共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal inactivation of infectious hematopoietic necrosis and infectious pancreatic necrosis viruses.
下载免费PDF全文

A plaque assay was used to follow the inactivation kinetics of infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus in cell culture media at various temperatures. Inactivation of infectious hematopoietic necrosis virus in a visceral organ slurry was compared with that in culture media. 相似文献
2.
Dr. David S. Adams Miki Kiyokawa Michael E. Getman Victor E. Shashoua 《Neurochemical research》1996,21(3):377-384
Ependymin (EPN) is a brain glycoprotein that functions as a neurotrophic factor in optic nerve regeneration and long-term
memory consolidation in goldfish. To date, trueepn genes have been characterized in one order of teleost fish,Cypriniformes. In the study presented here, polymerase chain reactions were used to analyze the completeepn genes,gd (1480 bp), andsh (2071 bp), fromCypriniformes giant danio and shiner, respectively. Southern hybridizations demonstrated the existence of one copy of each gene per corresponding
haploid, genome. Each gene was found to contain six exons and five introns. Genegd encodes a predicted 218-amino acid (aa) protein GD 93% conserved to goldfish EPN, whilesh encodes a predicted 214-aa protein SH 91% homologous to goldfish. Evidence is presented classifying proteins previously termed
“EPNs” into two major categories: true EPNs and non-EPN cerebrospinal fluid glycoproteins. Proteins GD and SH contain all
the hallmark features of true EPNs. 相似文献
3.
4.
The molecular weight of infectious pancreatic necrosis virus (IPNV) has been determined by analytical ultracentrifugation and dynamic light scattering. The sedimentation coefficient of the virus was found to be 435S. The average value for molecular weight is (55 +/- 7) x 106. The virus genome consists of two segments of double-stranded RNA (molecular weights, 2.5 x 106 and 2.3 x 106), which represents 8.7% of the virion mass. The capsid protein moiety of IPNV consists of four species of polypeptides, as determined by polyacrylamide gel electrophoresis. The number of molecules of each polypeptide in the virion has been determined. There are 22 molecules of the internal polypeptide alpha (molecular weight, 90,000), 544 molecules of the outer capsid polypeptide beta (molecular weight, 57,000), and 550 and 122 molecules, respectively, of the internal polypeptides gamma1 (molecular weight, 29,000) and gamma2 (molecular weight, 27,000). IPNV top component contains only the beta polypeptide species, and its molecular weight is estimated to be 31 x 106. The hydrodynamic diameter and electron microscopic diameter (calculated by catalase crystal-calibrated electron microscopy) of IPNV was compared with those of reovirus and encephalomyocarditis virus. Due to the swelling of the outer capsid, reovirus particles were found to be much larger when hydrated (96-nm diameter) than when dehydrated (76-nm diameter), having a large water content content and low average density. In contrast, IPNV particles are more rigid, having nearly the same average diameter under hydrous (64 nm) as under anhydrous conditions (59.3 nm). Encephalomyocarditis virus has a very low water content and does not shrink at all when prepared for electron microscopy. 相似文献
5.
P Dobos 《Nucleic acids research》1976,3(8):1903-1924
The genome of infectious pancreatic necrosis virus consists of two segments of dsRNA, in equimolar amounts, with molecular weights of 2.5 X 10(6) and 2.3 X 10(6) daltons, as determined by polyacrylamide gel electrophoresis and autoradiography. The viral RNA was resistant to ribonuclease, and in sucrose gradient it co-sedimented at 14S with RNase resistant RNA from virus infected cells. Upon denaturation in 98% formamide, the viral genome sedi-mented at 24S in formamide sucrose gradient and became sensitive to RNase. Denatured 24S viral RNA did revert to its undenatured 14S form upon recentrifugation in aquaeous sucrose gradient (0.1 M NaCL), but co-sedimented with the denatured large size class of reovirus 25S RNA. The same results were obtained if the native viral RNA was pre-treated with ribonuclease before denaturation, indicating the absence of exposed single strainded regions in the viral genome. Since infectious pancreatic necrosis virus contains only two dsRNA segments it does not belong to the family Reoviridae and may represent a new group of viruses. 相似文献
6.
The virucidal properties of iodophor, chlorine (sodium hypochlorite), formalin, thimerosal (organic mercurial compound), malachite green, and acriflavine were tested on infectious pancreatic necrosis virus (IPNV). Iodine and chlorine showed good activity, but efficacy depended on the concentration of virus, the presence of organic matter (calf serum), and water p H. Water hardness (0-300 mg 1−1 as CaCO3 ) did not affect virucidal activity. In a 5 min exposure, 4 mg 1−1 available iodine inactivated 103.9 TCID50 m1−1 IPNV but 16 mg 1−1 iodine were needed for inactivation of 106.3 TCID50 m1−1 . The addition of 0-5% calf serum significantly reduced the iodine concentration and the virucidal activity. In comparison, 4 mg 1−1 chlorine were needed to inactivate 1046 TCID50 m1−1 IPNV in 5 min. However, the addition of 0-07 % serum greatly reduced the chlorine concentration and extended the virucidal contact time to 30 min or more. IPNV at 106.3 TCID60 m1−1 was not inactivated by exposures for 60 min to 0-2% formalin, 10 min to 0-2% thimerosal, 60 min to 5 mg 1−1 malachite green, or 20 min to 500 mg 1−1 acriflavine. However, acriflavine at 0-5 mg 1−1 in cell culture media prevented the development of cytopathology caused by IPNV and may be useful in the treatment of the disease. 相似文献
7.
Genome assembly and particle maturation of the birnavirus infectious pancreatic necrosis virus
下载免费PDF全文

In this study, we have analyzed the morphogenesis of the birnavirus infectious pancreatic necrosis virus throughout the infective cycle in CHSE-214 cells by using a native agarose electrophoresis system. Two types of viral particles (designated A and B) were identified, isolated, and characterized both molecularly and biologically. Together, our results are consistent with a model of morphogenesis in which the genomic double-stranded RNA is immediately assembled, after synthesis, into a large (66-nm diameter) and uninfectious particle A, where the capsid is composed of both mature and immature viral polypeptides. Upon maturation, particles A yield particles B through the proteolytic cleavage of most of the remaining viral precursors within the capsid, the compaction of the particle (60-nm diameter), and the acquisition of infectivity. These studies will provide the foundation for further analyses of birnavirus particle assembly and RNA replication. 相似文献
8.
Infectious pancreatic necrosis (IPN) virus was partially purified by freon extraction of infected CHSE-214 cells and concentrated by polyethylene glycol (PEG) precipitation of virus from the medium. Both methods resulted in virus concentrates that could be further purified by two CsCl gradient centrifugations with little loss of infectivity. A Recovery of 80 to 100% of the virus infectivity was obtained and over 100-fold concentration of viral infectivity was achieved by these methods. This purification was used to compare 10 isolates of IPN virus with regard to their physiochemical properties by electron microscopy, buoyant density in CsCl, and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of the purified virions. Electron-microscopic observations showed that the virus isolates were identical in that they were isometric, hexagonal in profile, and had a particle diameter of 71 nm. The buoyant densities of the virus isolates in CsCl were found to be 1.33 g/ml. SDS-gel electrophoresis of the virus isolates revealed the presence of three polypeptides of molecular weight 50, 30, and 27 x 10(3) designated as VP50, VP30, and VP27, respectively. 相似文献
9.
10.
11.
12.
Molecular determinants of infectious pancreatic necrosis virus virulence and cell culture adaptation
下载免费PDF全文

Infectious pancreatic necrosis viruses (IPNVs) exhibit a wide range of virulence in salmonid species. In previous studies, we have shown that the amino acid residues at positions 217 and 221 in VP2 are implicated in virulence. To pinpoint the molecular determinants of virulence in IPNV, we generated recombinant IPNV strains using the cRNA-based reverse-genetics system. In two virulent strains, residues at positions 217 and 247 were replaced by the corresponding amino acids of a low-virulence strain. The growth characteristics of the recovered chimeric strains in cell culture were similar to the low-virulence strains, and these viruses induced significantly lower mortality in Atlantic salmon fry than the parent strains did in in vivo challenge studies. Furthermore, the virulent strain was serially passaged in CHSE-214 cells 10 times and was completely characterized by nucleotide sequencing. Deduced amino acid sequence analyses revealed a single amino acid substitution of Ala to Thr at position 221 in VP2 of this virus, which became highly attenuated and induced 15% cumulative mortality in Atlantic salmon fry, compared to 68% mortality induced by the virulent parent strain. The attenuated strain grows to higher titers in CHSE cells and can be distinguished antigenically from the wild-type virus by use of a monoclonal antibody. However, the virulent strain passaged 10 times in RTG-2 cells was stable, and it retained its antigenicity and virulence. Our results indicate that residues Thr at position 217 (Thr217) and Ala221 of VP2 are the major determinants of virulence in IPNV of the Sp serotype. Highly virulent isolates possess residues Thr217 and Ala221; moderate- to low-virulence strains have Pro217 and Ala221; and strains containing Thr221 are almost avirulent, irrespective of the residue at position 217. 相似文献
13.
14.
Romero A Figueras A Thoulouze MI Bremont M Novoa B 《Diseases of aquatic organisms》2008,80(2):123-135
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicaemia virus (VHSV) are rhabdoviruses that infect salmonids, producing serious economic losses. Two recombinant IHN viruses were generated by reverse genetics. For one (rIHNV GFP) the IHNV NV gene was replaced with the green fluorescent protein (GFP) gene. In the other (rIHNV-Gvhsv GFP) the G gene was also exchanged for that of VHSV. No mortalities, external signs or histological lesions were observed in experimental infections conducted with the recombinant viruses. Neither the rIHNV GFP nor rIHNV-Gvhsv GFP was detected by RT-PCR in any of the examined tissues from experimentally infected fish. In order to assess their potential as vaccines against the wild type viruses, rainbow trout were vaccinated with the recombinant viruses by intraperitoneal injection and challenged 30 d later with virulent IHNV or VHSV. The GFP viruses provided protection against both wild type viruses. None of the recombinant viruses induced antibody production, and the expression of interferon (IFNalpha4) and interferon induced genes such as Mx protein and ISG-15 was not different to that of controls. The rIHNV-Gvhsv GFP did not inhibit cellular apoptosis as it was observed in an IHNV inoculated fish cell line. These studies suggest that the recombinant rIHNV-Gvhsv GFP is a promising candidate as a live recombinant vaccine and also provides a good model to further study viral pathogenicity and the molecular basis of protection against these viral infections. 相似文献
15.
Binbin Shao 《Environmental Biology of Fishes》1997,50(1):41-48
I investigated the nest association of pumpkinseeds and golden shiners in an upstate New York pond. Golden shiners spawned
in about one-third of pumpkinseed nests. Field observations indicate that golden shiners preferred to spawn in nests of male
pumpkinseeds that attracted conspecific females, and avoided nests of pumpkinseeds that failed to do so. Golden shiners did
not spawn in any of the nests that I kept clean experimentally after abandonment by male pumpkinseeds, suggesting that a clean
nest without a guarding pumpkinseed is not enough to attract shiners to spawn. In field experiments, shiner eggs that were
placed away from pumpkinseed nests suffered significantly higher losses to predation than those in the nests. This indicates
that golden shiners benefit from spawning in pumpkinseed nests through the protection of their young by the host pumpkinseed.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
16.
Evidence that infectious pancreatic necrosis virus has a genome-linked protein. 总被引:1,自引:0,他引:1
下载免费PDF全文

The double-stranded RNA segments of infectious pancreatic necrosis virus were extracted from virions by a method which avoids proteinase. In contrast to proteinase-treated RNA, such segments (i) exhibited a lower electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels and agarose gels, (ii) had a slightly lower buoyant density, and (iii) demonstrated a marked tendency toward aggregation as observed by electron microscopy. A small amount of protein tightly bound to the RNA could account for the above properties, and a 110,000-dalton protein was liberated from purified virion RNA by sequential digestion with RNase III and RNase A. The amount of radioactivity associated with RNA from virions labeled in vivo with [35S]methionine suggested that an average of 1.4 molecules was bound per RNA segment. Interactions between RNA segments seen in electron micrographs appeared to occur only among the ends of the segments, suggesting these were the exclusive sites of protein attachment. 相似文献
17.
18.
Virus-specific protein synthesis in cells infected by infectious pancreatic necrosis virus. 总被引:2,自引:9,他引:2
下载免费PDF全文

P Dobos 《Journal of virology》1977,21(1):242-258
19.
Active residues and viral substrate cleavage sites of the protease of the birnavirus infectious pancreatic necrosis virus
下载免费PDF全文

The polyprotein of infectious pancreatic necrosis virus (IPNV), a birnavirus, is processed by the viral protease VP4 (also named NS) to generate three polypeptides: pVP2, VP4, and VP3. Site-directed mutagenesis at 42 positions of the IPNV VP4 protein was performed to determine the active site and the important residues for the protease activity. Two residues (serine 633 and lysine 674) were critical for cleavage activity at both the pVP2-VP4 and the VP4-VP3 junctions. Wild-type activity at the pVP2-VP4 junction and a partial block (with an alteration of the cleavage specificity) at the VP4-VP3 junction were observed when replacement occurred at histidines 547 and 679. A similar observation was made when aspartic acid 693 was replaced by leucine, but wild-type activity and specificity were found when substituted by glutamine or asparagine. Sequence comparison between IPNV and two birnavirus (infectious bursal disease virus and Drosophila X virus) VP4s revealed that serine 633 and lysine 674 are conserved in these viruses, in contrast to histidines 547 and 679. The importance of serine 633 and lysine 674 is reminiscent of the protease active site of bacterial leader peptidases and their mitochondrial homologs and of the bacterial LexA-like proteases. Self-cleavage sites of IPNV VP4 were determined at the pVP2-VP4 and VP4-VP3 junctions by N-terminal sequencing and mutagenesis. Two alternative cleavage sites were also identified in the carboxyl domain of pVP2 by cumulative mutagenesis. The results suggest that VP4 cleaves the (Ser/Thr)-X-Ala / (Ser/Ala)-Gly motif, a target sequence with similarities to bacterial leader peptidases and herpesvirus protease cleavage sites. 相似文献