首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma levels of atrial natriuretic peptide (ANP) and the effect of exogenous ANP on renal function have been studied in newborn and adult rabbits. In order to investigate an age difference in responsiveness to ANP, we studied the renal effects of alpha-human ANP (1-28) administered at the same dose per kg body weight in adult and neonatal rabbits. Plasma basal ANP levels were similar in 18 newborn (4- to 11-day-old) compared to 7 adult rabbits (150 +/- 16 and 151 +/- 28 pg/ml, resp.). Eleven newborn and 11 adult rabbits were anesthetized and mechanically ventilated. After a control period, each animal received an hANP loading dose (3 micrograms/kg i.v.), followed by an infusion of 0.3 micrograms/kg/min. Blood gases remained stable throughout the experiment in both groups. Mean blood pressure decreased in newborn (28.5 +/- 0.8 to 26.2 +/- 1.0 mmHg) and adult (92 +/- 3 to 84 +/- 3 mmHg) animals. Percent hANP-induced changes in renal functions in newborn and adult rabbits were, respectively: urine flow rate: -21 +/- 4% and +57 +/- 8%; urinary sodium excretion: +4 +/- 7% and +81 +/- 11%; glomerular filtration rate (GFR): -19 +/- 4% and -4 +/- 6%; renal blood flow (RBF): -22 +/- 4% and -11 +/- 5%. As expected, diuresis and natriuresis increased in adult rabbits. Failure of hANP to increase natriuresis and diuresis in newborn rabbits could be related to the marked decrease in GFR, receptor immaturity and/or interactions with other hormonal systems.  相似文献   

2.
The effect of altering the volumes of different body fluid compartments on the renal response to atrial natriuretic peptide (ANP) was studied in anesthetized rats before and during administration of the peptide at 170 ng/min. Four different groups were used. In the first (De), reduction of total body water content was induced by 48 h water deprivation. In the second (De+NaCl), an acute intravenous infusion after the same 48 h dehydration was used to restore the extracellular, but not the intracellular, fluid compartment. In the third (Eu+NaCl), euvolemic rats were infused with isotonic saline at the same rate as in group De+NaCl to expand both intravascular and interstitial components of extracellular fluid. In the fourth group (Eu+BSA) an infusion of hyperoncotic (6%) bovine serum albumin in isotonic saline was used to expand the intravascular volume while contracting the interstitial volume. Excretion of water and salt was predictably reduced in the De group compared with the others. This reduction was associated with increased tubular reabsorption, both upstream from the medullary collecting duct and in the duct itself. Administration of ANP did not significantly affect diuresis and saluresis, or tubular transport. By contrast, there were marked and similar diuretic and natriuretic responses to ANP in groups De+NaCl and Eu+NaCl, associated with transport inhibition primarily in the medullary collecting duct. Surprisingly, the rats infused with hyperoncotic solution (Eu+NaCl) also failed to show marked excretory or duct transport responses to ANP. According to the study design, the two nonresponding groups had, respectively, a decreased or a normal intracellular compartment, and a decreased or increased plasma volume. The common feature of both nonresponding groups was a decreased interstitial fluid compartment, whereas the two responding groups had normal or increased interstitial volume. We suggest, therefore, that a replete interstitial fluid compartment is essential for the renal response to ANP.  相似文献   

3.
We determined if nine precirrhotic unanaesthetized dogs with chronic bile duct ligation (CBDL) responded uniformly to atrial natriuretic peptide (ANF) by infusing this peptide sequentially over 8-12 weeks at 175 ng.kg-1.min-1 and observing the natriuretic response. ANF was administered every 2 weeks post-CBDL until the 8th week and given again during the cirrhotic phase with ascites present (10-12 weeks post-CBDL). Sodium balance studies were conducted at similar time intervals. During the control period and at weeks, 2, 6, and 8 post-CBDL all dogs responded to ANF with a significant change in sodium excretion (delta UNaV, 50-240 mu equiv./min). At these times, all dogs were in sodium balance. At week 4 and during the ascitic period, heterogeneity of response to ANF was observed. In the former interval, five dogs responded (delta UNaV,75-230 mu equiv./min) and four did not, while in the latter interval, five dogs responded (delta UNaV, 50-240 mu equiv./min) and three did not (one dog died). In both time periods, there was severe urinary sodium retention (daily UNaV, 11 +/- 3 and 2 +/- 1 mequiv./day, respectively) while the dogs were ingesting 45 mequiv.Na+/day. The heterogeneity of natriuretic response was not correlated to plasma immunoreactive ANF, renin, or aldosterone levels. Plasma volume was significantly expanded from control during both intervals. We conclude that there is transient sodium retention during the 4th week post-CBDL, and that this period is associated with the heterogeneity of natriuretic response to ANF, despite the absence of ascites or edema.  相似文献   

4.
Synthetic alpha-human atrial natriuretic peptide (hANP) was infused continuously at a rate of 80 ng/kg/min for 20 min into normal volunteers and patients with chronic renal failure (CRF) receiving hemodialysis. Blood pressure (BP) decreased significantly both in normals and in patients with CRF. The magnitude and the duration of the decrease, however, were greater in patients with CRF. The plasma aldosterone concentration (PAC) decreased significantly in normals and only minimally in patients with CRF. The half time (T1/2) of plasma hANP in patients with CRF (M +/- SE: 4.5 +/- 0.5 min) was longer than that in normals (1.8 +/- 0.2 min). Moreover, the metabolic clearance rate in patients with CRF (64 +/- 7 ml/kg/min) was less than in normals (150 +/- 20 ml/kg/min). Thus, the T1/2 in plasma of hANP in patients with CRF was noticeably longer than in a normal control group. These findings suggest that hANP suppresses PAC regardless of electrocyte imbalances and/or volume change induced by kidney dysfunction and that the kidney may be important in degrading hANP.  相似文献   

5.
Previous studies have shown that when atrial natriuretic peptide (ANF) is given to anaesthetized dogs with hypovolemic acute pancreatitis, it will produce a diuresis and natriuresis but will not elevate the glomerular filtration rate (GFR). When the same dose of peptide is given to dogs equally hypovolemic (hemorrhage) but without pancreatitis, a brisk increment in GFR occurs. GFR will, however, rise in dogs with pancreatitis in response to other peptides, such as glucagon. In these studies we assessed cGMP excretion as a marker for ANF effect in both normal anaesthetized dogs and dogs with acute experimental pancreatitis. In each group, urinary output and sodium excretion increased significantly, but GFR rose only in the control group. Urinary excretion of cGMP rose equally and dramatically in both control and experimental animals. We conclude that GFR is prevented from rising in dogs with experimental pancreatitis following ANF, but this effect does not depend on depressed cGMP generation.  相似文献   

6.
The initiation and progression of renal interstitial fibrosis (RIF) is a complicated process in which many factors may play an activate role. Among these factors, C-type natriuretic peptide (CNP) is an endothelium-derived hormone and acts in a local, paracrine fashion to regulate vascular smooth muscle tone and proliferation. In this study, we established a rat model of unilateral ureteral obstruction (UUO). CNP expression tends to be higher immediately after ligation and declined at later time points, occurring predominantly in tubular epithelial cells. A high-level CNP may contribute to the elevated expression of natriuretic peptide receptor (NPR)-B in the early phase of UUO. However, the sustained expression of NPR-C and neutral endopeptidase (NEP) observed throughout the study period (that is up to 3 months) helps to, at least partly, explain the subsequent decline of CNP. Thus, NEP and NPRs participate in the regulation of CNP expression in RIF.  相似文献   

7.
Atrial volume, pressure, and heart rate are considered the most important modulators of atrial natriuretic peptide (ANP) release, although their relative role is unknown. Continuous positive-pressure breathing in normal humans may cause atrial pressure and atrial volume to go in opposite directions (increase and decrease, respectively). We utilized this maneuver to differentially manipulate atrial volume and atrial pressure and evaluate the effect on ANP release. Effective filling pressure (atrial pressure minus pericardial pressure) was also monitored, because this variable has been proposed as another modulator of ANP secretion. We measured right atrial (RA) pressure, RA area, esophageal pressure (reflection of pericardial pressure), and RA and peripheral venous ANP in seven healthy adult males at rest and during continuous positive-pressure breathing (19 mmHg for 15 min). Continuous positive-pressure breathing decreased RA area (mean +/- SE, *P less than 0.05) 13.6 +/- 1.1 to 10.5 +/- 0.8* cm2, increased RA pressure 4 +/- 1 to 16 +/- 1* mmHg, increased esophageal pressure 2 +/- 1 to 12 +/- 1* mmHg, and increased effective filling pressure 2 +/- 0 to 4 +/- 1* mmHg. RA ANP increased from 67 +/- 17 to 91 +/- 18* pmol/l and peripheral venous ANP from 43 +/- 4 to 58 +/- 6* pmol/l.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The response of plasma atrial natriuretic peptide (ANP) and urinary cGMP excretion to central hypervolemia induced by water immersion was assessed twice in five healthy male subjects, once while immersed in water to the neck for 3 h and again on a control day. Plasma ANP and urinary cGMP were measured by radioimmunoassay. Compared with the control day, overall change in plasma ANP on the immersion day was significant (p less than 0.05). In response to water immersion, plasma ANP increased from a base-line level of 13.2 +/- 3.1 (mean +/- SEM) to 24.2 +/- 5.5 pg/mL by 0.5 h of immersion and was sustained at that level throughout the immersion period. Plasma ANP returned to the base-line level at 1 h postimmersion. Urinary cGMP excretion increased significantly by 1 h of immersion and was sustained at that level throughout water immersion and 1 h postimmersion (p less than 0.05). During water immersion urine flow, urinary sodium and potassium excretion, free water clearance, and osmolar clearance increased while plasma renin activity, serum aldosterone, and blood pressure fell; all changes were significant (p less than 0.05). Creatinine clearance and hematocrit did not show any significant changes. These data suggest that an increase in plasma ANP may contribute to the natriuretic and diuretic response to central hypervolemia, and that the measurement of urinary cGMP may be a valuable marker of ANP biological responsiveness.  相似文献   

9.
Previous studies have shown that atrial natriuretic factor (ANF) inhibits renin secretion whereas cilazapril blocks angiotensin II generation via converting enzyme inhibition. Both agents enhance renal excretory function. The present study was conducted to test whether the renin-angiotension system is involved in the ANF-induced renal effects. ANF was administered to anesthetized normal rats (n = 16) with or without a simultaneous infusion of cilazapril. Single bolus injections of ANF at doses of 2.5 micrograms/kg and 5.0 micrograms/kg significantly decreased mean arterial blood pressure by 6.8 +/- 2.3% and 9.4 +/- 2.2%, respectively. The corresponding increases in glomerular filtration rate were 5.6 +/- 3.7% and 8.4 +/- 2.8%, in absolute sodium excretion were 55.0 +/- 18.5% and 105.2 +/- 39.9%, and in urine flow were 24.8 +/- 9.3% and 35.6 +/- 14.6%. Intravenous infusion of cilazapril (33 micrograms/kg.min) reduced the arterial blood pressure, elevated the glomerular filtration rate and increased sodium and water excretion. The corresponding doses of ANF administration during continuous infusion of cilazapril further decreased blood pressure by 8.3 +/- 1.9% and 10.9 +/- 5.4%, respectively. However, there were no significant changes in the glomerular filtration rate and sodium and water excretion. The failure of ANF to exhibit a renal effect was irrelevant to the lowering blood pressure induced by cilazapril. These results suggest that reduced endogenous angiotensin II generation contributes to the renal, but not the hypotensive, effect of ANF.  相似文献   

10.
Increase in atrial natriuretic peptide in response to physical exercise   总被引:1,自引:0,他引:1  
Circulating atrial natriuretic peptide (ANP) level was determined during physical exercise to investigate the correlation between changes in ANP level and heart rate increases. Six subjects exercised at a work level of 75% VO2max for 30 min, two also performed two successive exercises at 75% VO2max while two more exercised for longer at 55% VO2max. Plasma ANP levels and heart rate increased in all the exercising subjects. At the end of the exercise, the ANP level fell immediately, suggesting an immediate reduction in ANP secretion by the heart. Pre-exercise values were reached after 30 min. Successive exercises gave the same heart rate related ANP patterns without previous secretory episodes having any effect. These results lead to the conclusion that ANP intervenes in the cardiovascular adjustments to exercise.  相似文献   

11.
The metabolism of atrial natriuretic peptide (ANP) and Cys-105-Phe-106-cleaved ANP (ANP) was studied during constant infusion of 125I-labelled peptides in rats. Analysis of circulating radioactivity indicated rapid clearance of ANP and ANP', with mean half-lives of 0.42 and 1.04 min respectively. H.p.l.c. fractionation of plasma taken during the infusion of labelled ANP revealed the presence of three radioactive fragments, the major one co-eluting with 125I-ANP'. These fragments correspond to cleavage products previously found to be generated in vitro by the action of endopeptidase 24.11 (E-24.11). On evaluating the effects of peptidase inhibitors, a significant increase in the half-life of ANP was observed with phosphoramidon (t1/2 7.8 min) and aprotinin (t1/2 5.4 min). A maximal inhibition of ANP degradation was obtained when both inhibitors were given simultaneously (t1/2 15 min). In blood samples taken during infusion of 125I-ANP and phosphoramidon, the intact peptide accounted for more than 90% of total circulating radioactivity, and no cleavage product was present in detectable amounts. Phosphoramidon had no effect on the metabolism of infused ANP'. In contrast, when 125I-ANP' was infused together with aprotinin, the rate of degradation of the infused peptide was reduced by more than 80%. It is proposed that two different peptidase activities, E-24.11 and a kallikrein-like proteinase, are responsible for the cleavage of ANP in the circulation. The Cys-Phe-cleaved ANP would in turn be degraded by kallikrein and not by E-24.11.  相似文献   

12.
To explore the mechanisms for the natriuretic effects of a neutral endopeptidase inhibitor, candoxatril, the concentration of atrial natriuretic peptide (ANP) and its molecular forms in the urine of Dahl salt-sensitive (S) rats were examined. Candoxatril-induced natriuresis (+120%, p less than 0.05) was associated with a marked increase in the urinary ANP excretion (+1200%, p less than 0.05). Analysis by Sephadex G-50 gel filtration revealed that molecular weight of the major fraction of immunoreactive (ir-) ANP in the plasma of candoxatril-treated Dahl S rats was 3K, whereas that in the urine was 2.5 K. Further analysis by reverse phase high performance liquid chromatography showed that ir-ANP in the plasma of Dahl S rats was alpha-rANP (1-28), while that in the urine from rats treated with candoxatril was alpha-rANP (1-25). These results indicate that candoxatril inhibits the complete degradation of ANP in the kidney, thereby increasing the amount of biologically active ANP reaching the distal nephron and contributing to natriuresis.  相似文献   

13.
In a previous study, we found that a long-term infusion of atrial natriuretic peptide (ANP) produced a sustained reduction of mean arterial pressure and peripheral vascular resistance in two-kidney, one-clip (2K-1C) hypertensive rats, whereas in control rats it had only a transient effect on cardiac output. However, plasma levels of ANP were actually 3-fold higher in normotensive than in hypertensive rats. Previous studies suggested that plasma ANP levels might modulate the vascular reactivity to the peptide. The present study examined whether the lack of chronic hemodynamic effects of ANP in control rats was due to changes in vascular reactivity to the peptide. In control rats, vascular reactivity to ANP was reduced 50% by a chronic infusion of ANP. However, in 2K-1C hypertensive rats, a long-term infusion of ANP had no effect on the vascular reactivity to ANP. The results of the present study indicate that the lack of persistent hemodynamic effects of a chronic infusion of ANP in control rats may be due to a decrease in the vascular reactivity to the peptide. The sustained hypotensive and vasodilatory effects of a long-term infusion of ANP in 2K-1C hypertensive rats are associated with no changes in the vascular reactivity to ANP.  相似文献   

14.
Up‐regulation of atrial natriuretic peptide (ANP) mRNA in the kidneys in several disorders has been demonstrated; however, evidence that ANP synthesized by the kidney exerts a local function has never been produced. Therefore, we investigated whether endogenous ANP could modulate high glucose‐stimulated TGF‐β1, collagen type I and nuclear factor‐κB (NF‐κB) in NRK‐52E cells using transfection of ANP and ANP small interfering RNA (siANP). NRK‐52E cells were grown with or without transfection with ANP plasmid; cells were also transfected with ANP siRNA or control siRNA. These cells were then stimulated with a high glucose concentration to modulate ANP, TGF‐β1, collagen type I, NF‐κB and IκB‐α, and the results showed that ANP, TGF‐β1, collagen type I and NF‐κB significantly increased in untransfected cells, and the transfection of ANP significantly attenuated high glucose‐activated TGF‐β1, collagen I and NF‐κB expression. ANP siRNA knocked‐down ANP but significantly increased TGF‐β1 and collagen I under normal glucose conditions; ANP siRNA decreased IκB‐α but strongly enhanced high glucose‐activated TGF‐β1, collagen type I and NF‐κB. In contrast, medium from ANP‐transfected cells attenuated high glucose‐activated TGF‐β1 and collagen type I expression in NRK‐52E cells transfected with siANP. In conclusion, our results demonstrated that siANP increased activation of TGF‐β1, collagen type I and NF‐κB in NRK‐52E cells under high glucose conditions, and medium from ANP‐transfected cells attenuated high glucose‐activated TGF‐β1 and collagen type I. This is the first study to demonstrate the auto/paracrine action of endogenous ANP in renal tubular cells on the attenuation of hyperglycemia‐activated TGF‐β1 and NF‐κB expression. J. Cell. Physiol. 219: 776–786, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Recent reports presented contradictory results regarding the catabolism of mature atrial (ANP) and brain (BNP) natriuretic peptides in circulation. Especially the role of neutral endopeptidase (NEP) in BNP degradation was conversely discussed. Our present in vitro-studies characterize the NEP-dependent metabolism of ANP and BNP in different tissues via HPLC-analysis using NEP-deficient mice and specific NEP inhibitors. Our results show a strong tissue-dependent degradation pattern of both peptides, which are not only due to the different NEP activities in these tissues. Whereas NEP rapidly degraded ANP, it had no influence in BNP-metabolism. Additional experiments with purified NEP confirmed this result. Moreover, we describe a degradation of ANP and BNP in NEP-deficient- and NEP-inhibited membranes. Consequently, we postulate the existence of at least one further natriuretic peptide (NP) degrading enzyme, which has not been characterized yet. Thus, the commonly accepted model of the natriuretic peptide system with NEP as the central degrading peptidase has to be partly revised. Moreover, the NEP-independent BNP degradation provides an effective means for achieving a beneficial BNP increase in cardiovascular pathology by inhibiting the assumed novel NP-degrading peptidase(s).  相似文献   

16.
Pepsanurin is a peptidic fraction resulting from pepsin digestion of plasma globulins, that inhibits ANP renal excretory actions. We studied whether kinin-like peptides mediate the anti-ANP effect by testing if pepsanurin: 1) was blocked by the kinin B2 receptor antagonist HOE-140, 2) was produced from kininogen, and 3) was mimicked by bradykinin. Anti-ANP activity was assessed in anesthetized female rats by comparing the excretory response to two ANP boluses (0.5 microgram i.v.) given before and after i.p. injection of test samples. Pepsanurin from human or rat plasma (1-5 mL/kg), and bradykinin (5-20 micrograms/kg), dose-relatedly inhibited ANP-induced water, sodium, potassium and cyclic GMP urinary excretion, without affecting arterial blood pressure. The same effect was exerted by pepsin hydrolysates of purified kininogen, whereas hydrolysates of kininogen-free plasma had no effect. HOE-140 (5 micrograms, i.v.) did not alter baseline, or ANP-induced excretion, but blocked the anti-ANP effects of pepsanurin. Histamine (15 micrograms/kg) plus seroalbumin hydrolysates did not affect ANP response, despite inducing larger peritoneal fluid accumulation as compared with pepsanurin or bradykinin. We concluded that kinins cleaved from kininogen mediate the anti-ANP effects of pepsanurin by activation of kinin B2 receptors, independently of changes in systemic arterial pressure or peritoneal fluid sequestration.  相似文献   

17.
《Peptides》1988,9(5):1129-1135
The renal hemodynamic and excretory effects of intrarenal infusions of synthetic β-human calcitonin gene-related peptide (β-hCGRP) were examined in normal sodium replete dogs (Group 1, n=6), in sodium replete dogs pretreated with indomethacin (Group 2, n=6), and in sodium deplete dogs (Group 3, n=5). In all groups of anesthetized dogs β-hCGRP was infused at 5 and 10 ng·kg−1·min−1 for 50 min periods each. In the sodium replete group, β-hCGRP infusions strikingly increased renal blood flow, but this response was markedly attenuated in the other 2 groups. During β-hCGRP infusions, the clearance of creatinine also increased significantly in the sodium replete and deplete groups, but not in the indomethacin pretreated animals. No consistent changes in urinary sodium excretion or plasma renin activity were observed with β-hCGRP infusions in any of the 3 groups of dogs. These results indicate that β-hCGRP is a potent renal vasodilator and can increase renal blood flow and glomerular filtration. The data also suggest that the renal hemodynamic actions of β-hCGRP are partially mediated by renal prostaglandins, and that the vasodilatory effects of β-hCGRP may be antagonized by high circulating levels of endogenous angiotensin II in sodium-volume depletion. Finally, β-hCGRP does not appear to have significant actions on urinary sodium excretion or plasma renin activity under the experimental conditions of the present study.  相似文献   

18.
The stimulatory effect of vasomodulatory natriuretic peptide hormones on macrophages and peripheral blood leucocytes in mammals is well-established. However, the relationship in lower vertebrates has not been characterised. Expression of atrial natriuretic peptide, ventricular natriuretic peptide and C-type natriuretic peptide-1, and the guanylyl cyclase-linked (GC) natriuretic peptide receptor-A and -B-type receptors (NPR-A and NPR-B, respectively) was determined by PCR from the mRNA of rainbow trout head kidney leucocytes yielding gene fragments with 100% homology to the same respective natriuretic peptide and NPR-A and -B sequences obtained from other rainbow trout tissues. A mixed population of isolated rainbow trout head kidney leucocytes was stimulated in vitro with trout atrial natriuretic peptide (specific NPR-A agonist) and trout C-type natriuretic peptide (NPR-A and -B agonist) as well as the cGMP agonist 8-bromo-cGMP or the GC inhibitor 8-bromo-phenyl-eutheno-cGMP. Respiratory burst was stimulated by trout atrial natriuretic peptide, trout C-type natriuretic peptide-1 and 8-bromo-cGMP in a dose dependant manner with the highest activity as a result of stimulation with trout C-type natriuretic peptide-1 in excess of that achieved by phorbol myristate acetate (PMA). Equimolar concentrations of the inhibitor, inhibited the respiratory burst caused by the natriuretic peptides and 8-bromo-cGMP. The natriuretic peptide receptors on rainbow trout head kidney leucocytes appear to have a stimulatory function with regard to respiratory burst that is activated through a cGMP second messenger pathway and the natriuretic peptides expressed in the head kidney leucocytes may well act in a paracrine/autocrine manner.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号