首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An understanding of volatilization of nitrogen (N) from leavesof crop and weed species may be important to the improvementof crop production. Foliar N loss (both reduced and oxidizedforms), net CO2 uptake, and transpiration rates were measuredconcomitantly at 30°C on soyabean (Glycine max (L.) Merr.)and sorghum (Sorghum bicolor (L.) Moench) leaves at low (1 percent), ambient (20 per cent), and high (40 per cent) levelsof oxygen. In soyabeans, maximum reduced and total N losseswere found at the highest O2 concentration, and the lowest Nlosses were measured at the lowest O2 level. Net CO2 assimilationwas significantly reduced with increasing O2 during two of threesamplings. Quantities of oxidized N lost were not altered. Sorghumshowed no significant effects from O2 on N loss or net CO2 assimilation.The increased ammonia released from soyabean foliage in thepresence of higher concentration of O2 probably affects metabolicpathways that contribute to the total reduced N volatilization. Glycine max, Sorghum bicolor, CO2 assimilation, nitrogen loss  相似文献   

2.
Diurnal temperature fluctuations induced change in soya bean-pod[Glycine max (L.) Merr.] carbon exchange rate (CER, where positiveCER represents CO2 evolution). CER appeared to depend linearlyon temperature. Linear regressions of CER on temperature interceptedthe temperature axis at 5°C (i.e. zero CER at 5°C).Slopes of these regressions (i.e. temperature sensitivity) changedover the season. The CER-temperature sensitivity coefficient,K, (calculated from observed values of CER. pod temperatureand temperature intercept) rose from less than 0·02 mgCO2 h–1 pod–1 °C–1 during early pod-flll,peaked at over 0·04 mg CO2 h–1 pod–1 °C–1at mid pod-fill, and then declined during late pod-fill andmaturation. Glycine max (L.) Merr., Soya bean, carbon exchange rate, temperature  相似文献   

3.
Co-inoculation of plant growth promoting rhizobacteria (PGPR)withBradyrhizobium has been shown to increase legume nodulationand nitrogen fixation at optimal soil temperatures. Nine rhizobacteriaco-inoculated withBradyrhizobium japonicum532C were tested fortheir ability to reduce the negative effects of low root zonetemperature (RZT) on soybean [Glycine max(L.) Merr.] nodulationand nitrogen fixation. Three RZTs were tested: 25 (optimal),17.5 (somewhat inhibitory), and 15°C (very inhibitory).At each temperature some PGPR strains increased the number ofnodules formed and the amount of fixed nitrogen when co-inoculatedwithB. japonicum,but the stimulatory strains varied with temperatures.The strains that were most stimulatory varied among temperaturesand were as follows: 15°C,Serratia proteamaculans 1-102;17.5°C,S. proteamaculans 1-102andAeromonas hydrophilaP73;25°C,Serratia liquefaciens2-68. Bradyrhizobium japonicum ; Glycine max; plant growth promoting rhizobacteria; suboptimal root zone temperatures  相似文献   

4.
Soya Bean Seed Growth and Maturation In vitro without Pods   总被引:2,自引:0,他引:2  
Immature Glycine max (L.) Merrill seeds, initially between 50and 450 mg f. wt, were grown and matured successfully in vitro.Excised seeds were floated in a liquid medium containing 5 percent sucrose, minerals and glutamine in flasks incubated at25 °C under 300 to 350 µE m–2 s–1 fluorescentlight. During 16 to 21 d in culture, seeds grew to a matured. wt of 100 to 600 mg per seed at an average rate of 5 to 25mg d. wt per seed d–1 depending on initial size. Growthrates were maximal during the first 8 to 10 d in vitro but declinedwith loss of green colour in the cotyledons. Seed coats rupturedwith rapid cotyledon expansion during the first 2 d in culture.Embryos were tolerant to desiccation and 80 to 90 per cent germinatedif removed from culture before complete loss of green colour.The growth of excised seeds in vitro exceeded the growth ofseeds in detached pods, but when windows were cut in pods topermit direct exposure of seeds to the medium, seed growth wascomparable. Glycine max (L.) Merrill, soya bean, seed culture, seed growth, seed maturation, germination  相似文献   

5.
Soybeans [Glycine max (L.) Merr. cv. Ransom] grown at a constant25 °C were placed in a 12-h inductive photoperiod at twoweeks of age. Subgroups were shoot-chilled for one week at aconstant 10 °C during each of the first four weeks of floralinduction. Controls were photoinduced but not chilled. Chillingduring the first week of photoinduction inhibited productionof floral primordia, but did not increase the abscission rateof flowers and pods. Chilling during the second week did notaffect primordium production or abscission rate, but did causea significant increase in numbers of fused and malformed pods.Chilling during the third week caused loss of 77 per cent ofearly flowers and pods by abscission, while fourth week chillingcaused less severe losses by abscission. Inhibition of vegetativegrowth may have been responsible for primordium loss in first-weekplants, while disturbances in the development of flowers wereresponsible for the losses in the other chilling weeks. Althoughchilling during the first and third photoinduction weeks causeda significant reduction in early pod numbers, plants harvestedat 16 weeks of age showed no significant loss in seed yield.Low abscission rates late in pod filling and increased weightof individual seeds compensated for early losses of pods. Thesecompensatory responses to a chilling-induced loss of pods aresimilar to those reported for mechanically depodded soybeans. Glycine max (L.) Merr., soybean, temperature, chilling, floral initiation, anthesis, abscission, yield, compensation  相似文献   

6.
Temperature and Seed Storage Longevity   总被引:8,自引:1,他引:7  
Seed survival data for eight diverse species, namely the cerealbarley (Hordeum vulgare L.), the grain legumes chickpea (Cicerarietinum L.), cowpea [Vigna unguiculata (L.) Walp.] and soyabean [Glycine max (L.) Merr.], the timber trees elm (Ulmus carpinifoliaGleditsch.), mahogany (Swietenia humilis Zucc.), and terb (Terminaliabrassii Exell.), and the leaf vegetable lettuce (Lactuca sativaL.) were compared over a wide range of storage environments(temperatures from –13 °C to 90 °C, seed moisturecontents from 1.8 to 25% f. wt) using a viability equation developedpreviously. In accordance with that equation, the effect oftemperature on seed longevity was dependent upon the temperaturerange. The temperature coefficients of the viability equationdid not differ significantly (P > 0.05) among the eight speciesdespite their contrasting taxonomy. Thus the quantitative relationbetween seed longevity and temperature does not vary among diversespecies. The same conclusion was obtained for the coefficientsof a proposed alternative model of the relation between seedlongevity and temperature. The implications of the two temperaturemodels in the viability equation for extrapolations to low andvery low temperatures are discussed. Seed storage, seed longevity, seed moisture, temperature, viability equation, genetic resources conservation, Cicer arietinum L., Glycine max (L.) Merr., Hordeum vulgare L., Lactuca sativa L., Swietenia humilis Zucc., Terminalia brassii Exell., Ulmus carpinifolia Gleditsch., Vigna unguiculata (L.) Walp  相似文献   

7.
Stem-root grafts of seedling plants were used to ascertain thatgenotypic differences in P, Mg, Mn, and B accumulation in soyabean(Glycine max L. Merr.) seeds are controlled by the scion ofthe plant. The effect of the graft per se on mineral accumulationwas negligible. These results are similar to those reportedfor Sr and Ca accumulation in soyabeans. Mechanisms which couldaccount for these observations are briefly discussed.  相似文献   

8.
Two varieties of wheat (Triticum aestivum L.) a winter (Kharkov)and a spring (Glenlea), were acclimated under controlled conditionsat 5 °C and 25 °C (12 h photoperiod). Kinetic properties(Km1 Vmax/Km ratio and Q10 as a function of reduction of substrateconcentration) were investigated for enzymatic systems involvedin two pathways of proline metabolism: the glutamic acid andthe ornithine pathways. Four enzymes were studied, namely prolinedehydrogenase (PDH, EC 1.5.1.2 [EC] ), glutamate dehydrogenase (GDH,EC 1.4.1.2 [EC] -4), glutamine synthetase (GS, EC 6.3.1.2 [EC] ) and ornithinetransaminase (OT, EC 2.6.1.13 [EC] ). Kinetic properties of thesefour enzymes proved to be modulated by cold acclimation, especiallyin Kharkov, the winter cultivar, which accumulates proline.Firstly, the synthesis of precursors of proline may be augmentedand the degradation of proline lessened by either decreasingthe Km values of OT or increasing the Km values of PDH. Secondly,the catalytic efficiency (Vmax ratio) of GDH, GS, and OT isincreased. Thirdly, the lower values of Q10 indicate a highcapacity of reaction of GS and OT.  相似文献   

9.
Stem from three- and four-week-old Soyabean [Glycine max (L.)Merr. cv. Tracy] plants reduced from 0.3 to 0.7 µmol nitrateh–l g–l f. wt. Leaf activity was 4.7–7.6 µmolnitrate h–l g–l f. wt. Outer stem was two to fourtimes more active at reducing nitrate than was inner stem. Plantnitrate nutrition had a strong effect upon the ratio of activitypresent in stem and leaf. More nitrate increased the proportionpresent in leaves. Glycine max L., soyabean, nitrate assimilation, nitrogen metabolism, Rhizobium japonicum  相似文献   

10.
The influence of hydrogenase in Bradyrizobum-Phaseoleae symbioseswas studied ex-planta and in-planra in soybean (Glycine max)and cowpea (Vigna unguiculata). The hydrogenase was activatedby the addition of hydrogen in the incubation gas phase whichmodified the response of nitrogenase activity of Hup+ (hydrogenuptake positive) symbiosis to the external oxygen partial pressure.For bacteroids the hydrogenase expression increased nitrogenaseactivity at supraoptimal pO2, acting possibly as a respiratoryprotection of nitrogenase. However, at suboptimal pO2, nitrogenaseactivity of Hup+ bacteroids decreased with hydrogen, a phenomenonattributed to the lower efficiency of ATP synthesis from hydrogenthan from carbon substrates oxidation. For undisturbed nodules,the hydrogenase expression in soybean increased the optimalpO2 for ARA (COP), from 35.3 to 40.3 kPa O2, and the ARA atsupraoptimal pO2; at suboptimal PO2 there was a negative effectof hydrogenase on ARA, although this inhibition was less thanon bacteroids and was not detected if plants were grown at 15°C rather than 20 °C root temperature. No H2 effectwas detected on cowpea nodules. The results on soybean nodulesare consistent with the concept that symbiotic nitrogen fixationis oxygen-limited and that hydrogenase activity has no beneficialeffect on nitrogen fixation in O2 limitation. Key words: Glycine max, hydrogenase, nitrogenase, nitrogen fixation, nodules, Vigna unguiculata  相似文献   

11.
Carbon exchange rates (CER) of individual intact field-grownsoya bean [Glycine max (L.) Merr.] pods were measured continuouslywith a mobile gas analysis laboratory. Conditions in pod chamberssimulated those experienced normally by pods except for experimentalmodification of incident radiation or pod temperature. Undernormal conditions, CER (where positive CER represents CO2 evolution)fluctuated diurnally with a morning rise followed by a slowafternoon and evening decline which was similar among pods whichwere measured simultaneously. The frequency of measurementspermitted detection of rapid CER responses to step changes inlight and pod temperature. CER rapidly decreased and increasedwhen the chamber was alternately exposed to full sunlight andcomplete darkness, respectively. CER responded similarly tosteps up [from ambient to elevated (+ 10°C) temperature]and steps down (from elevated to ambient temperature), respectively.Thus, a temperature sensitive process which regulated pod CERwas located within the pod. CER ranged from less than 0·1to more than 1·2 mg CO2 h–1 pod–1 over theperiod of rapid dry-matter accumulation. Glycine max (L.) Merr., Soya bean, carbon exchange rate, light, temperature  相似文献   

12.
Seed of three chickpea (Cicer arietinum L.), three cowpea [Vignaunguiculata (L.) Walp.] and four soya bean [Glycine max (L.)Merr.] cultivars were hermetically stored for up to 2 yearsin various constant environments which included temperaturesfrom —20 to 70 °C and moisture contents (fresh weightbasis) from 5 to 25 per cent. In all cases the survival curvescould be described by negative cumulative normal distributions.The longevity of the various seed lots differed but the valueof the standard deviation (the reciprocal of which gives theslope of the survival curve when percentage germination is transformedto probit) was the same for all cultivars within a species whenstored under similar conditions. Within each species the relativeeffects of moisture and temperature on longevity did not differsignificantly between cultivars. In all three species therewas a negative logarithmic relationship between seed moisturecontent and longevity, but the relative effect of moisture contentdiffered between the species: differences in the longevity ofsoya bean seed as a function of moisture content were less thanfor either cowpea or chickpea. The relative effect of temperatureon seed longevity did not differ between the three species,and the seed of all three species showed increasing temperaturecoefficients for the change in rate of loss of viability withincrease in temperature. The complete pattern of loss in viabilityin all three species can be described by a single equation whichwas developed for barley and has also been shown to apply toonion seed. The constants applicable to the three grain legumeshave been calculated so that it is now possible to predict percentageviability of any seed lot of these species after any storageperiod under a very wide range of storage conditions. Cicer arietinum L., chickpea, Glycine max (L.) Merr., soya bean, Vigna unguiculata (L.) Walp., cowpea, seed longevity, seed storage, moisture content, temperature  相似文献   

13.
Soybean nitrate reductase activity influenced by manganese nutrition   总被引:1,自引:0,他引:1  
Nitrate assimilation by soybeans [Glycine max (L.) Merrill cvv.Lee and Bragg] was investigated in plants grown in solutionculture at manganese concentrations of 0, 1.8 and 275 µMand at day-night temperatures of 33–28° and 22–17°C.Manganese deficiency occurred in plants of both cultivars grownat 0 µM Mn; under these conditions, leaf nitrate concentrationincreased in both cultivars and nitrate reductase activity invivo but not in vitro was reduced. High solution Mn (275 µM)produced symptoms of manganese toxicity and reduced nitratereductase activity of both cultivars in vitro but only of Bragggrown at 22–17°C in vivo. A significant interactionbetween cultivars and solution Mn concentration was found forin vitro assays for plants grown at both temperatures; thisinteraction occurred in the in vivo assays for plants grownat 22–17° only. (Received March 20, 1980; )  相似文献   

14.
Application of plant growth-promoting rhizobacteria (PGPR) hasbeen shown to increase legume growth and development under optimaltemperature conditions, and specifically to increase nodulationand nitrogen fixation of soybean [Glycine max (L.) Merr.] overa range of root zone temperatures (RZTs). Nine rhizobacteriaapplied into soybean rooting media were tested for their abilityto reduce the negative effects of low RZT on soybean growthand development by improving the physiological status of theplant. Three RZTs were tested: 25, 17.5, and 15 °C. At eachtemperature some PGPR strains increased plant growth and development,but the stimulatory strains varied with temperature. The strainsthat were most stimulatory at each temperatures were as follows:15 °C—Serratia proteamaculans 1–102; 17.5 °C—Aeromonashydrophila P73, and 25 °C—Serratia liquefaciens 2–68.Because enhancement of plant physiological activities were detectedbefore the onset of nitrogen fixation, these stimulatory effectscan be attributed to direct stimulation of the plant by thePGPR rather than stimulation of plant growth via improvementof the nitrogen fixation symbiosis. Legume; nitrogen fixation; nodulation; root zone temperature; PGPR  相似文献   

15.
Bunce, J. A. 1987. In-phase cycling of photosynthesis and conductanceat saturating carbon dioxide pressure induced by increases inwater vapour pressure deficit.—J. exp. Bot. 38: 1413–1420. The leaf to air water vapour deficit was increased suddenlyfrom about 1·0 to 2·5 IcPa for single leaves ofsoybean (Glycine max L. Merr.) plants held at 30 °C, 2·0mmol m –2 s–1 photosynthetic photon flux density(PPFD) and carbon dioxide pressures saturating to photosynthesis.After a lag of about 10 min, photosynthetic rate and stomatalconductance to water vapour began to decrease, and then cycledin phase with each other. The period of the cydes was about20 min. During these cycles the substomatal carbon dioxide pressurewas constant in the majority of leaves examined, and was alwaysabove saturation for photosynthesis. Epidermal impressions showedthat most stomata changed in aperture during the cycles, andthat very few were ever fully closed. Water potential measuredon excised discs changed by at most 0·1 MPa from theminima to the maxima in transpiration rate. In contrast, forleaves of sunflower (Helianthus animus L.) grown at low PPFD,the increase in VPD led to leaf wilting and decreased photosynthesis,followed by recovery of turgor and photosynthesis as stomatalconductance began to decrease. In these leaves photosynthesisand conductance then cycled approximately 180° out of phase.It is suggested that in soybeans decreased leaf conductanceinduced by high VPD provided a signal which decreased the rateof photosynthesis at carbon dioxide saturation by a mechanismthat was not related to a water deficit in the mesophyll. Key words: Photosynthesis, stomatal conductance, cycling, vapour pressure deficit  相似文献   

16.
In soyabean [Glycine max (L.) Merrill] the period between sowingand flowering is comprised of three successive developmentalphases—pre-inductive, inductive and post-inductive—inwhich the rate of development is affected, respectively, bytemperature only, by photoperiod and temperature, and then againby temperature only. A reciprocal-transfer experiment (carriedout at a mean temperature of 25°C) in which cohorts of plantswere transferred successively between short and long photoperiodsand vice-versa showed that eight combinations of three pairsof maturity alleles (E1/e1, E2 /e2, E3 /e3) had their greatesteffect on the duration of the inductive phase in long days.This phase was increased with the increasing photoperiod sensitivityinduced by the different gene combinations, and ranged fromabout 27 to 54 d according to genotype. In a short day regime(11·5 h d-1), less than the critical photoperiod, theduration of the inductive phase was brief—requiring about11 photoperiodic cycles in the less photoperiod-sensitive genotypesand only about seven cycles in the more sensitive ones. Thematurity genes also affected the duration of the two photoperiod-insensitivephases; these durations were positively correlated with thephotoperiod-sensitivity potential of the gene combinations.The largest effect was on the pre-inductive phase which variedfrom 3 to 11 d, while the post-inductive phase varied from about13 to 18 d. As a consequence of these non-photoperiodic effectsof the maturity genes, even in the most inductive regimes (daylengthsless than the critical photoperiod) the time taken to flowerby the less photoperiod-sensitive combinations of maturity geneswas somewhat less than in the more sensitive combinations—rangingfrom about 28 to 34 d. The genetic and practical implicationsof these findings are discussed.Copyright 1994, 1999 AcademicPress Glycine max (L.) Merrill, soyabean, maturity genes, isolines, flowering, photoperiod  相似文献   

17.
Acetylcholine (Ach) and red light inhibited ethylene evolutionfrom excised green soyabean (Glycine max (L.) Merr.) leaf discs.Neostigmine, an Ach-esterase inhibitor, mimicked this effectwhile atropine, an Ach antagonist, increased ethylene evolution.Acetylcholine and red light partially overcame the atropine-inducedresponse. The results were interpreted as an influence of acetylcholineupon the ethylene formation process. Glycine max, ethylene inhibition, leaf discs  相似文献   

18.
The relationship between the induction of tracheary elementdifferentiation and exogenous L-methionine was examined in agar-growncultures of soya bean callus initiated from Glycine max L. ‘Wayne’and ‘Clark 63’. Although Wayne is a normal cultivarsoya bean, seedlings of Clark 63 exhibit abnormal growth at25 °C due to exessive ethylene biosynthesis at this temperature.Wayne callus showed increased xylogenesis in the presence ofexogenous L-methionine (3.7 µg 1–1) in comparisonto IAA–KN controls at both 20 and 25 °C. Clark 63callus produced greater numbers of tracheary elements in responseto exogenous L-methionine only at 25 °C. The induction ofxylem differentiation was independent of the maintenance temperatureof the stock cultures of both cultivars. Xylogenesis initiatedbyan IAA–KN medium was inhibited by the addition of AgNO3(20 mg 1–1) to the extent of 76.5 per cent in cv. Wayneand 6 per cent in cv. Clark 63. The inhibitory effect was partiallyreversed by the addition of L-methionine (3.7 µg 1–1)to the IAA–KN–AgNO2 medium. These data support thehypothesis that xylogenesis in vitro involves auxin, cytokininand ethylene. differentiation, xylogenesis, L-methionine, ethylene, Glycine max L., soya bean, callus culture, auxin, kinetin  相似文献   

19.
The rapid and uniform establishment of soya bean [Glycine max(L.) Merr.] stands is conducive to higher yields. This studywas undertaken to determine the effects of cultivar, temperature,and seed size on the rate of germination and emergence. No cultivar effect on the germination rate was observed. However,in an emergence study from a sand-soil-peat mixture, cultivardifferences in emergence rates were noted(‘Chippewa 64’> ‘Wayne’ > ‘Amsoy 71’). In anotheremergence study (sand media) the cvs ‘Calland’ and‘Williams’ emerged faster than the cv. 'Wayne or‘Wells’. Time required for 50 per cent germination decreased (18.8–4.0days) as the temperature increased from 10 to 30 °C (5 °Cincrements). Emergence (50 per cent) from a sand-soil-peat mixturewas more rapid (19.8–6.3 days) as the simulated plantingdate (growth chamber set to simulate field temperatures) wasdelayed from 16 April to 15 June with an intermediate date of16 May. In addition, time required for 50 per cent emergence of thecultivars from sand decreased (793–76 h) as the temperaturewas increased from 10 to 30 °C with no decrease from 30to 35 °C. Seed size effects were apparent, with the very small seed germinatingslower than the three larger seed sizes. In the emergence studieswith both the sand and sand-soil-peat mixture there was a generaltrend toward more rapid emergence with the smaller seeds. However,the absolute differences were small. Significant cultivar x temperature interactions were observedfor the germination and emergence rates. In most cases the cultivarsmerged in terms of germination and emergence rates at temperaturesbetween 10 and 20 °C and at the higher temperatures thecultivar rankings were different from those observed at temperaturesbelow the merging point. Glycine max (L.) Merr, soya bean, seed germination, establishment of seedlings  相似文献   

20.
CHRISTOU  PAUL 《Annals of botany》1990,66(4):379-386
Transgenic soybean (Glycine max L.) plants derived from electricdischarge particle acceleration experiments exhibited varyingdegrees of chimerism which was followed by the expression ofthe introduced ß-glucuronidase (gus) gene. Degreesof chimerism in transgenic plants were established by determiningexpression of the gus gene observed as blue spots, streaks orsectors in stem and leaf tissues in in vitro grown plantletsand greenhouse plants. Clonal plants were also obtained. Presenceof the gene was confirmed by Southern blot analysis. These studiespermitted the reconstruction of a partial picture for the developmentof the soybean plant. Glycine max L. cv. Williams 82, soybean, transformation, ß-glucuronidase, chimeric plant phenotypes, development  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号