首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrostatic control of proton pumping in cytochrome c oxidase   总被引:2,自引:0,他引:2  
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.  相似文献   

2.
In this paper a study is presented of the characteristics of redox-linked proton ejection exhibited by isolated beef-heart cytochrome c oxidase incorporated in asolectin vesicles. The enzyme was 90% oriented 'right-side out' as in the mitochondrial membrane. The effects on the H+/e- stoichiometry of the modalities of activation of electron flow, the pH of the medium and its ionic composition were investigated. The results obtained show that, whilst ferrocytochrome c pulses of the aerobic oxidase vesicles at neutral pH and in the presence of saturating concentrations of valinomycin and K+ to ensure charge compensation produced H+/e- ratios around 1 (as has been shown previously), oxygen pulses of reduced anaerobic vesicles supplemented with cytochrome c, gave H+/e- ratios around 0.3. The H+/e- ratios exhibited, with both reductant and oxidant pulses, a marked pH dependence. Maximum values were observed at pH 7.0-7.7, which decreased to negligible values at acidic pH with apparent pKa of 6.7-6.3. Mg2+ and Ca2+ caused a marked depression of the H+/e- ratio, which in the presence of these cations and after a few ferrocytochrome pulses, became negligible. Analysis of cytochrome c oxidation showed that the modalities of activation of electron flow and divalent cations exerted profound effects on the kinetics of cytochrome c oxidation by oxidase vesicles. The observations presented seem to provide interesting clues for the nature and mechanism of redox-linked proton ejection in reconstituted cytochrome c oxidase.  相似文献   

3.
Elisa Fadda 《BBA》2008,1777(3):277-284
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.  相似文献   

4.
The stoichiometry of vectorial H+ ejection, coupled to ferrocytochrome c oxidation by a three-subunit bacterial cytochrome c oxidase (EC 1.9.3.1) from the thermophilic bacterium PS3, was measured. Three methods of measuring the H+/e- ratio were applied to proteoliposomes containing a relatively small amount of PS3 cytochrome oxidase, which showed a relatively low oxidation rate and a very low H+ leakage, as follows: (a) simultaneous measurements of H+ ejection and cytochrome c oxidation upon addition of a yeast ferrocytochrome c pulse, which enable us to calculate the H+/e- ratio as H+ ejected per cytochrome c oxidized; (b) computer simulations to find out the fit for the pH meter trace by changing the H+/e- ratio and the velocity constant of leakage; and (c) two successive measurements of initial rates of H+ movement in the absence and presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The H+/e- ratios obtained were 1.39, the 10-s value after ferrocytochrome c addition in (a), 1.35 in (b), and 1.33 in (c). This high H+/e- stoichiometry observed, exceeding 1 and as high as 1.4, is discussed with respect to the controversy of the H+/e- ratio at the cytochrome oxidase site.  相似文献   

5.
Bovine heart cytochrome c oxidase was reconstituted in phospholipid vesicles, and the effect of different non-esterified fatty acids (NEFA) was studied on its proton pump and on the proton permeability of the vesicles. Neither parameter appeared to be affected by concentrations of NEFA known to uncouple oxidative phosphorylation (10 microM). Also the permeability for K+ was not affected by them. The fatty acids caused an increase in the rate of electron transfer in the absence, but not in the presence, of uncoupler and/or valinomycin [diminution of the respiratory-control index (RCI)]. The RCI of 8.7-7.5 was decreased to about 4.5 in the presence of 0.27-10 microM-NEFA. Oleic acid was not effective at the above concentrations. Subunit III-depleted enzyme preparations gave vesicles with an RCI of about 5.5, which was decreased to 4.5 in the presence of NEFA. With both native and subunit III-depleted oxidase the RCI was never decreased to the value of 1 by NEFA, as happens with classical protonophores.  相似文献   

6.
The H+/e- stoichiometry of reconstituted cytochrome c oxidase from bovine kidney, containing subunit VIaL (liver type), is 0.5 under standard conditions but 1.0 on addition of 1% cardiolipin to the lipid mixture (asolectin). Low concentrations of palmitate (half-maximal effect at 0.5 microm), but not laurate, myristate, stearate, oleate, 1-hexadecanol, palmitoyl glycerol and palmitoyl CoA, decreased the H+/e- ratio in the presence of cardiolipin from 1.0 to 0.5, accompanied by an increase of coupled, but not of uncoupled respiration of proteoliposomes. Cardiolipin and palmitate did not influence the H+/e- stoichiometry and respiration of reconstituted cytochrome c oxidase from bovine heart, containing subunit VIaH (heart-type). The H+/e- stoichiometry of the heart enzyme, however, is decreased from 1.0 to 0.5 by 5 mm intraliposomal ATP (instead of 5 mm ADP). It is assumed that palmitate binds to subunit VIaL. The partial uncoupling of proton pumping in cytochrome c oxidase is suggested to participate in mammalian thermogenesis.  相似文献   

7.
In mitochondria and many aerobic bacteria cytochrome c oxidase is the terminal enzyme of the respiratory chain where it catalyses the reduction of oxygen to water. The free energy released in this process is used to translocate (pump) protons across the membrane such that each electron transfer to the catalytic site is accompanied by proton pumping. To investigate the mechanism of electron-proton coupling in cytochrome c oxidase we have studied the pH-dependence of the kinetic deuterium isotope effect of specific reaction steps associated with proton transfer in wild-type and structural variants of cytochrome c oxidases in which amino-acid residues in proton-transfer pathways have been modified. In addition, we have solved the structure of one of these mutant enzymes, where a key component of the proton-transfer machinery, Glu286, was modified to an Asp. The results indicate that the P3-->F3 transition rate is determined by a direct proton-transfer event to the catalytic site. In contrast, the rate of the F3-->O4 transition, which involves simultaneous electron transfer to the catalytic site and is characteristic of any transition during CytcO turnover, is determined by two events with similar rates and different kinetic isotope effects. These reaction steps involve transfer of protons, that are pumped, via a segment of the protein including Glu286 and Arg481.  相似文献   

8.
Experimental observations reveal a number of characteristics of the redox-linked proton ejection from cytochrome c oxidase vesicles, which apparently cannot be explained by a proton pumping activity of the oxidase. These observations seem, on the other hand, to provide useful elements for alternative explanation(s) of the proton ejection. It is proposed here that the process is scalar and not vectorial and can derive from redox-linked rupture of protonated salt-bridges in the oxidase-lipid complex.  相似文献   

9.
Hendrik Hüdig  Gerhart Drews 《BBA》1984,765(2):171-177
Purified b-type cytochrome oxidase from Rhodopseudomonas capsulata was incorporated into phospholipid vesicles to measure proton extrusion with pulses of ferrocytochrome c for one oxidase turnover. In accordance with the pH shift of its midpoint potential, the purified oxidase showed a proton extrusion of 0.24 H+e? with uptake of 1 H+e? from the liposomes for the reduction of oxygen to water. This proton translocation could only be observed in the presence of valinomycin +K+ and was not inhibited by DCCD. Oxidase preparations from the first purification step, which contain other protein compounds especially a membrane-bound cytochrome c but not the ubiquinol-cytochrome c2-oxidoreductase showed a pumping activity of 0.9 H+e?, which was inhibited by DCCD for nearly 75%. Inhibition of the electron transfer was not observed, which could be explained by a ‘molecular slipping’ of proton extrusion and electron transfer. Proton extrusion from two oxidase-turnovers was only 80% of that from one turnover. The proton pumping of the b-type oxidase strongly depended on the enzyme/phospholipid ratio.  相似文献   

10.
In this paper, the mechanism of proton pumping in cytochrome c oxidase is examined. Data on cooperative linkage of vectorial proton translocation to oxido-reduction of Cu(A) and heme a in the CO-inhibited, liposome-reconstituted bovine cytochrome c oxidase are reviewed. Results on proton translocation associated to single-turnover oxido-reduction of the four metal centers in the unliganded, membrane-reconstituted oxidase are also presented. On the basis of these results, X-ray crystallographic structures and spectrometric data for a proton pumping model in cytochrome c oxidase is proposed. This model, which is specifically derived from data available for the bovine cytochrome c oxidase, is intended to illustrate the essential features of cooperative coupling of proton translocation at the low potential redox site. Variants will have to be introduced for those members of the heme copper oxidase family which differ in the redox components of the low potential site and in the amino acid network connected to this site. The model we present describes in detail steps of cooperative coupling of proton pumping at the low potential Cu(A)-heme a site in the bovine enzyme. It is then outlined how this cooperative proton transfer can be thermodynamically and kinetically coupled to the chemistry of oxygen reduction to water at the high potential Cu(B)-heme a(3) center, so as to result in proton pumping, in the turning-over enzyme, against a transmembrane electrochemical proton gradient of some 250 mV.  相似文献   

11.
Energy diagrams and mechanism for proton pumping in cytochrome c oxidase   总被引:1,自引:0,他引:1  
The powerful technique of energy diagrams has been used to analyze the mechanism for proton pumping in cytochrome c oxidase. Energy levels and barriers are derived starting out from recent kinetic experiments for the O to E transition, and are then refined using general criteria and a few additional experimental facts. Both allowed and non-allowed pathways are obtained in this way. A useful requirement is that the forward and backward rate should approach each other for the full membrane gradient. A key finding is that an electron on heme a (or the binuclear center) must have a significant lowering effect on the barrier for proton uptake, in order to prevent backflow from the pump-site to the N-side. While there is no structural gating in the present mechanism, there is thus an electronic gating provided by the electron on heme a. A quantitative analysis of the energy levels in the diagrams, leads to Prop-A of heme a(3) as the most likely position for the pump-site, and the Glu278 region as the place for the transition state for proton uptake. Variations of key redox potentials and pK(a) values during the pumping process are derived for comparison to experiments.  相似文献   

12.
T Nilsson  J Gelles  P M Li  S I Chan 《Biochemistry》1988,27(1):296-301
Cytochrome c oxidase in which the CuA site has been perturbed by extensive modification of the enzyme with the thiol reagent p-(hydroxymercuri)benzoate has been reconstituted into phospholipid vesicles. The reconstituted vesicles lack respiratory control, and the orientation of the enzyme in the vesicles is similar to that of the native cytochrome c oxidase. In the proton translocation assay, the vesicles containing the modified enzyme behave as if they are unusually permeable to protons. When the modified and native proteins were coreconstituted, a substantial portion of the latter became uncoupled as revealed by low respiratory control and low overall proton pumping activity. These results suggest that the modified enzyme catalyzes a passive transport of protons across the membrane. When milder conditions were used for the chemical modification, a majority of the thiols reacted while the CuA site remained largely intact. Reconstitution of such a partially modified cytochrome c oxidase produced vesicles with respiratory control and proton translocating activity close to those of reconstituted native enzyme. It thus appears that the appearance of a proton leak is related to the perturbation of the CuA site. These observations suggest that the structure of CuA may be related to the role of this site in the proton pumping machinery of cytochrome c oxidase.  相似文献   

13.
A study is presented on the effect of zinc binding at the matrix side, on the proton pump of purified liposome reconstituted bovine heart cytochrome c oxidase (COV). Internally trapped Zn(2+) resulted in 50% decoupling of the proton pump at level flow. Analysis of the pH dependence of inhibition by internal Zn(2+) of proton release in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase indicates that Zn(2+) suppresses two of the four proton pumping steps in the cycle, those taking place when the 2 OH(-) produced in the reduction of O(2) at the binuclear center are protonated to 2 H(2)O. This decoupling effect could be associated with Zn(2+) induced conformational alteration of an acid/base cluster linked to heme a(3).  相似文献   

14.
15.
16.
The membrane-bound enzyme cytochrome c oxidase, the terminal member in the respiratory chain, converts oxygen into water and generates an electrochemical gradient by coupling the electron transfer to proton pumping across the membrane. Here we have investigated the dynamics of an excess proton and the surrounding protein environment near the active sites. The multi-state empirical valence bond (MS-EVB) molecular dynamics method was used to simulate the explicit dynamics of proton transfer through the critically important hydrophobic channel between Glu242 (bovine notation) and the D-propionate of heme a3 (PRDa3) for the first time. The results from these molecular dynamics simulations indicate that the PRDa3 can indeed re-orientate and dissociate from Arg438, despite the high stability of such an ion pair, and has the ability to accept protons via bound water molecules. Any large conformational change of the adjacent heme a D-propionate group is, however, sterically blocked directly by the protein. Free energy calculations of the PRDa3 side chain isomerization and the proton translocation between Glu242 and the PRDa3 site have also been performed. The results exhibit a redox state-dependent dynamical behavior and indicate that reduction of the low-spin heme a may initiate internal transfer of the pumped proton from Glu242 to the PRDa3 site.  相似文献   

17.
Alexander Galkin 《BBA》2006,1757(12):1575-1581
NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of aerobic electron transfer. The mechanism how it uses redox energy to pump protons across the bioenergetic membrane is still not understood. Here we determined the pumping stoichiometry of mitochondrial complex I from the strictly aerobic yeast Yarrowia lipolytica. With intact mitochondria, the measured value of indicated that four protons are pumped per NADH oxidized. For purified complex I reconstituted into proteoliposomes we measured a very similar pumping stoichiometry of . This is the first demonstration that the proton pump of complex I stayed fully functional after purification of the enzyme.  相似文献   

18.
NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of aerobic electron transfer. The mechanism how it uses redox energy to pump protons across the bioenergetic membrane is still not understood. Here we determined the pumping stoichiometry of mitochondrial complex I from the strictly aerobic yeast Yarrowia lipolytica. With intact mitochondria, the measured value of 3.8H(+)/2e indicated that four protons are pumped per NADH oxidized. For purified complex I reconstituted into proteoliposomes we measured a very similar pumping stoichiometry of 3.6H(+)/2e . This is the first demonstration that the proton pump of complex I stayed fully functional after purification of the enzyme.  相似文献   

19.
Isolated cytochrome complexes from different sources like beef heart mitochondria, spinach chloroplasts, cyanobacteria, and photosynthetic bacteria were incorporated into liposomes by sonication as revealed by sucrose density gradient centrifugation and electron microscopy. The reconstituted cytochrome complexes show suppressed rates of quinol-cytochrome c/plastocyanin oxidoreduction which can be stimulated by ionophores and uncouplers. In addition, extra proton translocation out of the vesicles and membrane potential generation during electron transport were observed, suggesting a universal mechanism of electron and proton transport through all the tested cytochrome complexes.  相似文献   

20.
The interaction of solvent water protons with the bound paramagnetic metal ions of beef heart cytochrome c oxidase has been examined. The observed proton relaxation rates of enzyme solutions had a negative temperature dependence, indicating a rapid exchange between solvent protons in the coordination sphere of the metal ions and bulk solvent. An analysis of the dependence of the proton relaxation rate on the observation frequency indicated that the correlation time, which modulates the interaction between solvent protons and the unpaired electrons on the metal ions, is due to the electron spin relaxation time of the heme irons of cytochrome c oxidase. This means that at least one of the hemes is exposed to solvent. The proton relaxation rate of the oxidized enzyme was found to be sensitive to changes in ionic strength and to changes in the spin states of the metal ions. Heme a3 was found to be relatively inaccessible to bulk solvent. Partial reduction of the enzyme caused a slight increase in the relaxation rate, which may be due to a change in the antiferromagnetic coupling between two of the bound paramagnetic centers. Further reduction resulted in a decreased relaxation rate, and the fully reduced enzyme was no longer sensitive to changes in ionic strength. The binding of cytochrome c to cytochrome c oxidase had little effect on the proton relaxation rates of oxidized cytochrome oxidase indicating that cytochrome c binding has little effect on solvent accessibility to the metal ion sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号