首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experiments on rats have shown that selective alpha 1 and alpha 2 adrenoceptor blockers (prazosin and yohimbine) and an inhibitor of dopamine-beta-hydrolase FD-008 failed to change the antinociceptive effect of baclofen, a direct GABAB receptor agonist. The antinociceptive effect of THIP and depakin, acting predominantly on GABAA receptors, was significantly reduced by prazosin, FD-008 and yohimbine in vocalization test. In tail-flick test the analgetic effect of THIP and depakin was not altered by prazosin and FD-008, but was increased by yohimbine. The role of adrenergic mechanisms in GABAA and GABAB receptor-mediated analgesia is discussed.  相似文献   

2.
Hao S  Takahata O  Iwasaki H 《Life sciences》2000,66(15):PL195-PL204
It is known that spinal morphine produces antinociception that is modulated by alpha 2-adrenoceptors. Endomorphin-1, a newly-isolated endogenous opioid ligand, shows the greatest selectivity and affinity for the mu-opiate receptor of any endogenous substance found to date and may serve as a natural ligand for the mu-opiate receptor. We examined the antinociceptive effects of endomorphin-1 administered intrathecally (i.t.) in the rat tail flick, tail pressure and formalin tests. Intrathecal endomorphin-1 produced dose-dependent antinociceptive effects in the three tests. ED50 (CI95) values for antinociception of i.t. endomorphin-1 in the tail flick test and tail pressure test were 1.9 (0.96-3.76) nmol and 1.8 (0.8-4.2) nmol, respectively. ED50 (CI95) values for phase 1 and phase 2 in the formalin test were 12.5 (7.9-19.8) nmol and 17.5 (10.2-30) nmol, respectively. Pretreatment with i.t. beta-funaltrexamine (a mu-opioid receptor selective antagonist) significantly antagonized the antinociceptive effects of endomorphin-1 in the three tests. Beta-funaltrexamine alone had not effects on the three tests. The antinociceptive effects of endomorphin-1 were also antagonized by i.t. yohimbine (an alpha 2-adrenoceptor selective antagonist). The combination of ineffective doses of i.t. clonidine (an alpha 2-adrenoceptor agonist) and endomorphin-1 produced a significant antinociception in the three tests. The results showed that intrathecal endomorphin-1 produced antinociception in a dose-dependent manner in the rat tail flick, tail pressure and formalin tests, which was mediated by spinal mu-opioid receptors and modulated by alpha 2-adrenoceptors.  相似文献   

3.
In the rat superior mesenteric arteries, the mechanical responses to perivascular nerve stimulation were characterized. The predominant response was contraction mediated by the release of norepinephrine, acting postjunctionally on alpha 1-adrenoceptors. These frequency-dependent contractions were unaffected by the alpha 2-selective adrenoceptor antagonist yohimbine, but were markedly attenuated by clonidine, the alpha 2-selective adrenoceptor agonist. In the presence of prazosin, the alpha 1-selective antagonist, a significant component of the nerve-mediated contraction was still present. At the concentrations used, prazosin, yohimbine, as well as clonidine acted as competitive antagonists of response to exogenous norepinephrine. This differential inhibition of norepinephrine- and nerve-mediated responses suggested the presence of distinct postjunctional adrenoceptors. The effects of clonidine and yohimbine are interpreted to arise from prejunctional modulation of norepinephrine release. In 30 of the 100 vessels studied, there was spontaneous myogenic tone. In these arteries, field stimulation caused frequency- and voltage-dependent relaxations. These responses were neural in origin, dependent on sympathetic nerve activity, but were nonadrenergic and noncholinergic in nature. Naloxone, indomethacin, and substance P inhibited these relaxations with no significant effect on the tone. The opioid agonist, 1-13 dynorphin relaxed these vessels and only naloxone inhibited this response. The effects of these agents were selective against field-stimulated responses since they did not alter the relaxation to the nonspecific agent sodium nitroprusside. These results provide circumstantial evidence for opioid-mediated vascular relaxation that is presynaptically modulated by prostanoids and substance P.  相似文献   

4.
The EEG-effects induced by intraperitoneal administration of clonidine, prazosin and yohimbine to 8 and 22 month old rats were compared. Clonidine (0.01 mg/kg) and prazosin (1 mg/kg) increased spectral powers, yohimbine (0.5 mg/kg) decreased them. In the older rats, EEG variations were smaller for prazosin and yohimbine, but larger for clonidine. These findings show that alpha receptor mediated influences on EEG are changed during aging and show that quantified EEG gives a picture of age related changes in the functional state of the neurotransmitter systems.  相似文献   

5.
We tested the hypothesis that dexmedetomidine (Dex) has greater alpha(2)- vs. alpha(1) selectivity than clonidine and causes more alpha(2)-selective vasoconstriction in the human forearm. After local beta-adrenergic blockade with propranolol, forearm blood flow (plethysmography) responses to brachial artery administration of Dex, clonidine, and phenylephrine (alpha(1)-agonist) were determined in healthy young adults before and after alpha(2)-blockade with yohimbine (n = 10) or alpha(1)-blockade with prazosin (n = 9). Yohimbine had no effect on phenylephrine-mediated vasoconstriction but blunted Dex-mediated vasoconstriction (mean +/- SE: -41 +/- 5 vs. -11 +/- 2%; before vs. after yohimbine) more than clonidine-mediated vasoconstriction (-39 +/- 5 vs. -28 +/- 4%; before vs. after yohimbine) (P < 0.02). Prazosin blunted phenylephrine-mediated vasoconstriction (-39 +/- 4 vs. -8 +/- 2%; before vs. after prazosin) but had similar effects on both Dex- (-30 +/- 4 vs. -39 +/- 6%; before vs. after prazosin) and clonidine-mediated vasoconstriction (-29 +/- 3 vs. -41 +/- 7%; before vs. after prazosin) (P > 0.7). Both Dex and clonidine reduced deep forearm venous norepinephrine concentrations to a similar extent (-59 +/- 12 vs. -55 +/- 10 pg/ml; Dex vs. clonidine, P > 0.6); this effect was abolished by yohimbine and blunted by prazosin. These results suggest that Dex causes more alpha(2)-selective vasoconstriction in the forearm than clonidine. The similar vasoconstrictor responses to both drugs after prazosin might be explained by the presynaptic effects on norepinephrine release.  相似文献   

6.
A single intravenous injection of alloxan in mice induced hyperglycemia in a dose dependent fashion. This diabetogenic action of alloxan was prevented by a single intraperitoneal injection of the alpha 2-adrenergic agonists, i.e. oxymetazoline, clonidine or epinephrine 40 min prior to the injection of alloxan. The alpha 1-adrenergic agonists, i.e. methoxamine and phenylephrine, and a beta-adrenergic agonist, isoproterenol, failed to prevent the diabetogenic action of alloxan. The inhibitory effect of clonidine on alloxan-induced diabetes was antagonized by yohimbine or phentolamine, but not by prazosin. Although alpha 2-adrenergic agonists caused a transient hyperglycemia at the time of alloxan administration (40 min after the administration of alpha 2-adrenergic agonists), the plasma glucose level at the time of alloxan injection did not correlate with the anti-diabetogenic effect of alpha 2-adrenergic agents. These results clearly demonstrate that the alpha 2-adrenergic mechanism which inhibits insulin release from pancreatic B cells prevented the diabetogenic action of alloxan in mice.  相似文献   

7.
Cholera toxin, an agent that impairs the function of Gs transducer proteins, was injected (0.5 microgram/mouse, icv) and the antinociceptive activity of opioids and clonidine was studied 24h later in the tail-flick test. In these animals, an enhancement of the analgesic potency of morphine, beta-endorphin and clonidine could be observed. Cholera toxin did not modify the antinociception evoked by the enkephalin derivatives DAGO and DADLE. Pertussis toxin that catalyses the ADP ribosylation of alpha subunits of Gi/Go regulatory proteins was given icv (0.5 microgram/mouse). This treatment reduced the analgesic effect of opioids and clonidine. However, while the analgesia elicited by DAGO, DADLE and clonidine was greatly decreased, the effect of morphine and beta-endorphin was reduced to a moderate extent. It is concluded that Gi/Go regulatory proteins functionally coupled to opioid and alpha 2 receptors are implicated in the efficacy displayed by opioids and clonidine to produce supraspinal analgesia. Moreover, these two receptors are susceptible to regulation by a process that might involve a Gs protein.  相似文献   

8.
The intracerebroventricular (i.c.v.) injection of antisera directed against different sequences of Gs alpha to mice enhanced the antinociceptive potency of the opioids morphine, beta h-endorphin-(1-31) and of the alpha 2-agonist clonidine when studied 24 h later in the tail-flick test. The activity of DAGO, DADLE, DPDPE and [D-Ala2]-Deltorphin II remained unchanged after that treatment. Cholera toxin (0.5 microgram/mouse, i.c.v.), agent that impairs the receptor regulation of Gs transducer proteins promoted comparable changes in the supraspinal analgesia induced by these substances. Six days after a single i.c.v. injection (0.5 microgram/mouse) of pertussis toxin the antinociceptive activity of all the opioids and clonidine appeared diminished. It is concluded that opioids and clonidine promote analgesia after binding to receptors functionally coupled to Gi/G(o) proteins, moreover, the activity of morphine, beta-endorphin and clonidine in this test seems to be counteracted by a process involving activation of Gs alpha transducer proteins.  相似文献   

9.
Negative control on the thyroid cyclic AMP system has been studied. The increase of cyclic AMP levels induced by TSH in dog thyroid slices and its consequent secretion were inhibited by norepinephrine. This effect was different from the previously described activation of cyclic AMP disposal by acetylcholine: it was not calcium-dependent, was observed in the presence of isobutyl methylxanthine and was not inhibited by atropine. The inhibitory action of norepinephrine was abolished by phentolamine but not by L-propranolol. Clonidine and epinephrine also markedly inhibited the elevation of cyclic AMP levels, but phenylephrine did not. The inhibitory effect of norepinephrine and clonidine was abolished by yohimbine but not by prazosin. These results suggest that the effect of adrenergic agents on dog thyroid follicular cells is mediated by alpha 2-receptors. Similar results were obtained on dog thyroid adenylate cyclase activity: norepinephrine diminished the activation of adenylate cyclase induced by TSH, in a sodium-dependent process. This inhibition was abolished by phentolamine and yohimbine, but not by L-propranolol and and prazosin. This shows that the negative alpha 2-adrenergic effect bears directly on adenylate cyclase.  相似文献   

10.
Effects of specific and non-specific adrenoceptor agonists and antagonists were examined on the isolated scale melanophores of O. mossambica in physiological Ringer solution. The responses were recorded as melanophore size index. It was observed that adrenaline, nor-adrenaline, phenylpropanolamine, clonidine and phenylepherine induced melanosome aggregation in a dose-dependent manner. Denervation of the fish melanophores increased the sensitivity of the melanophores to adrenaline but not to nor-adrenaline. Phentolamine (3.55 x 10(-5) M), prazosin (2.38 x 10(-5) M) and yohimbine (2.821 x 10(-5) M) significantly inhibited the aggregatory responses of the fish melanophores to adrenaline, nor-adrenaline, clonidine and phenylepherine. The blocking effect of yohimbine was significantly higher than that of prazosin. It is concluded that the effect of adrenaline is directly mediated through the receptors and alpha2 adrenoceptors are predominantly involved in the aggregatory responses of this fish melanophores, while alpha1 adrenoceptors presence has been indicated.  相似文献   

11.
The effects of several adrenergic agents on pain and morphine analgesia were assessed using three pain tests in rats. These tests--Tail-Flick, Hot-Plate, and Formalin--allow comparison of the effects of different noxious stimuli and different motor responses. Each pain test yielded a unique constellation of adrenergic influences, suggesting that variation of stimulus and response parameters can change the functional expression of adrenergic systems related to pain processing. The salient drug effects include: 1) a pronounced, relatively selective analgesic effect of yohimbine in the Hot-Plate test; 2) a selective analgesic effect of clonidine in the Formalin test; 3) a strikiny, but variable, antagonism of morphine analgesia by a combination of yohimbine and propranolol in the Formalin test; 4) a nonlinear dose-response curve for antagonism of morphine analgesia by propranolol in the Hot-Plate test; and 5) a generalized interference with pain responding and enhancement of morphine analgesia by most drrgs in the Formalin test. The data suggest that the type of pain test is crucial in determining the pattern of drug influences that is revealed.  相似文献   

12.
P Voisin  J P Collin 《Life sciences》1986,39(21):2025-2032
The present investigation sought to characterize the adrenergic inhibition of arylalkylamine-N-acetyltransferase in cultured chicken pineal glands. Arylalkylamine-N-acetyltransferase, the melatonin rhythm generating enzyme, displays daily oscillations of activity that are driven by a circadian oscillator. Norepinephrine released at sympathetic nerve endings inhibits the enzyme and appears to play a role in maintaining a circadian rhythm of melatonin release. Chicken pineal glands were isolated in organ culture and the effects of adrenergic agents on the night time peak of N-acetyltransferase activity were studied. Norepinephrine and clonidine prevented 50 to 65% of the nocturnal rise of N-acetyltransferase activity. When applied at middark, norepinephrine and clonidine caused a 50 to 65% inhibition of N-acetyltransferase activity in 2 hours. Dose-response studies indicated clonidine was 100 times more potent than norepinephrine or cirazoline at inhibiting N-acetyltransferase activity. Inhibition of N-acetyltransferase activity was also observed, at micromolar concentration with epinephrine, UK 14,304 and alpha-methylnorepinephrine but not with phenylephrine, isoproterenol or dopamine. Epinephrine and clonidine actions were antagonized by yohimbine but not by prazosin. Destruction of the presynaptic compartment by bilateral superior cervical ganglionectomy did not affect the clonidine-induced inhibition of N-acetyltransferase and its reversal by yohimbine. It is concluded that the adrenergic inhibition of N-acetyltransferase activity in chicken pineal gland probably occurs via stimulation of postsynaptic alpha 2-adrenergic receptors.  相似文献   

13.
This study was undertaken to determine the effects of clonidine on sympathetic neurotransmission in frog myocardium. In the electrically driven ventricular strips of frog heart, clonidine was found to be ineffective on contractility. However, clonidine increased the positive inotropic responses to transient additional stimulations. This effect of clonidine was antagonized by yohimbine, an alpha 2-adrenergic receptor antagonist. Clonidine did not change the positive inotropic effects of exogenously applied noradrenaline. These results suggest that clonidine facilitates sympathetic neurotransmission in frog myocardium via an action on alpha 2-adrenergic receptors located on sympathetic nerve terminals.  相似文献   

14.
Alpha 2-adrenoceptor activation inhibits cyclic AMP accumulation in fat cells from many species. However, the presence of alpha 2-adrenoceptors in rat adipocytes has been difficult to demonstrate. We observed that alpha 2-adrenergic activation inhibits forskolin-stimulated cyclic AMP accumulation both in rat and hamster adipocytes; UK 14304, p-amino clonidine and clonidine were the agents with higher efficacy. The effect of UK 14304 was blocked by yohimbine but not by prazosin demonstrating the involvement of alpha 2-adrenoceptors. Pertussis toxin blocked the alpha 2-adrenergic effect. Our results demonstrate the presence in rat fat cells of alpha 2-adrenoceptors coupled to adenylate cyclase via "Gi".  相似文献   

15.
Alpha adrenoceptor subtypes have been investigated by radioligand binding study in guinea-pig stomach using 3H-prazosin and 3H-yohimbine. The specific 3H-prazosin binding to guinea-pig stomach was saturable and of high affinity (KD = 1.4 nM) with a Bmax of 33 fmol/mg protein. Specific 3H-yohimbine binding to the tissue was also saturable and of high affinity (KD = 25.5 nM) with a Bmax of 150 fmol/mg protein. Adrenergic drugs competed for 3H-prazosin binding in order of prazosin greater than phentolamine greater than methoxamine greater than norepinephrine greater than clonidine greater than epinephrine greater than yohimbine. These drugs competed for 3H-yohimbine binding in order of yohimbine greater than phentolamine greater than clonidine greater than epinephrine greater than norepinephrine greater than prazosin greater than greater than prazosin greater than methoxamine. We also examined whether dopamine receptors exist in guinea-pig stomach, using radioligand binding study. Specific binding of 3H-spiperone, 3H-apomorphine, 3H-dopamine and 3H-domperidone was not detectable in the stomach. Dopaminergic drugs such as dopamine, haloperidol, domperidone and sulpiride competed for 3H-prazosin binding in order of haloperidol greater than domperidone greater than dopamine greater than sulpiride. Metoclopramide, sulpiride and dopamine competed for 3H-yohimbine binding in order of metoclopramide greater than sulpiride greater than dopamine. These results suggest that guinea-pig stomach has alpha 1 and alpha 2 adrenoceptors and has no specific dopamine receptors. It is also suggested that some dopamine receptor antagonists such as domperidone, haloperidol, sulpiride and metoclopramide have antagonistic actions on alpha adrenoceptors.  相似文献   

16.
Postsynaptic alpha-adrenoceptors in the rat tail artery have been examined by determining the pA2 values for antagonists against several alpha-adrenoceptor agonists. In this tissue the alpha-adrenoceptor agonists all produce concentration-dependent mechanical responses with the following rank order of potency: clonidine greater than norepinephrine greater than phenylephrine greater than UK 14304 greater than B-HT 920. Antagonism by prazosin and yohimbine of phenylephrine, norepinephrine, and clonidine responses does not reveal the anticipated discrimination between alpha 1- and alpha 2-adrenoceptors. Thus, pA2 values for prazosin (9.1-9.5), yohimbine (7.2-7.4), and corynanthine (7.0-7.1) and idazoxan (7.6) do not show large differences between these receptor agonists and suggests the predominance of alpha 1-adrenoceptor mediated contractile responses in this preparation. Significant differences between antagonist activities (pA2 values) in Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) artery preparations have not been observed. The sensitivity sequence of alpha-adrenoceptor agonist-induced responses to nifedipine and D 600 is B-HT 920 greater than clonidine greater than phenylephrine greater than norepinephrine. Dependence of agonist response upon extracellular Ca2+ parallels the sensitivity to Ca2+ channel antagonists. Sensitivity to D 600 of phenylephrine responses increased with decreasing concentration of phenylephrine or with receptor blockade by phenoxybenzamine: sensitivity of responses to B-HT 920 was not affected by these procedures. Tail artery strips from WKY and SHR do not exhibit major differences in sensitivity to D 600 or to Ca2+ depletion. Bay k 8644, a Ca2+ channel activator, produces concentration-dependent mechanical responses in the tail artery in the presence of modestly elevated K+ concentrations (10-15 mM): these actions of elevated K+ can be mimicked by both alpha 1- and alpha 2-adrenoceptor agonists including methoxamine, St 587, UK 14304, and clonidine. These studies do not provide clear evidence for the existence of discrete postsynaptic alpha 1- and alpha 2-adrenoceptor populations in rat tail artery as indicated by pA2 values or Ca2+ dependence of response.  相似文献   

17.
The firing rate of central locus coeruleus (LC) noradrenergic neurons and dorsal raphe (DR) serotonergic neurons was recorded in rats anaesthetized with chloral hydrate. The iontophoretic application or the i.v. perfusion of S3341, a new antihypertensive drug or clonidine decreased the frequency of discharge of LC neurons. Depending on the mode of administration clonidine was 54-63 times more potent than S3341. The selectivity of action of both drugs on alpha-2 vs. alpha-1 adrenoceptors was confirmed using yohimbine and prazosin: yohimbine completely blocked the inhibitory effect of S3341 or clonidine while prazosin did not prevent this effect. S3341 and clonidine regularly reduced the firing rate of DR neurons during i.v. perfusion but not during iontophoretic application. From these experiments is it concluded that S3341 and clonidine have a direct inhibitory effect on LC neurons via stimulation of alpha-2 autoreceptors and that both drugs have an indirect inhibitory effect on DR neurons, probably via impairment of noradrenergic transmission. Clinical studies show that S3341 induces much less sedative side effects than clonidine. In view of the great difference in the potency of these drugs to inhibit the firing rate of monoaminergic neurons which are known to be involved in sleep mechanisms, it is possible that the electrophysiological effects reported here relate to the sedative effects of these drugs.  相似文献   

18.
In normosensitive mice either the D1 antagonist SCH 23390 or the D2 antagonist sulpiride inhibited the reversion of reserpine-induced akinesia elicited by the mixed D1/D2 agonist pergolide. In mice rendered supersensitive by a five days' reserpine treatment, sulpiride did not prevent the pergolide-induced reversal of akinesia while SCH 23390 disclosed two subpopulations of mice. One population responded to pergolide with marked locomotor activity whereas in the other subpopulation this response was absent. However, all mice challenged with pergolide failed to reverse reserpine-akinesia after alpha-methyl-p-tyrosine (AMPT) pretreatment. The alpha 1/alpha 2 agonist clonidine restored the ability of pergolide to overcome reserpine akinesia in supersensitive mice pretreated with SCH 23390. Clonidine reversed the akinesia in supersensitive mice but in normal animals it did not. However, in these last conditions, the combined use of clonidine plus the D2 agonist LY 171555 was effective to induce locomotion. Neither AMPT nor SCH 23390 inhibited this response whereas the alpha-adrenergic antagonists prazosin and yohimbine did prevent it. The alpha 2 agonist B-HT 920 failed to induce locomotor responses when given together with LY 171555. The same occurred with the D1 agonist SKF 38393 when given together with clonidine. The combined use of SCH 23390 plus prazosin in chronic reserpinized mice prevented pergolide-induced locomotion. Adrenergic stimulation, acting on alpha 1 receptors, could be an alternative to D1 stimulation as a necessary factor to obtain D2-induced motor responses under normo and supersensitive conditions.  相似文献   

19.
1. Effects of imidazole compounds and guanabenz on the stimulus-evoked release of catecholamine (CA) were studied in cultured bovine adrenal chromaffin cells. 2. Clonidine, oxymetazoline, phentolamine, chlorpheniramine, and guanabenz inhibited acetylcholine (ACh)-evoked CA release in a dose-dependent manner, but not high K(+)-evoked release. 3. The inhibition by these compounds was not antagonized by nonimidazole and nonguanidine alpha 2-antagonists (yohimbine and phenoxybenzamine) but was significantly antagonized by tolazoline (imidazole alpha 2-antagonist) and cimetidine (imidazole H2-antagonist). Moreover, tolazoline by itself augmented the ACh-evoked, but not the high K(+)-evoked, CA release. 4. Although chlorpheniramine and cimetidine are antagonists for H1 and H2 histaminergic receptors, the site of action for these compounds in our results seemed to differ from the histamine receptors. 5. These results suggest that the inhibitory action of imidazole compounds and guanabenz on ACh-evoked CA release in adrenal chromaffin cells is mediated through an imidazole receptor. Adrenal chromaffin cells may contain an endogenous clonidine-displacing substance (CDS) which has been found in adrenal gland and brain as an endogenous ligand for imidazole receptors. Thus, CDS may have a regulatory role in the stimulus-secretion coupling in these cells.  相似文献   

20.
Norepinephrine (NE) sensitization of rat brain Na+ -K+ ATPase to ethanol (EtOH) inhibition appears to be mediated by alpha 1-adrenoreceptors, since it was reversed by prazosin and WB-4101 (alpha 1-receptor antagonists) in a concentration-dependent manner, but not by yohimbine and piperoxan (alpha 2-receptor antagonists). In addition, clonidine (alpha 2-agonist) and methoxamine (central receptor type uncertain) produced very little sensitization. Chronic EtOH administration to rats for 3 weeks produced tolerance to the hypothermic effect of test doses of EtOH (3 g/kg, i.p.) and a decreased inhibitory effect of NE + EtOH on the enzyme in vitro. This inhibition was still prevented by prazosin and WB-4101. However, the binding of tritiated WB-4101 and prazosin to brain membrane preparations from control and EtOH-tolerant rats revealed that the maximum number of binding sites (Bmax) and the dissociation constant (KD) of alpha 1-adrenoreceptors were decreased after tolerance development. These changes in numbers and binding properties of alpha 1-adrenoreceptors probably account for the decreased NE sensitization of the ATPase to EtOH inhibition in preparations from EtOH-tolerant rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号