in hypertensives in masking elevated postsynaptic sensitivity to noradrenaline. In addition, the relationship between postsynaptic sensitivity to cations and BP was assessed. Such studies have indicated that alterations in postsynaptic sensitivity, U1 activity, and sensitivity to cations are not entirely consistent with the etiology of hypertension in the SHR and DS rat but may simply reflect genetic strain differences between the hypertensive and normotensive animals.  相似文献   

5.
Aldosterone plays a crucial role in controlling mineral balance in our body. The mechanism of aldosterone has been reported to elevate renal Na+ reabsorption by stimulating expression of epithelial Na+ channel (ENaC) and also activate an ENaC-regulating protein kinase, serum and glucocorticoid-regulated kinase 1 (SGK1). However, it is unknown whether aldosterone shows its stimulatory action on ENaC and SGK1 under an abnormal, salt-sensitive hypertensive condition. To clarify this point, we studied how aldosterone regulates expression of ENaC and SGK1 in Dahl salt-sensitive (DS) rat that shows hypertension with high salt diet. RNA and protein were extracted from the kidney 6 h after application of aldosterone (1.5 mg/kg body weight) subcutaneously injected into adrenalectomized DS and Dahl salt-resistant (DR) rats. Aldosterone decreased mRNA expression of beta- and gamma-ENaC in DS rat unlike DR rat, while aldosterone increased alpha-ENaC mRNA expression in DS rat similar to DR rat. Further, we found that aldosterone elevated SGK1 expression in DR rat, but not in DS rat. These observations indicate that ENaC and SGK1 are abnormally regulated by aldosterone in salt-sensitive hypertensive rats, suggesting that disturbance of the aldosterone regulation would be one of factors causing salt-sensitive hypertension.  相似文献   

6.
Cardiotrophin-1 (CT-1) stimulates longitudinal myocardial cell hypertrophy. We examined the expression of CT-1, leukemia inhibitory factor (LIF), and gp130 by competitive RT-PCR and Western blotting in Dahl salt-sensitive (DS) rats with a high-salt diet, which showed a distinct transition from left ventricular hypertrophy (LVH) to congestive heart failure (CHF). The expression levels of CT-1 mRNA and protein were significantly increased at the CHF stage compared with the LVH stage and age-matched Dahl salt-resistant (DR) rats (n = 6 for each group). mRNA expression of LIF was not changed in the left ventricle at any stage by RT-PCR. gp130 mRNA and protein levels of DS rats at 11 and 17 wk were significantly increased compared with age-matched DR rats. The isolated myocyte length of DS rats at 17 wk was the longest among the four groups of rats. The LV end-diastolic dimension (LVDd) of DS rats, determined by echocardiography, was significantly increased at the CHF stage. There was a significant correlation between the CT-1 protein level and LVDd. CT-1 may play a role in ventricular remodeling during transition from LVH to CHF in the rat hypertensive model.  相似文献   

7.
Elevated intracellular free calcium concentration [Ca2+]i in vascular smooth muscle cells has been implicated in the pathophysiology of hypertension. Platelet [Ca2+]i was measured using the fluorescent indicator, Fura-2, in Dahl sensitive (DS) and resistant (DR) rats given high (8% NaCl) and low (0.4% NaCl) salt diets, as well as in the spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats. The aim of this study was to show whether [Ca2+]i is elevated in salt induced hypertension. Platelet [Ca2+]i and systolic blood pressure (SBP) were higher (p less than 0.001) in DS rats given a high than low salt diets. In contrast, no changes in platelet [Ca2+]i and SBP were observed in DR rats. In SHR, platelet [Ca2+]i and SBP were higher (p less than 0.001) than in the WKY rats. Platelet [Ca2+]i correlated with SBP in all groups of rats (r = 0.929; p less than 0.001, n = 38). The parallel increase in SBP and [Ca2+]i in the DS high salt rats and the SHR suggests that an increased [Ca2+]i is involved in the pathophysiology of hypertension in the two models which differ with respect to the pathogenesis of their hypertension. This increase in [Ca2+]i therefore seems to reflect an abnormality in [Ca2+]i handling in hypertension regardless of its cause.  相似文献   

8.
9.
Mitochondrial dysfunction subsequent to increased oxidative stress and alterations in energy metabolism is considered to play a role in the development of cardiac hypertrophy and its progression to failure, although the sequence of events remains to be elucidated. This study aimed at characterizing the impact of hypertrophy development on the activity and expression of mitochondrial NADP+-isocitrate dehydrogenase (mNADP+-ICDH), a metabolic enzyme that controls redox and energy status. We expanded on our previous finding of its inactivation through posttranslational modification by the lipid peroxidation product 4-hydroxynonenal (HNE) in 7-wk-old spontaneously hypertensive rat (SHR) hearts before hypertrophy development (Benderdour et al. J Biol Chem 278: 45154-45159, 2003). In this study, we used 7-, 15-, and 30-wk-old SHR and Sprague-Dawley (SD) rats with abdominal aortic coarctation. Compared with age-matched control Wistar-Kyoto (WKY) rats, SHR hearts showed a significant 25% decrease of mNADP+-ICDH activity, which preceded in time 1) the decline in its protein and mRNA expression levels (between 10% and 35%) and 2) the increase in hypertrophy markers. The chronic and persistent loss of mNADP+-ICDH activity in SHR was associated with enhanced tissue accumulation of HNE-mNADP+-ICDH and total HNE-protein adducts at all ages and contrasted with the profile of changes in the activity of other mitochondrial enzymes involved in antioxidant or energy metabolism. Two-way ANOVA of the data also revealed a significant effect of age on most parameters measured in SHR and WKY hearts. The mNADP+-ICDH activity, protein, and mRNA expression were reduced between 25% and 35% in coarctated SD rats and were normalized by treatment of SHR or coarctated SD rats with renin-angiotensin system inhibitors, which prevented or attenuated hypertrophy. Altogether, our data show that cardiac mNADP+-ICDH activity and expression are differentially and sequentially affected in hypertrophy development and, to a lesser extent, with aging. Decreased cardiac mNADP+-ICDH activity, which is attributed at least in part to HNE adduct formation, appears to be a relevant early and persistent marker of mitochondrial oxidative stress-related alterations in hypertrophy development. Potentially, this could also contribute to the aetiology of cardiomyopathy.  相似文献   

10.
11.
We studied the effects of N(G)-nitro-l-arginine methyl ester (L-NAME) on catecholamine levels, tyrosine hydroxylase (TH) activity, and TH mRNA levels in the adrenal medulla of spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). L-NAME (100 mg/L in drinking water) and atropine (10 mg/L in drinking water) were administered for 2 weeks. Epinephrine and norepinephrine levels, TH activity, and TH mRNA levels in the adrenal medulla of L-NAME-treated WKY were significantly decreased. These parameters were not significantly altered in the adrenal medulla of L-NAME-treated SHR. Nitrite/nitrate levels in the adrenal medulla of L-NAME-treated WKY were significantly decreased; however, no significant change in L-NAME-treated SHR was observed. Ca(2+)-dependent nitric oxide synthase (NOS) activity in the adrenal medulla of SHR was significantly decreased compared to that of WKY. TH mRNA levels in L-NAME + atropine-treated and L-NAME-treated WKY were significantly lower than TH mRNA levels in control WKY. These results suggest that nitric oxide in the adrenal medulla may enhance the catecholamine biosynthetic pathway via increased TH mRNA expression. Our results also suggest that this effect is suppressed in SHR due to decreased NOS activity in the adrenal medulla.  相似文献   

12.
13.
Li Q  He RR 《生理学报》2001,53(5):355-360
在麻醉Dahl盐敏感型(DS)高血压大鼠和Dahl盐抵抗型(DR)正常血压大鼠,研究了静注胍丁胺(agmatine,AGM)对血流动力学的影响.结果显示(1)静注AGM(1,10,20mg/kg)可剂量依赖性地降低DS和DR大鼠的HR,MAP,LVP,±LVdp/dtmax,CI和TPRI.在DS高血压大鼠,MAP,LVP,±LVdp/dtmax和TPRI较DR正常血压大鼠下降幅度要大;而HR和CI在两种大鼠下降幅度无差异.需特别提出的是,DS高血压大鼠在静注高剂量AGM(20mg/kg)后,各项血流动力学指标出现先降低而后升高的现象,这一结果在DR正常血压大鼠并未出现.(2)预先静注咪唑啉受体(IR)和α2-肾上腺素能受体阻断剂(α2-AR)idazoxan(2.5mg/kg)可部分阻抑AGM的血流动力学效应.(3)预先静注α2-肾上腺素能受体阻断剂yohimbine(4mg/kg)同样可部分阻抑AGM的效应.(4)预先静注咪唑啉受体(I1)和α2-肾上腺素能受体阻断剂efaroxan(2.5mg/kg)则完全阻断AGM的血流动力学效应.以上结果表明,AGM可显著降低麻醉DR和DS大鼠的HR,MAP,LVP,±LVdp/dtmax,CI和TPRI;此效应似主要由I1-IR所介导,并有I2-IR和α2-AR参与.  相似文献   

14.
The present study investigates the influence of a chronic high Na+ diet (8% Na+) on the expression of the angiotensin type 1A (AT1A) receptor gene in the lamina terminalis and paraventricular nucleus of the hypothalamus (PVH) in normotensive Wistar (W) rats, as well as in Dahl salt-resistant (DR) and Dahl salt-sensitive (DS) rats. Three weeks of 8% Na+ diet led to a higher blood pressure in DS rats compared to DR and W rats. Moreover, the high Na+ diet was correlated with a decreased expression of AT1A receptor mRNA in the median preoptic nucleus (MnPO) and in the PVH of DS rats, compared to DR and W rats. Contrastingly, the AT1A receptor mRNA expression was not altered by the high Na+ diet in the forebrain circumventricular organs of all the rat strains. Interestingly, a furosemide-induced Na+ depletion was correlated with an increased expression of AT1A receptor mRNA in the PVH, MnPO and SFO of both the DS and DR rats. It is concluded that chronic high Na+ diet did differently regulate the expression of AT1A receptor mRNA in two hypothalamic integrative centers for hydromineral and cardiovascular balance (the PVH and MnPO) in DS rats, compared to DR and W rats. However, the AT1A receptor mRNA expression was similarly regulated in DS and DR rats in response to an acute Na+ depletion, suggesting a distinct high Na+ -induced regulation of the AT1A receptor gene in the PVH and MnPO of DS rats.  相似文献   

15.
The rise in consumption of refined sugars high in fructose appears to be an important factor for the development of obesity and metabolic syndrome. Fructose has been shown to be involved in genesis and progression of the syndrome through deregulation of metabolic pathways in adipose tissue. There is evidence that enhanced glucocorticoid regeneration within adipose tissue, mediated by the enzyme 11beta-hydroxysteroid dehydrogenase Type 1 (11βHSD1), may contribute to adiposity and metabolic disease. 11βHSD1 reductase activity is dependent on NADPH, a cofactor generated by hexose-6-phosphate dehydrogenase (H6PDH). We hypothesized that harmful effects of long-term high fructose consumption could be mediated by alterations in prereceptor glucocorticoid metabolism and glucocorticoid signaling in the adipose tissue of male Wistar rats. We analyzed the effects of 9-week drinking of 10% fructose solution on dyslipidemia, adipose tissue histology and both plasma and tissue corticosterone level. Prereceptor metabolism of glucocorticoids was characterized by determining 11βHSD1 and H6PDH mRNA and protein levels. Glucocorticoid signaling was examined at the level of glucocorticoid receptor (GR) expression and compartmental redistribution, as well as at the level of expression of its target genes (GR, phosphoenolpyruvate carboxyl kinase and hormone-sensitive lipase). Fructose diet led to increased 11βHSD1 and H6PDH expression and elevated corticosterone level within the adipose tissue, which was paralleled with enhanced GR nuclear accumulation. Although the animals did not develop obesity, nonesterified fatty acid and plasma triglyceride levels were elevated, indicating that fructose, through enhanced prereceptor metabolism of glucocorticoids, could set the environment for possible later onset of obesity.  相似文献   

16.
Vascular heme oxygenase (HO) metabolizes heme to form carbon monoxide. Carbon monoxide inhibits nitric oxide synthase and promotes endothelium-dependent vasoconstriction. We reported HO-1-mediated endothelial dysfunction in Dahl salt-sensitive hypertension. Previous studies suggested that salt-sensitive hypertensive rats, but not spontaneously hypertensive rats (SHR), display endothelial dysfunction. This study examines the hypothesis that HO-1-mediated arteriolar endothelial dysfunction develops in deoxycorticosterone acetate (DOCA)-salt hypertensive (DOCA) rats, but not in SHR. Uninephrectomized (isoflurane anesthesia) male Sprague-Dawley rats received DOCA injections and saline drinking solution for 4 wk. Rats subjected to sham surgery received vehicle injections and tap water. Blood pressure was elevated in DOCA rats and SHR compared with sham and Wistar-Kyoto (WKY) groups. Aortic HO-1 expression and blood carboxyhemoglobin levels were elevated in the DOCA group, but not in SHR. In isolated gracilis muscle arterioles, ACh caused concentration-related vasodilation in all groups, with attenuated maximum responses in DOCA, but not in SHR, arterioles. Acute pretreatment with an inhibitor of HO, chromium mesoporphyrin, restored ACh-induced responses in DOCA arterioles to sham levels. ACh responses remained the same in SHR and WKY arterioles after chromium mesoporphyrin treatment. These data show that HO-1 levels and activity are increased and arteriolar responses to ACh are decreased in DOCA rats, but not in SHR. Furthermore, in DOCA arterioles, an inhibitor of HO restores ACh-induced vasodilation to sham levels. These results suggest that elevated HO-1 levels and activity, not resulting from hypertension per se, contribute to endothelial dysfunction in DOCA rats.  相似文献   

17.
目的 :研究运动对高血压肥大心脏心肌初级和次级应答基因 (immediateearlygeneandlateresponsegene)表达的影响。方法 :采用Northern分子杂交方法对游泳运动 10周后自发性高血压大鼠 (spontaneouslyhypertensiverats ,SHR)心肌初级应答基因c fosmRNA和次级应答基因心钠素 (atrialnatriureticfactor ,ANF)mRNA的表达进行比较研究。结果 :游泳SHR收缩压和舒张压分别比安静SHR降低 2 2 %和 2 5 % (P <0 .0 1) ,但左心室重 /体重比值两组间无明显差异 (P >0 .0 5 )。SHR最后一次游泳 2 4h后 ,心肌c fosmRNA表达与安静SHR相比无明显差异 ,但两组大鼠比SHR的正常血压对照鼠WistarKyoto(WKY)分别提高 83 %和 80 %。游泳SHR心肌ANFmRNA表达比安静SHR降低 3 2 % ,但仍比WKY大鼠高 2 9%。结论 :SHR经过游泳运动后 ,出现心室肌ANF基因表达降低与c fos基因表达增强的不一致现象可能是运动改善高血压肥大心脏的分子机制之一。  相似文献   

18.

Background

Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2). This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse.

Methods

Cortisol (F) and cortisone (E) concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity) and between plasma and urine in newborns (renal activity). Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species.

Results

We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein.

Conclusions

We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming.  相似文献   

19.
11β-Hydroxysteroid dehydrogenase type 1 (11HSD1) is a microsomal NADPH-dependent oxidoreductase which elevates intracellular concentrations of active glucocorticoids. Data obtained from mouse strains with genetically manipulated 11HSD1 showed that local metabolism of glucocorticoids plays an important role in the development of metabolic syndrome. Tissue specific dysregulation of 11HSD1 was also found in other models of metabolic syndrome as well as in a number of clinical studies. Here, we studied local glucocorticoid action in the liver, subcutaneous adipose tissue (SAT) and skeletal muscles of male and female Prague hereditary hypertriglyceridemic rats (HHTg) and their normotriglyceridemic counterpart, the Wistar rats. 11HSD1 bioactivity was measured as a conversion of [3H]11-dehydrocorticosterone to [3H]corticosterone or vice versa. Additionally to express level of active 11HSD1 protein, enzyme activity was measured in tissue homogenates. mRNA abundance of 11HSD1, hexoso-6-phosphate dehydrogenase (H6PDH) and the glucocorticoid receptor (GR) was measured by real-time PCR. In comparison with normotriglyceridemic animals, female HHTg rats showed enhanced regeneration of glucocorticoids in the liver and the absence of any changes in SAT and skeletal muscle. In contrast to females, the glucocorticoid regeneration in males of HHTg rats was unchanged in liver, but stimulated in SAT and downregulated in muscle. Furthermore, SAT and skeletal muscle exhibited not only 11-reductase but also 11-oxidase catalyzed by 11HSD1. In females of both strains, 11-oxidase activity largely exceeded 11-reductase activity. No dramatic changes were found in the mRNA expression of H6PDH and GR. Our data provide evidence that the relationship between hypertriglyceridemia and glucocorticoid action is complex and gender specific.  相似文献   

20.
The role of aldosterone in regulation of electrogenic Na+ transport is well established, though mineralocorticoid receptors bind glucocorticoids with similar binding affinity as aldosterone and plasma concentration of aldosterone is much lower than glucocorticoids. In mammals, the aldosterone specificity is conferred on the low-selective mineralocorticoid receptors by glucocorticoid inactivating enzyme 11beta-hydroxysteroid dehydrogenase (11HSD) that converts cortisol or corticosterone into metabolites (cortisone, 11-dehydrocorticosterone) with lower affinity for these receptors. The present study examined the chicken intestine, whether changes in 11HSD activity are able to modulate the effect of corticosterone on Na+ transport, and how the metabolism of this hormone is distributed within the intestinal wall. This study shows that not only aldosterone, but also corticosterone (B), was able to increase the electrogenic Na+ transport in chicken caecum in vitro. The effect of corticosterone was higher in the presence of carbenoxolone, an inhibitor of steroid dehydrogenases, and was comparable to the effect of aldosterone. The metabolism of B in the intestine was studied; results showed oxidation of this steroid to 11-dehydrocorticosterone (A) and reduction to 11-dehydro-20beta-dihydrocorticosterone (20diA) as the main metabolic products at low nanomolar concentration of the substrate. In contrast, 20beta-dihydrocorticosterone and 20diA were the major products at micromolar concentration of B. Progesterone was converted to 20beta-dihydroprogesterone. The metabolism of corticosterone was localized predominantly in the intestinal mucosa (enterocytes). In conclusion, the oxidation at position C11 and reduction at position C20 suggest that both 11HSD and 20beta-hydroxysteroid dehydrogenase (20HSD) operate in the chicken intestine and that the mucosa of avian intestine possesses a partly different system of modulation of corticosteroid signals than mammals. This system seems to protect the aldosterone target tissue against excessive concentration of corticosterone and progesterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号