首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
Crude mitochondrial fractions were isolated by differential centrifugation of rat liver homogenates. Subfractionation of these fractions on self-generating continuous Percoll gradients resulted in clearcut separation of peroxisomes from mitochondria. Hexacosanoic acid beta-oxidation was present mainly in peroxisomal fractions whereas hexacosanoyl CoA oxidation was present in the mitochondrial as well as in the peroxisomal fractions. The presence of much greater hexacosanoyl CoA synthetase activity in the purified preparations of microsomes and peroxisomes compared to mitochondria, suggests that the synthesis of coenzyme A derivatives of very long chain fatty acids (VLCFA) is limited in mitochondria. We postulate that a specific VLCFA CoA synthetase may be required to effectively convert VLCFA to VLCFA CoA in the cell. This specific synthetase activity is absent from the mitochondrial membrane, but present in the peroxisomal and the microsomal membranes. We postulate that substrate specificity and the subcellular localization of the specific VLCFA CoA synthetase directs and regulates VLCFA oxidation in the cell.  相似文献   

2.
The metabolism of [1-14C]lignoceric acid (C24:0) and [1-14C]tetracosatetraenoic acid (C24:4, n-6) was studied in normal skin fibroblast cultures and in cultures from patients with defects in peroxisomal beta-oxidation (but normal peroxisomal numbers). Cells from X-linked adrenoleukodystrophy (ALD) patients with a presumed defect in a peroxisomal acyl-CoA synthetase, specific for fatty acids of carbon chain lengths greater than 22 (very-long-chain fatty acids; VLCFA), showed a relatively normal production of radiolabelled CO2 and water-soluble metabolites from [1-14C]C24:0. However, the products of synthesis from acetate de novo (released by beta-oxidation), i.e. C16 and C18 fatty acids, were decreased, and carbon chain elongation of the fatty acid was increased. In contrast, cell lines from two patients with an unidentified lesion in peroxisomal beta-oxidation (peroxisomal disease, PD) showed a marked deficiency in CO2 and water-soluble metabolite production, a decreased synthesis of C16 and C18 fatty acids and an increase in carbon chain elongation. The relatively normal beta-oxidation activity of ALD cells appears to be related to low uptake of substrate, as a defect in beta-oxidation is apparent when measurements are performed on cell suspensions under high uptake conditions. Oxidation of [1-14C]C24:4 was relatively normal in ALD cells and in the cells from one PD patient but abnormal in those from the other. Our data suggest that, despite the deficiency in VLCFA CoA synthetase, ALD cells retain a near normal ability to oxidize both saturated and polyunsaturated VLCFA under some culture conditions. However, acetate released by beta-oxidation of the saturated VLCFA and, to a much lesser degree, the polyunsaturated VLCFA, appears to be used preferentially for the production of CO2 and water-soluble products, and acetate availability for fatty acid synthesis in other subcellular compartments is markedly decreased. It is likely that the increased carbon chain elongation of the saturated VLCFA which is also observed reflects the increased availability of substrate (C24:0) and/or an increase in microsomal elongation activity in ALD cells.  相似文献   

3.
The beta-oxidation of stearic acid and of alpha- and gamma-methyl isoprenoid-derived fatty acids (pristanic and tetramethylheptadecanoic acids, respectively) was investigated in normal skin fibroblasts and in fibroblasts from patients with inherited defects in peroxisomal biogenesis. Stearic acid beta-oxidation by normal fibroblast homogenates was several-fold greater compared to the oxidation of the two branched chain fatty acids. The effect of phosphatidylcholine, alpha-cyclodextrin, and bovine serum albumin on the three activities suggests that different enzymes are involved in the beta-oxidation of straight chain and branched chain fatty acids. Homogenates of fibroblasts from patients with a deficiency in peroxisomes (Zellweger syndrome and infantile Refsum's disease) showed a normal ability to beta-oxidize stearic acid, but the oxidation of pristanic and tetramethylheptadecanoic acid was decreased. Concomitantly, 14CO2 production from the branched chain fatty acids by Zellweger fibroblasts in culture (but not from stearic acid) was greatly diminished. The Zellweger fibroblasts also showed a marked reduction in the amount of water-soluble metabolites from the radiolabeled branched chain fatty acids that are released into the culture medium. The data presented indicate that the oxidation of alpha- and gamma-methyl isoprenoid-derived fatty acids takes place largely in peroxisomes in human skin fibroblasts.  相似文献   

4.
Human skin fibroblasts in suspension are able to degrade [1-14C]-labeled alpha- and gamma-methyl branched chain fatty acids such as pristanic and homophytanic acid. Pristanic acid was converted to propionyl-CoA, whereas homophytanic acid was beta-oxidized to acetyl-CoA. Incubation of skin fibroblasts with [1-14C]-labeled fatty acids for longer periods produced radiolabeled carbon dioxide, presumably by further degradation of acetyl-CoA or propionyl-CoA generated by beta-oxidation. Under the same conditions similar products were produced from very long chain fatty acids, such as lignoceric acid. Inclusion of digitonin (> 10 micrograms/ml) in the incubations strongly inhibited carbon dioxide production but stimulated acetyl-CoA or propionyl-CoA production from fatty acids. ATP, Mg2+, coenzyme A, NAD+ and L-carnitine stimulated acetyl-CoA or propionyl-CoA production from [1-14C]-labeled fatty acids in skin fibroblast suspensions. Branched chain fatty acid beta-oxidation was reduced in peroxisome-deficient cells (Zellweger syndrome and infantile Refsum's disease) but they were beta-oxidized normally in cells from patients with X-linked adrenoleukodystrophy (ALD). Under the same conditions, lignoceric acid beta-oxidation was impaired in the above three peroxisomal disease states. These results provide evidence that branched chain fatty acid, as well as very long chain fatty acid, beta-oxidation occurs only in peroxisomes. As the defect in X-linked ALD is in a peroxisomal fatty acyl-CoA synthetase, which is believed to be specific for very long chain fatty acids, we postulate that different synthetases are involved in the activation of branched chain and very long chain fatty acids in peroxisomes.  相似文献   

5.
Crude subcellular fractions were prepared from adult rat brains by differential centrifugation of brain homogenates. Greater than 98% of the cellular mitochondrial marker enzyme activity sedimented in the heavy and light mitochondrial pellets, and less than 1% of the activity sedimented in microsomal pellets. Lysosomal marker enzyme activities mainly (71-78% of cellular activity) sedimented in the heavy and light mitochondrial pellets. Significant amounts of the lysosomal marker enzyme activity also sedimented in the crude microsomal pellets (9-13% of total) and high-speed supernatants (14-16% of total). The specific activities of microsomal and peroxisomal marker enzyme activities were highest in the crude microsomal pellets. Fractionation of the crude microsomal pellets on Nycodenz gradients resulted in the separation of the bulk of the remaining mitochondrial, lysosomal, and microsomal enzyme activities from peroxisomes. Fatty acyl-CoA synthetase activities separated on Nycodenz gradients as two distinct peaks, and the minor peak of the activities was in the peroxisomal enriched fraction. Fatty acid beta-oxidation activities also separated as two distinct peaks, and the activities were highest in the peroxisomal enriched fractions. Mitochondria were purified from the heavy mitochondrial pellets by Percoll density gradients. Fatty acyl-CoA synthetase and fatty acid beta-oxidation activities were present in both the purified mitochondrial and peroxisomal enriched fractions. Stearoyl-CoA synthetase activities were severalfold greater compared to lignoceroyl-CoA synthetase, and stearic acid beta-oxidation was severalfold greater compared to lignoceric acid beta-oxidation in purified mitochondrial and peroxisomal enriched fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The beta-oxidation of lignoceric acid (C24:0), hexacosanoic acid (C26:0), and their coenzyme A derivatives was investigated in human skin fibroblast homogenates. The cofactor requirements for oxidation of lignoceric acid and hexacosanoic acid were identical but were different from their coenzyme A derivatives. For example, lignoceric acid and hexacosanoic acid oxidation was strictly ATP dependent whereas the oxidation of the corresponding coenzyme A derivatives was ATP independent. Also the rate of oxidation of coenzyme A derivatives of lignoceric acid or hexacosanoic acid was much higher compared to the free fatty acids. In patients with Zellweger's syndrome, X-linked adrenoleukodystrophy and infantile Refsum's disease, the beta-oxidation of lignoceric and hexacosanoic acids was defective whereas the oxidation of their corresponding coenzyme A derivatives was nearly normal. The results presented in this communication suggest strongly that the beta-oxidation of very-long-chain fatty acids occurs exclusively in peroxisomes. However, the coenzyme A derivatives of very-long-chain fatty acids can be oxidized in mitochondria as well as in peroxisomes. The inability of the mitochondrial system to oxidize free fatty acids may be due to its inability to convert them to their corresponding coenzyme A derivatives. Our results suggest that a specific very-long-chain fatty acyl CoA synthetase may be required for the activation of the free fatty acids and that this synthetase may be deficient in patients with Zellweger's syndrome and possibly X-linked adrenoleukodystrophy, as well. The results presented suggest that substrate specificity and the subcellular localization of the synthetase may regulate the beta-oxidation of very-long-chain fatty acids in the cell.  相似文献   

7.
Role of ALDP (ABCD1) and mitochondria in X-linked adrenoleukodystrophy   总被引:12,自引:0,他引:12       下载免费PDF全文
Peroxisomal disorders have been associated with malfunction of peroxisomal metabolic pathways, but the pathogenesis of these disorders is largely unknown. X-linked adrenoleukodystrophy (X-ALD) is associated with elevated levels of very-long-chain fatty acids (VLCFA; C(>22:0)) that have been attributed to reduced peroxisomal VLCFA beta-oxidation activity. Previously, our laboratory and others have reported elevated VLCFA levels and reduced peroxisomal VLCFA beta-oxidation in human and mouse X-ALD fibroblasts. In this study, we found normal levels of peroxisomal VLCFA beta-oxidation in tissues from ALD mice with elevated VLCFA levels. Treatment of ALD mice with pharmacological agents resulted in decreased VLCFA levels without a change in VLCFA beta-oxidation activity. These data indicate that ALDP does not determine the rate of VLCFA beta-oxidation and that VLCFA levels are not determined by the rate of VLCFA beta-oxidation. The rate of peroxisomal VLCFA beta-oxidation in human and mouse fibroblasts in vitro is affected by the rate of mitochondrial long-chain fatty acid beta-oxidation. We hypothesize that ALDP facilitates the interaction between peroxisomes and mitochondria, resulting, when ALDP is deficient in X-ALD, in increased VLCFA accumulation despite normal peroxisomal VLCFA beta-oxidation in ALD mouse tissues. In support of this hypothesis, mitochondrial structural abnormalities were observed in adrenal cortical cells of ALD mice.  相似文献   

8.
Fatty acid transport protein 4 (FATP4) is a fatty acyl-CoA synthetase that preferentially activates very long chain fatty acid substrates, such as C24:0, to their CoA derivatives. To gain better insight into the physiological functions of FATP4, we established dermal fibroblast cell lines from FATP4-deficient wrinkle-free mice and wild type (w.t.) mice. FATP4 -/- fibroblasts had no detectable FATP4 protein by Western blot. Compared with w.t. fibroblasts, cells lacking FATP4 had an 83% decrease in C24:0 activation. Peroxisomal degradation of C24:0 was reduced by 58%, and rates of C24:0 incorporation into major phospholipid species (54-64% decrease), triacylglycerol (64% decrease), and cholesterol esters (58% decrease) were significantly diminished. Because these lipid metabolic processes take place in different subcellular organelles, we used immunofluorescence and Western blotting of subcellular fractions to investigate the distribution of FATP4 protein and measured enzyme activity in fractions from w.t. and FATP4 -/- fibroblasts. FATP4 protein and acyl-CoA synthetase activity localized to multiple organelles, including mitochondria, peroxisomes, endoplasmic reticulum, and the mitochondria-associated membrane fraction. We conclude that in murine skin fibroblasts, FATP4 is the major enzyme producing very long chain fatty acid-CoA for lipid metabolic pathways. Although FATP4 deficiency primarily affected very long chain fatty acid metabolism, mutant fibroblasts also showed reduced uptake of a fluorescent long chain fatty acid and reduced levels of long chain polyunsaturated fatty acids. FATP4-deficient cells also contained abnormal neutral lipid droplets. These additional defects indicate that metabolic abnormalities in these cells are not limited to very long chain fatty acids.  相似文献   

9.
Mouse very long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy   总被引:5,自引:0,他引:5  
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by accumulation of very long-chain fatty acids (VLCFA). This accumulation has been attributed to decreased VLCFA beta-oxidation and peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity. The X-ALD gene, ABCD1, encodes a peroxisomal membrane ATP binding cassette transporter, ALDP, that is hypothesized to affect VLCS activity in peroxisomes by direct interaction with the VLCS enzyme. Recently, a VLCS gene that encodes a protein with significant sequence identity to known rat and human peroxisomal VLCS protein has been identified in mice. We find that the mouse VLCS gene (Vlcs) encodes an enzyme (Vlcs) with VLCS activity that localizes to peroxisomes and is expressed in X-ALD target tissues. We show that the expression of Vlcs in the peroxisomes of X-ALD mouse fibroblasts improves VLCFA beta-oxidation in these cells, implying a role for this enzyme in the biochemical abnormality of X-ALD. X-ALD mice, which accumulate VLCFA in tissues, show no change in the expression of Vlcs, the subcellular localization of Vlcs, or general peroxisomal VLCS activity. These observations imply that ALDP is not necessary for the proper expression or localization of Vlcs protein, and the control of VLCFA levels does not depend on the direct interaction of Vlcs and ALDP.  相似文献   

10.
Rat liver peroxisomes oxidized palmitate in the presence of ATP, CoA and NAD+, and the rate of palmitate oxidation exceeded that of palmitoyl-CoA oxidation. Acyl-CoA synthetase [acid: CoA ligase (AMP-forming); EC 6.2.1.3] was found in peroxisomes. The substrate specificity of the peroxisomal synthetase towards fatty acids with various carbon chain lengths was similar to that of the microsomal enzyme. The peroxisomal synthetase activity toward palmitate (40--100 nmol/min per mg protein) was higher than the rate of palmitate oxidation by the peroxisomal system (0.7--1.7 nmol/min per mg protein). The data show that peroxisomes activate long chain fatty acids and oxidize their acyl-CoA derivatives.  相似文献   

11.
According to current views, peroxisomal beta-oxidation is organized as two parallel pathways: the classical pathway that is responsible for the degradation of straight chain fatty acids and a more recently identified pathway that degrades branched chain fatty acids and bile acid intermediates. Multifunctional protein-2 (MFP-2), also called d-bifunctional protein, catalyzes the second (hydration) and third (dehydrogenation) reactions of the latter pathway. In order to further clarify the physiological role of this enzyme in the degradation of fatty carboxylates, MFP-2 knockout mice were generated. MFP-2 deficiency caused a severe growth retardation during the first weeks of life, resulting in the premature death of one-third of the MFP-2(-/-) mice. Furthermore, MFP-2-deficient mice accumulated VLCFA in brain and liver phospholipids, immature C(27) bile acids in bile, and, after supplementation with phytol, pristanic and phytanic acid in liver triacylglycerols. These changes correlated with a severe impairment of peroxisomal beta-oxidation of very long straight chain fatty acids (C(24)), 2-methyl-branched chain fatty acids, and the bile acid intermediate trihydroxycoprostanic acid in fibroblast cultures or liver homogenates derived from the MFP-2 knockout mice. In contrast, peroxisomal beta-oxidation of long straight chain fatty acids (C(16)) was enhanced in liver tissue from MFP-2(-/-) mice, due to the up-regulation of the enzymes of the classical peroxisomal beta-oxidation pathway. The present data indicate that MFP-2 is not only essential for the degradation of 2-methyl-branched fatty acids and the bile acid intermediates di- and trihydroxycoprostanic acid but also for the breakdown of very long chain fatty acids.  相似文献   

12.
Highly purified peroxisomes were obtained from the liver of untreated rats, and rates of peroxisomal beta-oxidation were measured using fatty acyl-CoAs differing in chain length and degree of unsaturation. A 20–24-fold purification of peroxisomes, indicated by the specific activities of the marker enzymes catalase and urate oxidase, respectively, was obtained from crude liver homogenate using differential centrifugation techniques followed by a 30% Nycodenz gradient separation. The use of a 30% Nycodenz gradient in the final step of purification was extremely effective (e.g. 5.5-fold reduction) in removing lysosomal contamination. The rate of peroxisomal beta-oxidation with lauroyl-CoA (C12:0) as substrate was the highest of all fatty acyl-CoAs tested. Butyryl-CoA (C4:0) was not oxidized by purified peroxisomes. In general, as chain length of the fatty acyl-CoAs increased above 12 carbons, the rates of beta-oxidation decreased.  相似文献   

13.
In the present study we investigated peroxisomal functions in cultured human muscle cells from control subjects and from a patient with the Zellweger syndrome, a genetic disease characterized by the absence of morphologically distinguishable peroxisomes in liver and kidney. In homogenates of cultured muscle cells from control subjects, catalase is contained within subcellular particles, acyl-CoA:dihydroxyacetonephosphate acyltransferase activity is present and palmitoyl-CoA can be oxidized by a peroxisomal beta-oxidative pathway; these findings are indicative of the presence of peroxisomes in the cells. In homogenates of cultured muscle cells from the patient with the Zellweger syndrome, acyl-CoA:dihydroxyacetonephosphate acyltransferase activity was deficient, peroxisomal beta-oxidation of palmitoyl-CoA was impaired and catalase was not particle-bound. These findings indicate that functional peroxisomes are absent in muscle from patients with the Zellweger syndrome. We conclude that cultured human muscle cells can be used as a model system to study peroxisomal functions in muscle and the consequences for this tissue of a generalized dysfunction of peroxisomes.  相似文献   

14.
Sterol carrier protein X (SCPx) plays a crucial role in the peroxisomal oxidation of branched-chain fatty acids. To investigate whether patients with an unresolved defect in peroxisomal beta-oxidation are deficient for SCPx, we developed a novel and specific assay to measure the activity of SCPx in both liver and fibroblast homogenates. The substrate used in the assay, 3alpha, 7alpha,12alpha-trihydroxy-24-keto-5beta-cholestanoy l-CoA (24-keto-THC-CoA), is produced by preincubating the enoyl-CoA of the bile acid intermediate THCA with a lysate from the yeast Saccharomyces cerevisiae expressing human D-bifunctional protein. After the preincubation period, liver or fibroblast homogenate is added plus CoASH, and the production of choloyl-CoA is determined by HPLC. The specificity of the assay was demonstrated by the finding of a full deficiency in fibroblasts from an SCPx knock-out mouse. In addition to SCPx activity measurements in fibroblasts from patients with a defect in peroxisomal beta-oxidation of unresolved etiology, we studied the stability and activity of SCPx in fibroblasts from patients with Zellweger syndrome, which lack functional peroxisomes. We found that SCPx is not only stable in the cytosol, but displays a higher activity in fibroblasts from patients with Zellweger syndrome than in control fibroblasts. Furthermore, in all patients studied with a defect in peroxisomal beta-oxidation of unknown origin, SCPx was found to be normally active, indicating that human SCPx deficiency remains to be identified.  相似文献   

15.
The polyenoic fatty acids with carbon chain lengths from 26 to 38 (very-long-chain fatty acids, VLCFA) previously detected in abnormal amounts in Zellweger syndrome brain have been shown to be n-6 derivatives and therefore probably derived by chain elongation of shorter-chain n-6 fatty acids such as linoleic acid and arachidonic acid. Polyenoic VLCFA are also present in Zellweger syndrome liver, but this tissue differs significantly from brain in that the saturated and mono-unsaturated derivatives are the major VLCFA. Zellweger syndrome brain polyenoic VLCFA are present in the neutral lipids predominantly in cholesterol esters, with smaller amounts in the non-esterified fatty acid and triacylglycerol fractions. These fatty acids are barely detectable in any of the major phospholipids, but are present in significant amounts in an unidentified minor phospholipid. The polyenoic VLCFA composition of this lipid differs markedly from that observed for all other lipids, as it contains high proportions of pentaenoic and hexaenoic fatty acids with 34, 36 and 38 carbon atoms. A polar lipid with the chromatographic properties in normal brain contains similar fatty acids. It is postulated that the polyenoic VLCFA may play an important role in normal brain and accumulate in Zellweger syndrome brain because of a deficiency in the peroxisomal beta-oxidation pathway, although a possible peroxisomal role in the control of carbon-chain elongation cannot be discounted.  相似文献   

16.
Peroxisomes play an essential role in human cellular metabolism. Peroxisomal disorders, a group of genetic diseases caused by peroxisomal dysfunction, can be classified in three groups namely a group of disorders with a general peroxisomal dysfunction (Zellweger syndrome; infantile type of Refsum's disease; neonatal adrenoleukodystrophy, hyperpipecolic acidemia), a group with an impairment of some, but not all peroxisomal functions (rhizomelic chondrodysplasia punctata) and a group with impairment of only a single peroxisomal function (acatalasemia, X-linked adrenoleukodystrophy/adrenomyeloneuropathy; adult type of Refsum's disease; peroxisomal thiolase deficiency; peroxisomal acyl-CoA oxidase deficiency; hyperoxaluria type I). In this paper we report the typical findings in ophthalmological examinations of patients suspected of Zellweger syndrome contributing to the clinical diagnosis of this disorder. In biochemical studies using a rapid gaschromatographic detection method for plasmalogens we confirmed that plasmalogens are severely deficient in all tissues of Zellweger patients studied. Moreover, using a recently developed radiochemical method, de novo plasmalogen biosynthesis was found to be impaired in fibroblasts from patients with Zellweger syndrome, infantile Refsum's disease, neonatal adrenoleukodystrophy or rhizomelic chondrodysplasia punctata, this in contrast to X-linked chondrodysplasia in which a normal plasmalogen biosynthesis was found. From the literature it is known that peroxisomal beta-oxidation with both long-chain (C16:0) and very long-chain (C24:0; C26:0) fatty acids is deficient in Zellweger syndrome, infantile Refsum's disease and neonatal adrenoleukodystrophy. In contrast, in X-linked adrenoleukodystrophy only the peroxisomal beta-oxidation of the very long chain fatty acids is impaired. As a result very long-chain fatty acids accumulate in tissues, plasma, fibroblasts and amniotic fluid cells from patients with Zellweger syndrome, infantile Refsum's disease, neonatal and X-linked adrenoleukodystrophy, but not in rhizomelic chondrodysplasia punctata or X-linked chondrodysplasia. Finally we confirmed that the peroxisomal enzyme alanine glyoxylate aminotransferase is severely deficient in liver from a patient that died because of the neonatal type of hyperoxaluria type I, but not in liver from Zellweger patients.  相似文献   

17.
In the Zellweger syndrome where peroxisomes are absent, extremely long fatty acids (24:0 and 26:0) accumulate in tissues suggesting that these fatty acids are normally beta-oxidized in the peroxisomes. Previous studies with rat hepatocytes suggest that peroxisomes are also important in oxidation of C22 unsaturated fatty acids. This study shows that cultured fibroblasts from normal human controls shorten [14-14C]erucic acid (22:1(n-9)) to oleic acid (18:1(n-9)) efficiently while Zellweger fibroblasts are deficient in chain-shortening. [2-14C]Adrenic acid (22:4(n-6)) is oxidized in control fibroblasts probably by chain-shortening to arachidonic acid (20:4(n-6)). Only a little adrenic acid is oxidized in Zellweger fibroblasts. Linolenic acid (18:3(n-3)) is desaturated and chain-elongated in both control and Zellweger fibroblasts. The results support the view that peroxisomes play a normal physiological role in the shortening of C22 unsaturated fatty acids and that this function is deficient in Zellweger fibroblasts.  相似文献   

18.
Petroni A  Blasevich M  Uziel G 《Life sciences》2003,73(12):1567-1575
X-Adrenoleukodystrophy (X-ALD) is a peroxisomal disorder associated with the abnormal accumulation of very long chain fatty acids (VLCFA) in plasma and tissues. We have demonstrated that the androgen dihydrotestosterone (DHT) and 5 alpha-androstan-3 alpha,17 beta-diol (3 alpha-diol) have favorable effect on VLCFA metabolism. We have investigated the effect of androgens on peroxisomal beta-oxidation, the incorporation of labelled lignoceric acid into cholesterol esters and VLCFA elongation, in cultured skin-fibroblasts from control and X-ALD patients. The androgens significantly increased peroxisomal beta-oxidation in X-ALD fibroblasts although VLCFA levels were not normalized. The major effect was on the incorporation of labelled lignoceric acid into cholesterol esters, since the enhanced lignoceric acid incorporation into cholesterol ester fraction, which occurred in X-ALD fibroblasts, was reduced towards normal values. In contrast, the androgens had no effect on the elongation pathway.  相似文献   

19.
This work analyzes the thermogenic flux induced by the very long-chain fatty acid (VLCFA) lignoceric acid (C24:0) in isolated peroxisomes. Specific metabolic alterations of peroxisomes are related to a variety of disorders, the most frequent one being the neurodegenerative inherited disease X-linked adrenoleukodystrophy (X-ALD). A peroxisomal transport protein is mutated in this disorder. Due to reduced catabolism and enhanced fatty acid (FA) elongation, VLCFA accumulates in plasma and in all tissues, contributing to the clinical manifestations of this disorder. During peroxisomal metabolism, heat is produced but it is considered lost. Instead, it is a form of energy that could play a role in molecular mechanisms of this pathology and other neurodegenerative disorders. The thermogenic flux induced by lignoceric acid (C24:0) was estimated by isothermal titration calorimetry in peroxisomes isolated from HepG2 cells and from fibroblasts obtained from patients with X-ALD and healthy subjects. Heat flux induced by lignoceric acid in HepG2 peroxisomes was exothermic, indicating normal peroxisomal metabolism. In X-ALD peroxisomes the heat flux was endothermic, indicating the requirement of heat/energy, possibly for cellular metabolism. In fibroblasts from healthy subjects, the effect was less pronounced than in HepG2, a kind of cell known to have greater FA metabolism than fibroblasts. Our hypothesis is that heat is not lost but it could act as an activator, for example on the heat-sensitive pathway related to TRVP2 receptors. To investigate this hypothesis we focused on peroxisomal metabolism, considering that impaired heat generation could contribute to the development of peroxisomal neurodegenerative disorders.  相似文献   

20.
X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder and is characterized by a striking and unpredictable variation in phenotypic expression. It ranges from a rapidly progressive and fatal cerebral demyelinating disease in childhood (CCALD), to the milder slowly progressive form in adulthood (AMN). X-ALD is caused by mutations in the ABCD1 gene that encodes a peroxisomal membrane located ABC half-transporter named ALDP. Mutations in ALDP result in reduced beta-oxidation of very long-chain fatty acids (VLCFA, >22 carbon atoms) in peroxisomes and elevated levels of VLCFA in plasma and tissues. Previously, it has been shown that culturing skin fibroblasts from X-ALD patients in lipoprotein-deficient medium results in reduced VLCFA levels and increased expression of the functionally redundant ALD-related protein (ALDRP). The aim of this study was to further resolve the interaction between cholesterol and VLCFA metabolism in X-ALD. Our data show that the reduction in 26:0 in X-ALD fibroblasts grown in lipoprotein-deficient culture medium (free of cholesterol) is offset by a significant increase in both the level and synthesis of 26:1. We also demonstrate that cholesterol-deprivation results in increased expression of stearoyl-CoA-desaturase (SCD) and increased desaturation of 18:0 to 18:1. Finally, there was no increase in [1-(14)C]-26:0 beta-oxidation. Taken together, we conclude that cholesterol-deprivation reduces saturated VLCFA, but increases mono-unsaturated VLCFA. These data may have implications for treatment of X-ALD patients with lovastatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号