首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of molybdoproteins in Clostridium pasteurianum.   总被引:6,自引:4,他引:2       下载免费PDF全文
Cells of Clostridium pasteurianum whose N source is switched from NH3 to N2 accumulate large amounts of molybdenum beginning 1.5 h before the detection of nitrogenase activity. Anaerobic multiphasic gel electrophoresis and anion-exchange chromatography were used to identify the molybdoproteins and molybdenum-containing components present in N2-fixing cells. In addition to molybdate, six distinct 99Mo-labeled species were detected, i.e., a membrane fragment, the MoFe protein of nitrogenase, formate dehydrogenase, a Mo "binding-storage" protein, a 30-kilodalton molybdoprotein, and a low-molecular-weight molybdenum species. Of these, the MoFe protein, formate dehydrogenase, and the Mo binding-storage protein were present in more than one zone because of complex formation with other proteins, partial denaturation, and variation in the amount of Mo bound to the protein, respectively. In addition to the six proteins, a soluble "free" Mo cofactor in the cytosol was detected by showing that it reconstituted nitrate reductase activity in crude extracts of the Neurospora crassa mutant nit-1.  相似文献   

2.
In Klebsiella pneumoniae, Mo accumulation appeared to be coregulated with nitrogenase synthesis. O2 and NH+4, which repressed nitrogenase synthesis, also prevented Mo accumulation. In Azotobacter vinelandii, Mo accumulation did not appear to be regulated Mo was accumulated to levels much higher than those seen in K. pneumoniae even when nitrogenase synthesis was repressed. Accumulated Mo was bound mainly to a Mo storage protein, and it could act as a supply for the Mo needed in component I synthesis when extracellular Mo had been exhausted. When A. vinelandii was grown in the presence of WO2-(4) rather than MoO2-(4), it synthesized a W-containing analog of the Mo storage protein. The Mo storage protein was purified from both NH+4 and N2-grown cells of A. vinelandii and found to be a tetramer of two pairs of different subunits binding a minimum of 15 atoms of Mo per tetramer.  相似文献   

3.
A comparison of the effect of temperature on the reduction of N2 by purified molybdenum nitrogenase and vanadium nitrogenase of Azotobacter chroococcum showed differences in behaviour. As the assay temperature was lowered from 30 degrees C to 5 degrees C N2 remained an effective substrate for V nitrogenase, but not Mo nitrogenase, since the specific activity for N2 reduction by Mo nitrogenase decreased 10-fold more than that of V nitrogenase. Activity cross-reactions between nitrogenase components showed the enhanced low-temperature activity to be associated with the Fe protein of V nitrogenase. The lower activity of homologous Mo nitrogenase components, although dependent on the ratio of MoFe protein to Fe protein, did not equal that of V nitrogenase even under conditions of high electron flux obtained at a 12-fold molar excess of Fe protein.  相似文献   

4.
A large-scale fractionation scheme purified the major molybdenum(Mo)-binding protein (Mop) from crude extracts of Clostridium pasteurianum, with a 10 and 0.2% yield of Mo and protein, respectively. The apparent molecular weight of the purified molybdoprotein is 5,700, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein contains 0.7 mol of Mo per mol of protein with a molecular weight of 5,700. Mop, as isolated, has a peak absorbency at 293 nm. Denaturation and oxidation of the molybdoprotein released multiple pterin like fluorescent compounds. Mop appears to contain a pterin derivative and Mo, but phosphate analysis indicated that the pterin at the very least is not phosphorylated; phosphorylation is required for functional molybdenum cofactor. All treatments used to release the putative Mo-pterin species from Mop failed to yield a molybdopterin that had detectable molybdenum cofactor activity.  相似文献   

5.
By treating the reduced MoFe protein from Azotobacter vinelandii with o-phenanthroline and O2, an inactive protein partially deficient in both FeMoco and P-cluster could be obtained. The inactive protein could be reactivated by the reconsfituent solutions of different colours which were prepared from mixture in different proportions of ferric homocitrate, Na2S and dithiothreitol (DTT) with K2CrO4, KMnO4 and Na2MoO4, respectively, the inactive protein could be somewhat reactivated by DTF but not by the other compounds or their mixtures which were deficient in one or two of the above compounds. 99Mo was found in the reconstituted protein of the inactive MoFe protein with a reconstituent solution containing 99Mo. Its measurement of differential perturbed angular correlation indicated that 41% of 99Mo in the reconstituted protein were in a state similar to that of 99Mo in 99MoFe protein from K. pneumoniae. The results showed that the reactivation of the inactive MoFe rotein was mainly based on the restoration of its metallocluster content. It seemed to be reasonable to postulate that Mn- or Cr-containing nitrogenase could be obtained likewise by the reconstitution of the inactive protein with the Mn- or Cr-containing reconstituent solution.  相似文献   

6.
The role of Mo in the activity and synthesis of the nitrogenase components of Clostridium pasteurianum has been studied by observing the competition of Mo with its structural analogue W. Clostridial cells when fixing N2 appeared strictly dependent upon the available Mo, showing maximal N2-fixing activity at molybdate concentrations in the media of 10 muM. Cells grown in media with 3 times 10(-6) muM Mo, although showing good growth, had only 15% as much N2-fixing activity. In the presence of W the synthesis of both nitrogenase components, molybdoferredoxin and azoferredoxin, was affected. Attempts to produce nitrogenase in W-grown cells by addition of high molybdenum to the media in the presence of inhibitors of protein synthesis showed that Mo incorporation into a possible inactive preformed apoenzyme did not occur. Unlike other molybdoenzyme-containing cells, in which W either is incorporated in place of Mo to yield inactive protein or initiates the production of apoprotein, C. pasteurianum forms neither a tungsten substituted molybdoferredoxin nor an apoprotein. It is concluded that in C. pasteurianum molybdenum is an essential requirement for both the biosynthesis and activity of its nitrogenase.  相似文献   

7.
醋酸铵培养的棕色固氮菌(Azotobacter vinelandii),经超声击碎高速离心制备粗提取液、DEAE-纤维素柱层析表明,体内~(99)MoFe蛋白合成受到阻遏,在0.15 M NaGl洗脱分部中,除~(99)Mo储存蛋白峰外,还存在一个无机~(99)MoO_4~=组分。醋酸铵培养的棕色固氮菌经去阻遏后,在体内固氮活性出现的同时,可观察到原先菌体内累积的~(99)Mo储存蛋白峰降低,无机~(99)MoO_4~=的组分几乎消失以及~(99)MoFe蛋白合成。若去阻遏过程存在氯霉素,则菌体不显示固氮活性,(99)MoFe蛋白不再合成,储存蛋白和无机铝酸组分中~(99)Mo的转移停止。  相似文献   

8.
The x-ray crystal structure of NifV(-) Klebsiella pneumoniae nitrogenase MoFe protein (NifV(-) Kp1) has been determined and refined to a resolution of 1.9 A. This is the first structure for a nitrogenase MoFe protein with an altered cofactor. Moreover, it is the first direct evidence that the organic acid citrate is not just present, but replaces homocitrate as a ligand to the molybdenum atom of the iron molybdenum cofactor (FeMoco). Subsequent refinement of the structure revealed that the citrate was present at reduced occupancy.  相似文献   

9.
Fifty years after a role of vanadium in biological fixation was proposed, it was shown that in addition to their well-characterized molybdendum nitrogenases, Azotobacter chroococcum and Azotobacter vinelandii both have a genetically distinct nitrogenase system in which the conventional molybdoprotein is replaced by a vanadoprotein. Both Mo-nitrogenases and V-nitrogenases have similar requirements for activity: MgATP, a low potential reductant and the absence of oxygen. The genes encoding the V-nitrogenase are expressed only under conditions of Mo-deficiency. V-Nitrogenase of A.chroococcum is made up of a tetrameric VFe protein (Mr 210,000) with an alpha 2 beta 2 structure containing two V atoms, 23 Fe atoms and 20 acid-labile sulphide atoms per tetramer, and a dimeric Fe protein (Mr 64,000) with a gamma 2 structure containing four Fe atoms and four acid-labile sulphide atoms per dimer. Vanadium K-edge X-ray absorption spectroscopy indicates that V in the VFe protein, like Mo in MoFe protein, has S, Fe and possibly O as nearest neighbours. A vanadium- and iron-containing cofactor (FeVaco) can be extracted from the VFe protein and will restore C2H2 reductase, but no nitrogenase activity, to the inactive MoFe protein accumulated by mutants unable to synthesize the molybdenum- and iron-containing co-factor of Mo-nitrogenase. The products of C2H2 reduction by the hybrid protein (C2H6 as well as C2H4) are a characteristic of the VFe protein and provide evidence that FeVaco is, or forms part of the active site of V-nitrogenase.  相似文献   

10.
All molybdenum enzymes except nitrogenase contain a common molybdenum cofactor, whose organic moiety is a novel pterin called molybdopterin (MPT). To assist in elucidating the biosynthetic pathway of MPT, two MPT-deficient mutants of Escherichia coli K-12 were isolated. They lacked activities of the molybdenum enzymes nitrate reductase and formate dehydrogenase, did not reconstitute apo nitrate reductase from a Neurospora crassa nit-1 strain, and did not yield form A, a derivative of MPT. By P1 mapping, these two mutations mapped to chlA and chlE, loci previously postulated but never definitely shown to be involved in MPT biosynthesis. The two new mutations are in different genetic complementation groups from previously isolated chlA and chlE mutations and have been designated as chlM and chlN (closely linked to chlA and chlE, respectively). The reported presence of Mo cofactor activity in the chlA1 strain is shown to be due to in vitro synthesis of MPT through complementation between a trypsin-sensitive macromolecule from the chlA1 strain and a low-molecular-weight compound from the nit-l strain.  相似文献   

11.
The phs chromosomal locus of Salmonella typhimurium is essential for the dissimilatory anaerobic reduction of thiosulfate to hydrogen sulfide. Sequence analysis of the phs region revealed a functional operon with three open reading frames, designated phsA, phsB, and phsC, which encode peptides of 82.7, 21.3, and 28.5 kDa, respectively. The predicted products of phsA and phsB exhibited significant homology with the catalytic and electron transfer subunits of several other anaerobic molybdoprotein oxidoreductases, including Escherichia coli dimethyl sulfoxide reductase, nitrate reductase, and formate dehydrogenase. Simultaneous comparison of PhsA to seven homologous molybdoproteins revealed numerous similarities among all eight throughout the entire frame, hence, significant amino acid conservation among molybdoprotein oxidoreductases. Comparison of PhsB to six other homologous sequences revealed four highly conserved iron-sulfur clusters. The predicted phsC product was highly hydrophobic and similar in size to the hydrophobic subunits of the molybdoprotein oxidoreductases containing subunits homologous to phsA and phsB. Thus, phsABC appears to encode thiosulfate reductase. Single-copy phs-lac translational fusions required both anaerobiosis and thiosulfate for full expression, whereas multicopy phs-lac translational fusions responded to either thiosulfate or anaerobiosis, suggesting that oxygen and thiosulfate control of phs involves negative regulation. A possible role for thiosulfate reduction in anaerobic respiration was examined. Thiosulfate did not significantly augment the final densities of anaerobic cultures grown on any of the 18 carbon sources tested. on the other hand, washed stationary-phase cells depleted of ATP were shown to synthesize small amounts of ATP on the addition of the formate and thiosulfate, suggesting that the thiosulfate reduction plays a unique role in anaerobic energy conservation by S typhimurium.  相似文献   

12.
Molybdenum is required for induction of nitrate reductase and of NAD-linked formate dehydrogenase activities in suspensions of wild type Paracoccus denitrificans; tungsten prevents the development of these enzyme activities. The wild type forms a membrane protein M r150,000 when incubated with tungsten and inducers of nitrate reductase and this is presumed to represent an inactive form of the enzyme. Suspensions of mutant M-1 did not develop nitrate reductase or formate dehydrogenase activities but the membrane protein M r150,000 was formed under all conditions tested, including without inducers and without molybdenum. Analysis of membranes, solubilized with deoxycholate, by polyacrylamide gel electrophoresis under nondenaturing conditions showed that the mutant protein had similar electrophoretic mobility to the active nitrate reductase formed by the wilde type. Autoradiography of preparations from cells incubated with 55Fe showed that the mutant and wild type proteins contained iron. However, in similar experiments with 99Mo, incorporation of molybdenum into the mutant protein was not detectable.We conclude that mutant M-1 is defective in one or more steps required to process molybdenum for incorporation into molybdoenzymes. This failure affects the normal regulation of nitrate reductase protein with respect to the role of inducers.Non-Standard Abbreviations DOC deoxycholate - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

13.
When Escherichia coli was grown in the presence of tungstate, inactive forms of two molybdoenzymes, nitrate reductase and formate dehydrogenase, accumulated and were converted to their active forms upon incubation of cell suspensions with molybdate and chloramphenicol. The conversion to the active enzymes did not occur in cell extracts. When incubated with [(99)Mo]molybdate and chloramphenicol, the tungstate-grown cells incorporated (99)Mo into protein components which were released from membranes by procedures used to release nitrate reductase and formate dehydrogenase and which migrated with these activities on polyacrylamide gels. Although neither activity was formed during incubation of the crude extract with molybdate, (99)Mo was incorporated into protein components which were released from the membrane fraction under the same conditions and were similar to the active enzymes in their electrophoretic properties. The in vitro incorporation of (99)Mo occurred specifically into these components and was equal to or greater than the amount incorporated in vivo under the same conditions. Molybdenum in preformed, active nitrate reductase and formate dehydrogenase did not exchange with [(99)Mo]molybdate, demonstrating that the observed incorporation depended on the demolybdo forms of the enzymes. We conclude that molybdate may be incorporated into the demolybdo forms both in vivo and in vitro; some unknown additional factor or step, required for active enzyme formation, occurs in vivo but not in vitro under the conditions employed.  相似文献   

14.
A mutant UW3, which is unable to fix N2 in the presence of Mo (Nif-) but undergo phenotypic reversal to Nif+ under Mo deficiency, was able to grow in Mo- and NH3-deficient medium containing Mn, and the growth was accelerated by Mn at low concentration. A partly purified nitrogenase component Ⅰ protein separated from UW3 grown in the Mn-containing medium was shown to contain Fe and Mn atoms (ratio of Fe/Mo/Mn: 10.41/0.19/1.00) with C2H2- and H+-reducing activity which almost equal to half of that of MoFe protein purified from wild-type mutant of Azotobacter vinelandii Lipmann. This protein was obviously different from MoFe protein in both absorption spectrum and circular dichroism, and the molecular weight of subunits in Mn-containing protein was close to that of α subunit in MoFe protein. The preliminary results indicated that the protein containing Mn might be a nitrogenase component Ⅰprotein.  相似文献   

15.
Formate dehydrogenase from Pseudomonas aeruginosa contains molybdenum, a [4Fe-4S] cluster and cytochrome b. This paper reports the detection of molybdenum as Mo(V) by e.p.r. spectroscopy. In order to generate Mo(V) signals, addition of amounts of excess formate varying between 10- and 50-fold over enzyme, followed by 200-fold excess of sodium dithionite, were used. Two Mo(V) species were observed. One, the major component, has g1 = 2.012, g2 = 1.985 and g3 = 1.968, appeared at low concentrations of formate and increased linearly in intensity with increasing concentrations of formate up to 25-fold excess over the enzyme. At higher formate concentration this signal disappeared. The appearance and disappearance of this Mo(V) signal seems to parallel the state of reduction of the [4Fe-4S] clusters. A second, minor, Mo(V) species with g-values g1 = 1.996, g2 = 1.981 and g3 = 1.941 appears at a constant level during the formate-dithionite titration. No evidence has been obtained for nuclear hyperfine coupling to protons. The major Mo(V) species has unusual e.p.r. signals compared with other molybdenum-containing enzymes, except for that observed in the formate dehydrogenase from Methanobacterium formicicum [Barber, Siegel, Schauer, May & Ferry (1983) J. Biol. Chem. 258, 10839-10845]. The present work suggests that the enzyme is acting as a CO2 reductase, with dithionite as an electron donor to a [4Fe-4S] cluster, which in turn donates electrons to molybdenum, producing a Mo(V) species with CO2 bound to the metal.  相似文献   

16.
The effect of tungsten (W) and molybdenum (Mo) on the growth of Syntrophobacter fumaroxidans and Methanospirillum hungatei was studied in syntrophic cultures and the pure cultures of both the organisms. Cells that were grown syntropically were separated by Percoll density centrifugation. Measurement of hydrogenase and formate dehydrogenase levels in cell extracts of syntrophically grown cells correlated with the methane formation rates in the co-cultures. The effect of W and Mo on the activity of formate dehydrogenase was considerable in both the organisms, whereas hydrogenase activity remained relatively constant. Depletion of tungsten and/or molybdenum, however, did not affect the growth of the pure culture of S. fumaroxidans on propionate plus fumarate significantly, although the specific activities of hydrogenase and especially formate dehydrogenase were influenced by the absence of Mo and W. This indicates that the organism has a low W or Mo requirement under these conditions. Growth of M. hungatei on either formate or H2/CO2 required tungsten, and molybdenum could replace tungsten to some extent. Our results suggest a more prominent role for H2 as electron carrier in the syntrophic conversion of propionate, when the essential trace metals W and Mo for the functioning of formate dehydrogenase are depleted.  相似文献   

17.
Klebsiella pneumoniae accumulates molybdenum during nitrogenase derepression. The molybdenum is primarily in nitrogenase component I in the form of iron-molybdenum cofactor (FeMo-co). Mutations in any of three genes (nifB, nifN, and nifE) involved in the biosynthesis of FeMo-co resulted in very low molybdenum accumulation and in a molybdenum-free nitrogenase component I. A mutant lacking both subunits of nitrogenase component I accumulated 60% of the amount of molybdenum present in the wild type. The molybdenum was in protein-bound form and behaved differently than that in the wild type with respect to electrophoretic mobility, size, and extractability by organic solvents. Two forms of molybdenum could be extracted from the protein fraction of the mutant; one of them was not detected in the wild type, and the other behaved like FeMo-co in nonaqueous gel filtration chromatography. Crude extracts of this mutant were able to complement in vitro K. pneumoniae or Azotobacter vinelandii mutants unable to produce FeMo-co. These data show that biosynthesis of FeMo-co does not require the presence of nitrogenase component I. In its absence, FeMo-co is accumulated on a different protein, presumably an intermediate in the normal FeMo-co biosynthetic pathway.  相似文献   

18.
After the exposure to air, the crystalline nitrogenase MoFe protein from Azotobacter vinelandii was resulted in the remarkable increase in its absorption (ABS) and the significant decrease in its activity and circular dichroism (CD). However, when the aerated MoFe protein was incubated with the reconstituting solution which consisted of Na2MoO4, ferric citrate, Na2S and dithiothreitol, the ABS and CD of the aerated. MoFe protein both were completely restored, simultaneously with the significant restoration of acetylene reduction. It is shown that the P-cluster and other parts related to the protein activity which was damaged by O2 are able to be repaired to a certain extent by the reconstituting solution.  相似文献   

19.
A mutant UW3, which is unable to fix N2 in the presence of Mo (Nif-) but can undergo phenotypic reversal to Nif+ under Mo deficient conditions, was able to grow in Cr containing but Mo and NH3 deficient medium. A partly purified nitrogenase component Ⅰ protein obtained from UW3 grown on the Cr containing medium was shown to contain Fe and Cr (atom ratio of Fe to Cr and Mo to Cr: 11.60 and 0.41) and to have 70% of the C2H2 and H+ reduction activity of MoFe protein from the wild type strain of Azotobacter vinelandii Lipmann. The Cr containing protein was different in subunit composition from that of MnFe protein purified from the mutant strain grown in the presence of Mn, but similar to that of MoFe protein, that is, it was a tetramer composed of two differentsubunits (α2β2). The preliminary results indicated that the Cr containing protein might be a nitrogenase component Ⅰ protein.  相似文献   

20.
Hu Y  Fay AW  Lee CC  Yoshizawa J  Ribbe MW 《Biochemistry》2008,47(13):3973-3981
Assembly of nitrogenase MoFe protein is arguably one of the most complex processes in the field of bioinorganic chemistry, requiring, at least, the participation of nifS, nifU, nifB, nifE, nifN, nifV, nifQ, nifZ, nifH, nifD, and nifK gene products. Previous genetic studies have identified factors involved in MoFe protein assembly; however, the exact functions of these factors and the precise sequence of events during the process have remained unclear until the recent characterization of a number of assembly-related intermediates that provided significant insights into this biosynthetic "black box". This review summarizes the recent advances in elucidation of the mechanism of FeMoco biosynthesis in four aspects: (1) the ex situ assembly of FeMoco on NifEN, (2) the incorporation of FeMoco into MoFe protein, (3) the in situ assembly of P-cluster on MoFe protein, and (4) the stepwise assembly of MoFe protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号