首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Organization of haemopoietic stem cells: the generation-age hypothesis.   总被引:3,自引:0,他引:3  
This paper proposes that the previous division history of each stem cell is one determinant of the functional organization of the haemopoietic stem cell population. Stem cells from a lineage of stem cells which have generated many stem cells (older stem cells) are used in the animal to form blood before stem cells which have generated few stem cells (younger stem cells). The stem cell generating capacity of a lineage of stem cells is finite. After a given number of generations a stem cell is lost to the stem cell compartment by forming two committed precursors of the cell lines. Its part in blood formation is taken by the next oldest stem cell. We have called this proposal the generation-age hypothesis. Experimental evidence in support of the proposal is presented. We stripped away older stem cells from normal bone marrow and 13 day foetal liver with phase-specific drugs and revealed a younger population of stem cells whose capacity for stem cell generation was three- to four-fold greater than that of the average normal, untreated population. We aged normal stem cells by continuous irradiation and serial retransplantation and found that their stem cell generative capacity had declined eight-fold. We measured the stem cell generative capacity of stem cells in the bloodstream. It was a half to a quarter that of normal bone marrow stem cells and we found a subpopulation of circulating stem cells whose capacity for stem cell generation was an eighth to a fortieth that of normal femoral stem cells. This subpopulation was identified by its failure to express the brain-associated antigen which was present on 75% of normal femoral stem cells but was not found on their progeny, the committed precursors of granulocytes.  相似文献   

2.
A novel stage in early B-lymphocyte differentiation has been identified in normal mouse bone marrow cells. Earlier work had demonstrated that bone marrow cells characterized by low levels of Thy-1 and lack of a panel of lineage markers (Thy-1lo Lin- cells) were highly enriched for pluripotent hematopoietic stem cells. In this paper, we present evidence that another bone marrow population, which expressed low levels of Thy-1 and coexpressed B220, a B-lineage-specific form of the leukocyte common antigen, contained early and potent precursors for B lymphocytes upon in vivo transfer to irradiated hosts. These Thy-1lo B220+ cells, comprising 1 to 2% of bone marrow cells, were enriched for large cells in the mitotic cycle; the population lacked significant pluripotent hematopoietic stem cell activity and myeloid-erythroid progenitors. Most strikingly, Thy-1lo B220+ cells represented a highly enriched population of bone marrow cells that could be targets of Abelson murine leukemia virus transformation. We propose that Thy-1lo B220+ bone marrow cells represent the earliest stage of committed lymphocyte progenitors, intermediate in differentiation between Thy-1lo Lin- pluripotent stem cells and, in the B lineage, Thy-1- B220+ pre-B cells.  相似文献   

3.
Two novel early B lymphocyte precursor populations have been identified by their capacity to differentiate in Whitlock-Witte bone marrow cultures. Cells expressing neither the B lineage antigen B220 nor Thy-1 contain committed B cell precursors which differentiate in short-term culture into pre-B and B cells. The other population expresses low levels of Thy-1, and lacks B220 as well as the T cell markers L3T4 and Lyt-2. The Thy-1+ cells which initiate long-term B cell cultures contain clonogenic B cell precursors at a frequency of 1 in 11, a 100-fold enrichment over unseparated bone marrow. Thy-1+ cells are also highly enriched for myeloid-erythroid precursors (CFU-S). Thy-1+ cells allow long-term survival of lethally irradiated mice and fully reconstitute the hematopoietic system, including T and B lymphocyte compartments. These results indicate that this population (approximately 0.1% of bone marrow) may contain the pluripotent hematopoietic stem cell.  相似文献   

4.
It is thought that small intestinal epithelial stem cell progeny, via Notch signaling, yield a Hes1-expressing columnar lineage progenitor and an Atoh1 (also known as Math1)-expressing common progenitor for all granulocytic lineages including enteroendocrine cells, one of the body's largest populations of endocrine cells. Because Neurogenin 3 (Neurog3) null mice lack enteroendocrine cells, Neurog3-expressing progenitors derived from the common granulocytic progenitor are thought to produce the enteroendocrine lineage, although more recent work indicates that Neurog3+ progenitors also contribute to non-enteroendocrine lineages. We aimed to test this model and better characterize the progenitors leading from the stem cells to the enteroendocrine lineage. We investigated clones derived from enteroendocrine precursors and found no evidence of a common granulocytic progenitor that routinely yields all granulocytic lineages. Rather, enteroendocrine cells are derived from a short-lived bipotential progenitor whose offspring, probably via Notch signaling, yield a Neurog3+ cell committed to the enteroendocrine lineage and a progenitor committed to the columnar lineage. The Neurog3+ cell population is heterogeneous; only about 1/3 are slowly cycling progenitors, the rest are postmitotic cells in early stages of enteroendocrine differentiation. No evidence was found that Neurog3+ cells contribute to non-enteroendocrine lineages. Revised lineage models for the small intestinal epithelium are introduced.  相似文献   

5.
The formation of B lymphocytes is abnormal in autoimmune NZB and (NZB x NZW)F1 mice. With age, the proportion of sIg- Ly-5(220)+ pre-B cells and less mature B cell progenitors in the bone marrow progressively declines, reaching only approximately one-third of normal levels in 20-wk-old NZ mice. To determine the mechanisms responsible for the deficiency of NZ B lineage precursors, the mitotic activity of sIg- Ly-5(220)+ bone marrow cells in vivo was determined in NZ and conventional inbred mice as a function of age. The proportion of sIg- Ly-5(220)+ B cell precursors in (S + G2/M) stages of the cell cycle steadily decreased with age in NZ autoimmune mice. Furthermore, upon metaphase arrest, the rate of entry of sIg- Ly-5(220)+ bone marrow cells into G2/M also decreased with age in NZ mice. Therefore, the mitotic activity of sIg- Ly-5(220)+ B cell precursors is substantially decreased in NZ mice greater than or equal to 20 wk of age. The capacity of the bone marrow stromal microenvironment of NZ mice to support B lineage precursor growth was tested in two ways: 1) the capacity of preformed NZ bone marrow stroma to support B lineage cell growth in long term bone marrow cell culture under lymphopoietic conditions was assessed and 2) the capacity of NZ bone marrow B lineage precursors to expand in vivo after sublethal (200 rad) whole body irradiation was determined. Stroma derived from adult NZ mice supported the growth and development of B lineage lymphocytes in long term bone marrow cell culture to a greater extent than did age-matched conventional murine stroma. Furthermore, sublethal irradiation of older adult NZ mice resulted in some expansion of bone marrow sIg- Ly-5(220)+ B cell precursors in vivo. Therefore, the deficiency of B cell progenitors in the bone marrow of older NZ autoimmune mice is associated with diminished mitotic activity. However, this does not result from defects in the capacity of NZ bone marrow stroma to permit B lineage cell expansion as determined by both in vitro and in vivo experiments. In the absence of a detectable stromal cell defect, it is possible that an active inhibitory process within the bone marrow influences the mitotic activity of B cell precursors in NZ mice.  相似文献   

6.
Bone marrow contains mesenchymal cells that can be isolated and grown in vitro. Using appropriate treatment protocols such cultures can be induced to differentiate to yield osteoblasts, adipocytes, and chondrocytes. However, previous experiments had not addressed the question whether single pluripotent stem cells exist and can give rise to these different cell lineages or whether bone marrow mesenchymal cell preparations represent a mixture of committed precursors. We have used human adult bone marrow-derived mesenchymal cells obtained from iliac crest biopsies to demonstrate clonal outgrowth after limiting dilution and we show that some clones can be expanded over more than 20 cumulative population doublings and differentiated to osteoblasts, adipocytes, and chondrocytes. Our data provide direct experimental evidence that cultures of bone marrow-derived mesenchymal cells contain individual cells that fulfil two essential stem cell criteria: (i) extensive self-renewal capacity and (ii) multi-lineage potential.  相似文献   

7.
We have investigated the properties of nerve cell precursors in hydra by analyzing the differentiation and proliferation capacity of interstitial cells in the peduncle of Hydra oligactis, which is a region of active nerve cell differentiation. Our results indicate that about 50% of the interstitial cells in the peduncle can grow rapidly and also give rise to nematocyte precursors when transplanted into a gastric environment. If these cells were committed nerve cell precursors, one would not expect them to differentiate into nematocytes nor to proliferate apparently without limit. Therefore we conclude that cycling interstitial cells in peduncles are not intermediates in the nerve cell differentiation pathway but are stem cells. The remaining interstitial cells in the peduncle are in G1 and have the properties of committed nerve cell precursors (Holstein and David, 1986). Thus, the interstitial cell population in the peduncle contains both stem cells and noncycling nerve precursors. The presence of stem cells in this region makes it likely that these cells are the immediate targets of signals which give rise to nerve cells.  相似文献   

8.
9.
Objectives: Stem cell factor receptor, c‐kit, is considered to be the master signalling molecule of haematopoietic stem cells. It develops the orchestral pattern of haematopoietic cell lineages, seen by its varying degree of omnipresence in progenitors, lineage committed and mature cells. We have investigated the effect of over‐expressing c‐kit on early recovery of the haematopoietic compartment, in irradiated hosts. Materials and methods: Normal bone marrow cells (BMCs) were transfected with Kitwt (wild‐type c‐kit) or its variant Kitmu (asp814tyr) by electroporation. Lethally irradiated mice were transplanted with normal or transfected congeneic BMCs. The effect of ectopic expression of c‐kit on haematopoietic cell recovery was determined by analysing donor‐derived cells. Furthermore, effects of both types of c‐kit over‐expression on progenitor and lineage‐committed cells were examined by flow cytometric analysis of Sca‐1 and lineage‐committed (Lin+) cells respectively. Results: Hyper‐activating Kitmu significantly improved recovery of the haematopoietic system in irradiated hosts. In vivo results showed that the donor‐derived c‐kit+ cell population was increased to more than 3‐fold in the case of Kitmu‐transfected cells compared to normal and Kitwt over‐expressing BMCs. In general, survival of progenitor and committed cell was improved in the Kitmu over‐expressing system compared to the other two cohorts. Conclusion: These results suggest that recruitment of the hyper‐activating variant of c‐kit (Kitmu) lead to early recovery of the bone marrow of lethally irradiated mice.  相似文献   

10.
Peripheral blood stem cell transplantation (PBSCT) offers an alternative to autologous bone marrow transplants (A-BMT), especially in malignant diseases with bone marrow contamination. The presence of hemopoietic precursors in peripheral blood has been documented in several animal models and in humans. While many of these precursors might be committed cells with finite renewal capacity, ample evidence suggests that true pluripotent stem cells are circulating in a number sufficient to enable sustained trilineage engraftment after transplantation. Stem cell mobilization is markedly increased in the early recovery phase after intensive chemotherapy and can be promoted by the administration of various cytokines or polyanionic substances. These effects are used to optimize stem cell harvesting by leukapheresis. Clinical trials of PBSCT have been performed in several hundred patients with various hematological and nonhematological malignancies. Recovery was generally more rapid than after A-BMT. However, the envisioned advantage concerning disease control has not been documented so far.  相似文献   

11.
While the ability of stem cells to switch lineages has been suggested, the route(s) through which this may happen is unclear. To date, the best characterized adult stem cell population considered to possess transdifferentiation capacity is BM-MSCs (bone marrow mesenchymal stem cells). We investigated whether BM-MSCs that had terminally differentiated into the neural or epithelial lineage could be induced to transdifferentiate into the other phenotype in vitro. Our results reveal that neuronal phenotypic cells derived from adult rat bone marrow cells can be switched to epithelial phenotypic cells, or vice versa, by culture manipulation allowing the differentiated cells to go through, first, dedifferentiation and then redifferentiation to another phenotype. Direct transdifferentiation from differentiated neuronal or epithelial phenotype to the other differentiated phenotype cannot be observed even when appropriate culture conditions are provided. Thus, dedifferentiation appears to be a prerequisite for changing fate and differentiating into a different lineage from a differentiated cell population.  相似文献   

12.
Bone marrow cells from autoimmune-prone New Zealand Black (NZB) mice are less efficient at colonizing fetal thymic lobes than cells from normal strains. This study demonstrates that the reduced capacity of NZB bone marrow cells to repopulate the thymus does not result from their inability to migrate to or enter the thymus. Rather, the T lymphopoietic defect of NZB mice is due to an impaired ability of pluripotent hematopoietic stem cells (PHSCs) to generate more committed lymphoid progeny, which could include common lymphoid precursors and/or other T cell-committed progenitors. Although PHSCs from NZB mice were not as efficient at thymic repopulation as comparable numbers of PHSCs from control strains, the ability of common lymphoid precursors from NZB mice to repopulate the thymus was not defective. Similarly, more differentiated NZB T cell precursors included in the intrathymic pool of CD4(-)CD8(-) cells also exhibited normal T lymphopoietic potential. Taken together, the results identify an unappreciated defect in NZB mice and provide further evidence that generation of lymphoid progeny from the PHSCs is a regulated event.  相似文献   

13.
This report reviews three categories of precursor cells present within adults. The first category of precursor cell, the epiblast-like stem cell, has the potential of forming cells from all three embryonic germ layer lineages, e.g., ectoderm, mesoderm, and endoderm. The second category of precursor cell, the germ layer lineage stem cell, consists of three separate cells. Each of the three cells is committed to form cells limited to a specific embryonic germ layer lineage. Thus the second category consists of germ layer lineage ectodermal stem cells, germ layer lineage mesodermal stem cells, and germ layer lineage endodermal stem cells. The third category of precursor cells, progenitor cells, contains a multitude of cells. These cells are committed to form specific cell and tissue types and are the immediate precursors to the differentiated cells and tissues of the adult. The three categories of precursor cells can be readily isolated from adult tissues. They can be distinguished from each other based on their size, growth in cell culture, expressed genes, cell surface markers, and potential for differentiation. This report also discusses new findings. These findings include the karyotypic analysis of germ layer lineage stem cells; the appearance of dopaminergic neurons after implantation of naive adult pluripotent stem cells into a 6-hydroxydopamine-lesioned Parkinson's model; and the use of adult stem cells as transport mechanisms for exogenous genetic material. We conclude by discussing the potential roles of adult-derived precursor cells as building blocks for tissue repair and as delivery vehicles for molecular medicine.  相似文献   

14.
Lethally irradiated MRL/lpr mice reconstituted with bone marrow stem cells from a normal mouse strain develop a state of split hematopoietic chimerism; erythrocytes, granulocytes, and macrophages are derived from the normal stem cell inoculum while the peripheral T lymphocytes are derived from radioresistant lpr host cells. Moreover, these mice have normal levels of serum IgM and IgG2a produced by radioresistant host B cells, even though they have relatively few sIgM+ B cells. In order to better understand the differentiation and regulation of B cells present in these chimeric mice, the current study was undertaken to localize and to assess the functional capacity of the lpr B cells producing the serum antibodies. Surface IgG2a+ cells could not be found in the spleen or lymph nodes of these mice, but large lymphocytes containing cytoplasmic IgG2 of host (lpr) allotype could be readily detected, even though they constituted less than 1% of the total spleen population. The host-derived serum IgG2 and IgG2+ cells were even present in the spleens of "leaky" mice that had relatively normal numbers of donor-derived sIgM+ B cells. These lpr B cells secreted IgG2a antibody that bound ssDNA, but they could not respond to immunization with SRBC. These results indicate that the lpr-derived radioresistant B cells have a limited capacity for proliferation and are already committed to the memory lineage. The presence of similar B cells in normal mice transplanted with neonatal lpr/lpr spleen fragments suggests that lpr/lpr B cell development is inherently abnormal.  相似文献   

15.
After a sublethal (200 rad) irradiation of mice there occurred during the first 24 hours in the bone marrow a marked reduction of the number of the stem (to 4%), committed precursors of granulocytes and macrophages (to 20%) and of the morphologically-identified cells (to 50%). Complete restoration of hemopoiesis was observed by the end of the 2 weeks after the irradiation and was primarily due to the exponential growth of the number of the stem cells and their intensified proliferation. An increase in the number of the committed precursors was retarded to the moment of restoration of the normal amount of cells in the bone marrow.  相似文献   

16.
Hematopoietic reconstitution, following bone marrow or stem cell transplantation, requires a microenvironment niche capable of supporting both immature progenitors and stem cells with the capacity to differentiate and expand. Osteoblasts comprise one important component of this niche. We determined that treatment of human primary osteoblasts (HOB) with melphalan or VP-16 resulted in increased phospho-Smad2, consistent with increased TGF-β1 activity. This increase was coincident with reduced HOB capacity to support immature B lineage cell chemotaxis and adherence. The supportive deficit was not limited to committed progenitor cells, as human embryonic stem cells (hESC) or human CD34+ bone marrow cells co-cultured with HOB pre-exposed to melphalan, VP-16 or rTGF-β1 had profiles distinct from the same populations co-cultured with untreated HOB. Functional support deficits were downstream of changes in HOB gene expression profiles following chemotherapy exposure. Melphalan and VP-16 induced damage of HOB suggests vulnerability of this critical niche to therapeutic agents frequently utilized in pre-transplant regimens and suggests that dose escalated chemotherapy may contribute to post-transplantation hematopoietic deficits by damaging structural components of this supportive niche.  相似文献   

17.
Muscle tissue represents an abundant, accessible, and replenishable source of adult stem cells for cell-based tissue and genetic engineering. A population of cells isolated from muscle exhibits both multipotentiality and self-renewal capabilities. Satellite cells, referred to by many investigators as muscle stem cells, are myogenic precursors that are capable of regenerating muscle and that demonstrate self-renewal properties; however, they are considered to be committed to the myogenic lineage. Muscle-derived stem cells (MDSCs), which may represent a predecessor of the satellite cell, are considered to possess a higher regeneration capacity and to exhibit better cell survival and a broader range of multilineage capabilities. Remarkably, MDSCs are not only able to differentiate into mesodermal cell types including the myogenic, adipogenic, osteogenic, chondrogenic, endothelial, and hematopoietic lineages, but also possess the potential to break germ layer commitment and differentiate into ectodermal lineages including neuron-like cells under certain conditions. This article reviews the current preclinical studies and potential clinical applications of MDSC-mediated gene therapy and tissue-engineering and methods for MDSC isolation, differentiation, and molecular characterization.  相似文献   

18.
The distribution of interstitial stem cells along the Hydra body column was determined using a simplified cloning assay. The assay measures stem cells as clone-forming units (CFU) in aggregates of nitrogen mustard inactivated Hydra tissue. The concentration of stem cells in the gastric region was uniform at about 0.02 CFU/epithelial cell. In both the hypostome and basal disk the concentration was 20-fold lower. A decrease in the ratio of stem cells to committed nerve and nematocyte precursors was correlated with the decrease in stem cell concentration in both hypostome and basal disk. The ratio of stem cells to committed precursors is a sensitive indicator of the rate of self-renewal in the stem cell population. From the ratio it can be estimated that <10% of stem cells self-renew in the hypostome and basal disk compared to 60% in the gastric region. Thus, the results provide an explanation for the observed depletion of stem cells in these regions. The results also suggest that differentiation and self-renewal compete for the same stem cell population.  相似文献   

19.
Bone marrow mesenchymal stem cells (MSCs) are plastic adherent cells that can differentiate into various tissue lineages, including osteoblasts, adipocytes and chondrocytes. However, this progenitor property is not shared by all cells within the MSC population. In addition, MSCs vary in their proliferation capacity and expression of markers. Because of heterogeneity of CD146 expression in the MSC population, we compared CD146−/Low and CD146High cells under clonal conditions and after sorting of the non-clonal cell population to determine whether this expression is associated with specific functions. CD146−/Low and CD146High bone marrow MSCs did not differ in colony-forming unit-fibroblast number, osteogenic, adipogenic and chondrogenic differentiation or in vitro haematopoietic-supportive activity. However, CD146−/Low clones proliferated slightly but significantly faster than did CD146High clones. In addition, a strong expression of CD146 molecule was associated with a commitment to a vascular smooth muscle cell (VSMC) lineage characterized by a strong up-regulation of calponin-1 and SM22α expression and an ability to contract collagen matrix. Thus, within a bone marrow MSC population, certain subpopulations characterized by high expression of CD146, are committed towards a VSMC lineage.  相似文献   

20.
Thymic myoid cells share structural and behavioural features with cells of the skeletal muscle lineage: they express regulatory genes and contractile proteins, and they can form myofibers in culture. Historically, those features suggested that myoid cells could be precursors for muscle repair in addition to the satellite cells in muscle that are typically designated as the only muscle precursors. Muscles of the mutant mdx dystrophic mouse strain have a large demand for precursors, which is greatest at a young age. In the present study, immunostaining for troponin T was used to localize myoid cells. We tested the hypothesis that the myoid cell population changes when there is a demand for muscle precursors and that these changes would be anticipated if myoid cells have a role as myogenic precursors or stem cells in muscle. Chronic demands for muscle precursors in mdx dystrophic mice were accompanied by lower myoid cell density in comparison with density in two normal strains (C57BL10/ScSn and Swiss Webster). Acute demand for precursors was accompanied by a sharp decline in thymic myoid cell density within 2 days after a crush injury to one tibialis anterior muscle in normal but not dystrophic animals. To standardize the developmental age of the thymus, density was determined in all animals at 28 days of age. Given the current interest in nonmuscle sources of myogenic stem cells, these data suggest that changes in the density of thymic myoid cells may accompany acute and chronic demands for muscle precursors. Further experiments are required to determine whether thymic myoid cells are participants in distant muscle cell proliferation, new fiber formation, or the establishment of new stem cells in regenerated muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号