首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli repressor of biotin biosynthesis (BirA) is an allosteric site-specific DNA-binding protein. BirA catalyzes synthesis of biotinyl-5'-AMP from substrates biotin and ATP and the adenylate serves as the positive allosteric effector in binding of the repressor to the biotin operator sequence. Although a three-dimensional structure of the apo-repressor has been determined by X-ray crystallographic techniques, no structures of any ligand-bound forms of the repressor are yet available. Results of previously published solution studies are consistent with the occurrence of conformational changes in the protein concomitant with ligand binding. In this work the hydroxyl radical footprinting technique has been used to probe changes in reactivity of the peptide backbone of BirA that accompany ligand binding. Results of these studies indicate that binding of biotin to the protein results in protection of regions of the central domain in the vicinity of the active site and the C-terminal domain from chemical cleavage. Biotin-linked changes in reactivity constitute a subset of those linked to adenylate binding. Binding of both bio-5'-AMP and biotin operator DNA suppresses cleavage at additional sites in the amino and carboxy-terminal domains of the protein. Varying degrees of protection of the five surface loops on BirA from hydroxyl radical-mediated cleavage are observed in all complexes. These results implicate the C-terminal domain of BirA, for which no function has previously been known, in small ligand and site-specific DNA binding and highlight the significance of surface loops, some of which are disordered in the apoBirA structure, for ligand binding and transmission of allosteric information in the protein.  相似文献   

2.
3.
Cooperative association of the Escherichia coli biotin repressor with the biotin operator is allosterically activated by binding of the corepressor, bio-5'-AMP. The corepressor function of the adenylate is due, in part, to its ability to induce repressor dimerization. Since a high-resolution structure of only the apo or unliganded repressor is currently available, the location of the dimerization interface on the protein structure is not known. Here, five mutants in the corepressor-binding domain of the repressor have been analyzed with respect to their DNA-binding and self-assembly properties. Results of these studies reveal that four of the mutant proteins exhibit defects in DNA binding. These same proteins are compromised in self-assembly. Furthermore, in the three-dimensional structure of the apo protein the mutations all lie in partially disordered surface loops, one of which is known to participate directly in corepressor binding. These results suggest that multiple disordered surface loops function in the corepressor-induced dimerization required for sequence-specific DNA binding by the biotin repressor.  相似文献   

4.
5.
6.
7.
Biotin protein ligase of Escherichia coli, the BirA protein, catalyses the covalent attachment of the biotin prosthetic group to a specific lysine of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. BirA also functions to repress the biotin biosynthetic operon and synthesizes its own corepressor, biotinyl-5'-AMP, the catalytic intermediate in the biotinylation reaction. We have previously identified two charge substitution mutants in BCCP, E119K, and E147K that are poorly biotinylated by BirA. Here we used site-directed mutagenesis to investigate residues in BirA that may interact with E119 or E147 in BCCP. None of the complementary charge substitution mutations at selected residues in BirA restored activity to wild-type levels when assayed with our BCCP mutant substrates. However, a BirA variant, in which K277 of the C-terminal domain was substituted with Glu, had significantly higher activity with E119K BCCP than did wild-type BirA. No function has been identified previously for the BirA C-terminal domain, which is distinct from the central domain thought to contain the ATP binding site and is known to contain the biotin binding site. Kinetic analysis of several purified mutant enzymes indicated that a single amino acid substitution within the C-terminal domain (R317E) and located some distance from the presumptive ATP binding site resulted in a 25-fold decrease in the affinity for ATP. Our data indicate that the C-terminal domain of BirA is essential for the catalytic activity of the enzyme and contributes to the interaction with ATP and the protein substrate, the BCCP biotin domain.  相似文献   

8.
The binding of the Escherichia coli biotin holoenzyme synthetase to the two ligands, biotin and bio-5'-AMP, is coupled to disorder-to-order transitions in the protein. In the structure of the biotin complex, a "glycine-rich" loop that is disordered in the apo-enzyme is folded over the ligand. Mutations in three residues in this loop result in significant changes in the affinity of the enzyme for both biotin and bio-5'-AMP. The kinetic basis of these losses in the affinity resides primarily in changes in the unimolecular rates of dissociation of the complexes. In this work, isothermal titration calorimetry has been employed to examine the detailed thermodynamics of binding of three loop mutants to biotin and bio-5'-AMP. The energetic features of dissociation of the protein*ligand complexes also have been probed by measuring the temperature dependencies of the unimolecular dissociation rates. Analysis of the data using the Eyring formalism yielded entropic and enthalpic contributions to the energetic barrier to dissociation. The thermodynamic results coupled with the known structures of the apo-enzyme and biotin complex have been used to formulate a model for progression from the ground-state complex to the transition state in biotin dissociation. In this model, the transition-state is characterized by both partial disruption of noncovalent bonds and acquisition of some of the disorder that characterizes the glycine-rich loop in the absence of ligand.  相似文献   

9.
Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of ∼3.5 Å in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action.  相似文献   

10.
11.
12.
13.
14.
15.
Biotin protein ligase (EC 6.3.4.15) catalyses the synthesis of an activated form of biotin, biotinyl-5'-AMP, from substrates biotin and ATP followed by biotinylation of the biotin carboxyl carrier protein subunit of acetyl-CoA carboxylase. The three-dimensional structure of biotin protein ligase from Pyrococcus horikoshii OT3 has been determined by X-ray diffraction at 1.6A resolution. The structure reveals a homodimer as the functional unit. Each subunit contains two domains, a larger N-terminal catalytic domain and a smaller C-terminal domain. The structural feature of the active site has been studied by determination of the crystal structures of complexes of the enzyme with biotin, ADP and the reaction intermediate biotinyl-5'-AMP at atomic resolution. This is the first report of the liganded structures of biotin protein ligase with nucleotide and biotinyl-5'-AMP. The structures of the unliganded and the liganded forms are isomorphous except for an ordering of the active site loop upon ligand binding. Catalytic binding sites are suitably arranged to minimize the conformational changes required during the reaction, as the pockets for biotin and nucleotide are located spatially adjacent to each other in a cleft of the catalytic domain and the pocket for biotinyl-5'-AMP binding mimics the combination of those of the substrates. The exact locations of the ligands and the active site residues allow us to propose a general scheme for the first step of the reaction carried out by biotin protein ligase in which the positively charged epsilon-amino group of Lys111 facilitates the nucleophilic attack on the ATP alpha-phosphate group by the biotin carboxyl oxygen atom and stabilizes the negatively charged intermediates.  相似文献   

16.
17.
18.
Du L  He Y  Luo Y 《Biochemistry》2008,47(44):11473-11480
Ubiquitous D-alanylation of lipoteichoic acids modulates the surface charge and ligand binding of the gram-positive cell wall. Disruption of the bacterial DltABCD gene involved in teichoic acid alanylation, as well as inhibition of the DltA protein, has been shown to increase a gram-positive bacterium's susceptibility to antibiotics. The DltA D-alanyl carrier protein ligase promotes a two-step process starting with adenylation of D-alanine. We have determined the 2.0 A resolution crystal structure of a DltA protein from Bacillus cereus in complex with the D-alanine adenylate intermediate of the first reaction. Despite the low level of sequence similarity, the DltA structure resembles known structures of adenylation domains such as the acetyl-CoA synthetase. The enantiomer selection appears to be enhanced by the medium-sized side chain of Cys-269. The Ala-269 mutant protein shows marked loss of such selection. The network of noncovalent interactions between the D-alanine adenylate and DltA provides structure-based rationale for aiding the design of tight-binding DltA inhibitors for combating infectious gram-positive bacteria such as the notorious methicillin-resistant Staphylococcus aureus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号