首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of isolated mitochondria from rat hepatoma tumor cells (AS-30D) with the oxidant, t-butyl hydroperoxide (tBuOOH, 1 or 5 mumol/ml) resulted in the oxidation of glutathione (GSH to GSSG) and the formation of protein-glutathione mixed disulfides (ProSSG). The GSSG was retained inside of the hepatoma mitochondria. In the presence of ADP+succinate (5 or 10 mM), or ketoglutarate (10 mM) or malate (5 mM), the GSSG was reduced to GSH, but the amount of ProSSG stayed constant. With saline or ADP+glutamate (10 mM)/malate (0.1 mm) no reduction of GSSG to GSH occurred. The presence of antimycin (5 micrograms/ml) with ADP+succinate inhibited reduction. At a concentration of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, 0.5 mM) which inhibited a major portion of the glutathione reductase activity, the reduction of GSSG to replenish GSH was also inhibited. NADPH may play a critical role as well, for the addition of 2.4 mM NADPH to permeabilized hepatoma mitochondria fostered the reduction of GSSG after tBuOOH treatment. Therefore, hepatoma mitochondria possess a glutathione reductase-dependent system to reduce GSSG to GSH. The reaction only occurs with actively respiring mitochondria.  相似文献   

2.
Although free radical formation due to the reaction between red blood cells and organic hydroperoxides in vitro has been well documented, the analogous in vivo ESR spectroscopic evidence for free radical formation has yet to be reported. We successfully employed ESR to detect the formation of the 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)/hemoglobin thiyl free radical adduct in the blood of rats dosed with DMPO and tert-butyl hydroperoxide, cumene hydroperoxide, ethyl hydrogen peroxide, 2-butanone hydroperoxide, 15(S)-hydroperoxy-5,8,11,13-eicosatetraenoic acid, or hydrogen peroxide. We found that pretreating the rats with either buthionine sulfoximine or diethylmaleate prior to dosing with tert-butyl hydroperoxide decreased the concentration of nonprotein thiols within the red blood cells and significantly enhanced the DMPO/hemoglobin thiyl radical adduct concentration. Finally, we found that pretreating rats with the glutathione reductase inhibitor 1,3-bis(2-chloroethyl)-1-nitrosourea prior to dosing with tert-butyl hydroperoxide enhanced the DMPO/hemoglobin thiyl radical adduct concentration and induced the greatest decrease in nonprotein thiol concentration within the red blood cells.  相似文献   

3.
Incubation of isolated hepatocytes in the presence of either the parkinsonian-inducing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or its putative toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) led to a depletion of intracellular reduced glutathione (GSH), which was mostly recovered as glutathione disulfide (GSSG). However, both MPTP- and MPP+-induced glutathione perturbances were relatively unaffected by the prior inhibition of glutathione reductase with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), suggesting that intracellular oxidation was not the major mechanism involved in the GSH loss. Inclusion of cystine in the incubation mixtures revealed a time-dependent formation of cysteinyl glutathione (CySSG), indicating that an increased efflux was mostly responsible for the MPTP- and MPP+-induced GSH depletion. Therefore, the measurement of GSSG, which is apparently formed extracellularly, was not associated with oxidative stress.  相似文献   

4.
A mechanistic study was performed to elucidate the biochemical events connected with the cocarcinogenic effect of sulfur dioxide (SO2). Glutathione S-sulfonate (GSSO3H), a competitive inhibitor of the glutathione S-transferases, forms in lung cells exposed in culture to sulfite, the hydrated form of SO2. Changes in glutathione status (total GSH) were also observed during a 1-h exposure. Some cells were pretreated with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to inhibit glutathione reductase. In human lung cells GSSO3H formed in a concentration-dependent manner, while glutathione (GSH) increased and glutathione disulfide (GSSG) decreased as the extracellular sulfite concentration was increased from 0 to 20 mM. The ratio of GSH/GSSG increased greater than 5-fold and the GSH/GSSO3H ratio decreased to 10 with increasing sulfite concentration. GSSO3H formed in rat lung cells exposed to sulfite, with no detectable effect on GSH and GSSG. GSSO3H also formed from cellular GSH mixed disulfides. GSSO3H formed rapidly, reaching its maximum value in 15 min. The viability of both cell types was unaffected except at 20 mM sulfite. GSSO3H incubated with human lung cells did not affect cellular viability. BCNU inhibited cellular GSSO3H reductase to the same extent as GSSG reductase. These results indicate that GSSO3H is formed in cells exposed to sulfite, and could be the active metabolite of sulfite responsible for the cocarcinogenic effect of SO2 by inhibiting conjugation of electrophiles by GSH.  相似文献   

5.
Endotoxin causes neutrophil-independent oxidative stress in rats   总被引:1,自引:0,他引:1  
Endotoxin-induced oxidative stress is investigated in rats by measuring changes in plasma and lung tissue levels of glutathione disulfide (GSSG) using a modified enzymatic assay that allows simultaneous measurement of up to 80 samples. Salmonella enteritidis endotoxin (2 and 20 mg/kg) acutely increased both plasma reduced glutathione and GSSG with a rise in the ratio of GSSG to total glutathione. This increase in GSSG was enhanced by pretreatment with 1,3-bis(2-chloroethyl)1-nitrosourea (BCNU), an inhibitor of the glutathione reductase enzyme. However, there was no significant arteriovenous difference in plasma GSSG across the lung, and lung tissue GSSG did not increase after endotoxin treatment. The increase in plasma GSSG was not blocked by vinblastine-induced neutropenia and could not be reproduced by incubating rat blood in vitro with endotoxin. Receptor antagonists of platelet-activating factor (PAF), at a dose that previously inhibited endotoxin-induced lung injury, attenuated the endotoxin-induced increase in plasma GSSG. We conclude that endotoxin causes neutrophil-independent oxidative stress in rats, which may be enhanced by the action of platelet-activating factor.  相似文献   

6.
Diquat administration produces hepatic necrosis in male Fischer-344 rats, and minimally in male Sprague-Dawley rats, with massive oxidant stress observable in both strains as evidenced by increased biliary efflux of glutathione disulfide (GSSG). Pretreatment of both strains of rats with 80 mg/kg of 1,3-bis(2-chloroethyl)-N-nitrosourea (BCNU) inhibited hepatic glutathione reductase by 75 percent and increased dramatically the biliary efflux of GSSG produced by administration of diquat. BCNU pretreatment markedly potentiated diquat hepatotoxicity in the Fischer rats and modestly in Sprague-Dawley rats. BCNU-pretreated Fischer rats did not show an enhanced depletion of nonprotein sulfhydryls in response to diquat, in spite of the dramatic potentiation of the hepatic necrosis produced, nor were protein thiols depleted. The effects of BCNU on diquat hepatotoxicity in the Fischer rat are consistent with a critical role for reactive oxygen species in the pathogenesis of the observed hepatic necrosis and for the protective role of the glutathione peroxidase/reductase system. The data suggest that shifts in thiol-disulfide equilibria are not responsible for the cell death produced by oxidant stress in vivo, but are consistent with a role for lipid peroxidation in the pathogenesis of the lesion.  相似文献   

7.
Cultured hepatocytes were exposed to two chemicals, dinitrofluorobenzene (DNFB) and diethyl maleate (DEM), that abruptly deplete cellular stores of glutathione. Upon the loss of GSH, lipid peroxidation was evidenced by an accumulation of malondialdehyde in the cultures followed by the death of the hepatocytes. Pretreatment of the hepatocytes with a ferric iron chelator, deferoxamine, or the addition of an antioxidant, N,N'-diphenyl-p-phenylenediamine (DPPD), to the culture medium prevented both the lipid peroxidation and the cell death produced by either DNFB or DEM. However, neither deferoxamine nor DPPD prevented the depletion of GSH caused by either agent. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or inhibition of catalase by aminotriazole sensitized the hepatocytes to the cytotoxicity of DNFB. In a similar manner, pretreatment with BCNU potentiated the cell killing by DEM. DPPD and deferoxamine protected hepatocytes pretreated with BCNU and then exposed to DNFB or DEM. These data indicate that an abrupt depletion of GSH leads to lipid peroxidation and cell death in cultured hepatocytes. It is proposed that GSH depletion sensitizes the hepatocyte to its constitutive flux of partially reduced oxygen species. Such an oxidative stress is normally detoxified by GSH-dependent mechanisms. However, with GSH depletion these activated oxygen species are toxic as a result of the iron-dependent formation of a potent oxidizing species.  相似文献   

8.
The participation of glutathione reductase in the process of nutrient-stimulated insulin release was investigated in rat pancreatic islets exposed to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). BCNU caused a time-and dose-related, irreversible inhibition of glutathione reductase activity. This coincided with a fall in both GSH/GSSG ratio and the thiol content of the islets. Pretreatment of the islets with BCNU inhibited the oxidation of glucose and its stimulant action upon both 45Ca net uptake and insulin release. Although BCNU (up to 0.5 mM) failed to affect the oxidation of L-leucine and L-glutamine, it also caused a dose-related inhibition of insulin release evoked by the combination of these two amino acids. The latter inhibition was apparently not fully accounted for by the modest to negligible effects of BCNU upon 45Ca uptake, 45Ca efflux, 86Rb efflux and cyclic AMP production. Since BCNU failed to inhibit insulin release evoked by the association of Ba2+ and theophylline, these results support the view that glutathione reductase participates in the coupling of metabolic to secretory events in the process of nutrient-stimulated insulin release. However, the precise modality of such a participation, for example the control of intracellular Ca2+ distribution, remains to be elucidated.  相似文献   

9.
An assay for reduced and oxidized glutathione was adapted to isolated rat epididymal adipocytes in order to correlate pentose phosphate cycle activity and glutathione metabolism. In collagenase-digested adipocytes the [GSH/GSSG] molar ratio was in excess of 100. Cells incubated for 1 hr with low glucose concentrations (0.28–0.55 mm) had higher GSH contents (3.2 μg/106 cells) than in the absence of glucose (2.3 μg/106 cells). The glutathione oxidant diamide caused a dose-related decrease in intracellular GSH, an increase in GSSG released into the medium, but no detectable change in the low intracellular GSSG content. The intracellular content of GSH and amount of GSSG released into the medium were therefore taken to reflect the glutathione status of the adipocytes most closely. Addition of H2O2 to a concentration of 60 μm to adipocytes caused to decline within 5 min in GSH content, which was less severe and more rapid to recover in the presence of 1.1 mm glucose, suggesting that the concomitant stimulation of glucose C-1 oxidation induced by the peroxide in the presence of glucose provided NADPH for regeneration of GSH. Further evidence for tight coupling between adipocyte [GSH/GSSG] ratios and pentose phosphate cycle activity was that (i) lowering intracellular GSH to 35–60% of control values by agents as diverse in action as t-butyl hydroperoxide, diamide, or the sulfhydryl blocker N-ethylmaleimide resulted in optimal stimulation of glucose C-1 oxidation and fractional pentose phosphate cycle activity, and (ii) incubating adipocytes directly with 2.5 mm GSSG resulted in a slight increase in glucose C-1 oxidation and when 0.5 mm NADP+ was also added a synergistic effect on pentose phosphate cycle activity was found. On the other hand, electron acceptors such as methylene blue did not lower cellular GSH content, but did stimulate the pentose phosphate cycle, confirming a site of action independent of glutathione metabolism. The results show that (i) glucose metabolism by the pentose phosphate cycle contributes to regeneration of GSH and that (ii) glutathione metabolism either directly or via coupled changes in [NADPH/NADP+] ratios may play a significant role in short-term control of the pentose phosphate cycle.  相似文献   

10.
The specific inactivation of yeast glutathione reductase (GSSG-reductase) by 2-chloroethyl isocyanate and cyclohexyl isocyanate derived from their respective 2-chloroethyl nitrosoureas has been demonstrated. Titration of the enzyme with 2-chloroethyl isocyanate or [14C] labeling with 1-(2-chloroethyl)-3-(1-14C-cyclohexyl)-1-nitrosourea or 1,3-bis (2-14C-chloroethyl)-1-nitrosourea resulted in near stoichiometric inactivation and/or covalent labeling of the enzyme. In addition to 1,3-bis (2-chloroethyl)-1-nitrosourea and 1-(2-chloroethyl)-3-(cyclohexyl)-1-nitrosourea, several other 2-chloroethyl nitrosoureas were capable of inactivation of not only purified GSSG-reductase, but also the activity of this enzyme in cell-free extracts of murine lymphoma L5178Y ascites tumor cells and murine bone marrow.  相似文献   

11.
5-Oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) is a highly potent granulocyte chemoattractant that acts through a selective G-protein coupled receptor. It is formed by oxidation of the 5-lipoxygenase product 5-HETE (5S-hydroxy-6,8,11,14-eicosatetraenoic acid) by 5-hydroxyeicosanoid dehydrogenase (5-HEDH). Although leukocytes and platelets display high microsomal 5-HEDH activity, unstimulated intact cells do not convert 5-HETE to appreciable amounts of 5-oxo-ETE. To attempt to resolve this dilemma we explored the possibility that 5-oxo-ETE synthesis could be enhanced by oxidative stress. We found that hydrogen peroxide and t-butyl hydroperoxide strongly stimulate 5-oxo-ETE formation by U937 monocytic cells. This was dependent on the GSH redox cycle, as it was blocked by depletion of GSH or inhibition of glutathione reductase and mimicked by oxidation of GSH to GSSG by diamide. Glucose inhibited the response to H2O2 through its metabolism by the pentose phosphate pathway, as its effect was reversed by the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. 5-Oxo-ETE synthesis was also strongly stimulated by hydroperoxides in blood monocytes, lymphocytes, and platelets, but not neutrophils. Unlike monocytic cells, lymphocytes and platelets were resistant to the inhibitory effects of glucose. 5-Oxo-ETE synthesis following incubation of peripheral blood mononuclear cells with arachidonic acid and calcium ionophore was also strongly enhanced by t-butyl hydroperoxide. Oxidative stress could act by depleting NADPH, resulting in the formation NADP+, the cofactor for 5-HEDH. This is opposed by the pentose phosphate pathway, which converts NADP+ back to NADPH. Oxidative stress could be an important mechanism for stimulating 5-oxo-ETE production in inflammation, promoting further infiltration of granulocytes into inflammatory sites.  相似文献   

12.
The role of H(2)O(2) and protein thiol oxidation in oxidative stress-induced epithelial paracellular permeability was investigated in Caco-2 cell monolayers. Treatment with a H(2)O(2) generating system (xanthine oxidase + xanthine) or H(2)O(2) (20 microM) increased the paracellular permeability. Xanthine oxidase-induced permeability was potentiated by superoxide dismutase and prevented by catalase. H(2)O(2)-induced permeability was prevented by ferrous sulfate and potentiated by deferoxamine and 1,10-phenanthroline. GSH, N-acetyl-L-cysteine, dithiothreitol, mercaptosuccinate, and diethylmaleate inhibited H(2)O(2)-induced permeability, but it was potentiated by 1,3-bis(2-chloroethyl)-1-nitrosourea. H(2)O(2) reduced cellular GSH and protein thiols and increased GSSG. H(2)O(2)-mediated reduction of GSH-to-GSSG ratio was prevented by ferrous sulfate, GSH, N-acetyl-L-cysteine, diethylmaleate, and mercaptosuccinate and potentiated by 1,10-phenanthroline and 1, 3-bis(2-chloroethyl)-1-nitrosourea. Incubation of soluble fraction of cells with GSSG reduced protein tyrosine phosphatase (PTPase) activity, which was prevented by coincubation with GSH. PTPase activity was also lower in H(2)O(2)-treated cells. This study indicates that H(2)O(2), but not O(2)(-). or.OH, increases paracellular permeability of Caco-2 cell monolayer by a mechanism that involves oxidation of GSH and inhibition of PTPases.  相似文献   

13.
The killing of cultured hepatocytes by allyl alcohol depended on the metabolism of this hepatotoxin by alcohol dehydrogenase to the reactive electrophile, acrolein. An inhibitor of alcohol dehydrogenase, pyrazole, prevented both the toxicity of allyl alcohol and the rapid depletion of GSH. Treatment of the hepatocytes with a ferric iron chelator, deferoxamine, or an antioxidant, N,N'-diphenyl-p-phenylenediamine (DPPD), prevented the cell killing but not the metabolism of allyl alcohol and the resulting depletion of GSH. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) sensitized the hepatocytes to allyl alcohol, an effect that was not attributable to the reduction in GSH with BCNU. The cell killing with allyl alcohol was preceded by the peroxidation of cellular lipids as evidence by an accumulation of malondialdehyde in the cultures. Deferoxamine and DPPD prevented the lipid peroxidation in parallel with their protection from the cell killing. These data indicate that acrolein produces an abrupt depletion of GSH that is followed by lipid peroxidation and cell death. Such oxidative cell injury is suggested to result from the inability to detoxify endogenous hydrogen peroxide and the ensuing iron-dependent formation of a potent oxidizing species. Oxidative cell injury more consistently accounts for the hepatotoxicity of allyl alcohol than does the covalent binding of acrolein to cellular macromolecules.  相似文献   

14.
Protein-glutathione mixed disulfide formation was investigated in vitro by exposure of human platelets to the thiol-specific oxidant azodicarboxylic acid-bis-dimethylamide (diamide). We found that diamide causes a decrease in the reduced form of glutathione (GSH), paralleled by an increase in protein-GSH mixed disulfides (S-glutathionylated proteins), which was not accompanied by any significant increase in the basal level of glutathione disulfide (GSSG). The increase in the appearance of S-glutathionylated proteins was inversely correlated with ADP-induced platelet aggregation. Platelet cytoskeleton was analyzed by SDS-PAGE followed by Western immunoblotting with anti-GSH antibody. The main S-glutathionylated cytoskeletal protein proved to be actin, which accounts for 35% of the platelet total protein content. Our results suggest that neither GSSG formation nor a consequent thiol-disulfide exchange mechanism is involved in actin S-glutathionylation of human platelets exposed to diamide. Instead, a mechanism involving the initial oxidative activation of actin thiol groups, which then react with GSH to the protein-GSH mixed disulfides, makes it likely that platelet actin is S-glutathionylated without any significant increase in the GSSG content.  相似文献   

15.
L-buthionine-S,R-sulfoximine (BSO), an inhibitor of GSH synthesis, decreased IL-1 beta-induced nitrite release in rat islets and purified rat beta cells, nitrite formation and iNOS gene promoter activity in insulinoma cells, and iNOS mRNA expression in rat islets. The thiol depletor diethyl maleate (DEM) and an inhibitor of glutathione reductase 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) reduced IL-1 beta-stimulated nitrite release in islets. We conclude that GSH regulates IL-1 beta-induced NO production in islets, purified beta cells and insulinoma cells by modulation of iNOS gene expression.  相似文献   

16.
A method is described for measuring bioreduction of hydroxyethyl disulfide (HEDS) or alpha-lipoate by human A549 lung, MCF7 mammary, and DU145 prostate carcinomas as well as rodent tumor cells in vitro. Reduction of HEDS or alpha-lipoate was measured by removing aliquots of the glucose-containing media and measuring the reduced thiol with DTNB (Ellman's reagent). Addition of DTNB to cells followed by disulfide addition directly measures the formation of newly reduced thiol. A549 cells exhibit the highest capacity to reduce alpha-lipoate, while Q7 rat hepatoma cells show the highest rate of HEDS reduction. Millimolar quantities of reduced thiol are produced for both substrates. Oxidized dithiothreitol and cystamine were reduced to a lesser degree. DTNB, glutathione disulfide, and cystine were only marginally reduced by the cell cultures. Glucose-6-phosphate deficient CHO cells (E89) do not reduce alpha-lipoate and reduce HEDS at a much slower rate compared to wild-type CHO-K1 cells. Depletion of glutathione prevents the reduction of HEDS. The depletion of glutathione inhibited reduction of alpha-lipoate by 25% and HEDS by 50% in A549 cells, while GSH depletion did not inhibit alpha-lipoate reduction in Q7 cells but completely blocked HEDS reduction. These data suggest that the relative participation of the thioltransferase (glutaredoxin) and thioredoxin systems in overall cellular disulfide reduction is cell line specific. The effects of various inhibitors of the thiol-disulfide oxidoreductase enzymes (1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), arsenite, and phenylarsine oxide) support this conclusion.  相似文献   

17.
We performed experiments to characterize the glutathione-dependent metabolism occurring during tert-butyl hydroperoxide infusion in isolated perfused rat lungs and to examine the effect of selenium deficiency on this metabolism. Selenium deficiency resulted in decreased lung glutathione peroxidase activity but normal glutathione reductase activity and glutathione content. Infusion of the hydroperoxide into control lungs caused a proportional increase in tissue glutathione disulfide (GSSG) concentration and release of GSSG into the perfusate up to an infusion rate of 250 nmol of tert-butyl hydroperoxide X min-1 X 100 g body wt-1. Infusion rates greater than this resulted in continued rise of tissue GSSG concentrations but GSSG release into the perfusate plateaued. Infusion of tert-butyl hydroperoxide into selenium-deficient rat lungs resulted in much lower concentrations of tissue GSSG and GSSG release into the perfusate; however, release in the selenium-deficient rat lung was also found to be saturable at infusion rates of 450 nmol of tert-butyl hydroperoxide X min-1 X 100 g of body wt-1. Selenium deficiency in the rat decreases the rate of reduction of infused tert-butyl hydroperoxide by glutathione and may predispose the lung to free radical damage.  相似文献   

18.
Selenium deficiency causes a fall in rat cardiac glutathione peroxidase activity. As a consequence, isolated perfused selenium-deficient heart does not release increased amounts of GSSG when hydroperoxide is infused. However, the total amount of glutathione measured as intracellular GSH, intracellular GSSG and GSSG released from the heart when hydroperoxide is infused does not equal the total glutathione measured in these pools in untreated hearts (Xia, Y., Hill, K.E. and Burk, R.F. (1985) J. Nutr. 115, 733-742). GSSG can react with protein sulfhydryl groups to form glutathione-protein mixed disulfides (PrS-SG). PrS-SG were measured in perfused selenium-deficient and control hearts infused with t-butylhydroperoxide and were found to account for the previously unmeasured glutathione. The ability of the selenium-deficient heart to transport GSSG was also examined. GSSG was produced non-enzymatically by infusing diamide. The diamide-treated selenium-deficient heart formed GSSG and released it at the same rate as similarly-treated control heart. Thus although selenium deficiency decreases GSSG formation by glutathione peroxidase, it does not affect cardiac GSSG transport.  相似文献   

19.
The organic hydroperoxide, tert-butyl hydroperoxide (t-BHP), is a useful model compound to study mechanisms of oxidative cell injury. In the present work, we examined the features of the interactions of this oxidant with Chinese hamster B14 cells. The aim of our study was to reveal a possible role of structural modifications in membranes and loss of DNA integrity in t-BHP-induced cell injury and death. The tert-butyl hydroperoxide treatment (100-1000 microM, 37 degrees C for 1h) did not decrease cell viability (as measured by cell-specific functional activity with an MTT test), but completely prevented cell growth. We observed intracellular reduced glutathione (GSH) oxidation and total glutathione (GSH+GSSG) depletion, a slight increase in the level of lipid-peroxidation products, an enhancement of membrane fluidity, intracellular potassium leakage and a significant decrease of membrane potential. At oxidant concentrations of 100-1500 microM, a significant damage to DNA integrity was observed as revealed by the Comet assay. The inhibition of cell proliferation (cell-growth arrest) may be explained by genotoxicity of t-BHP, by disturbance of the cellular redox-equilibrium (GSH oxidation) and by structural membrane modifications, which result in ion-non-selective pore formation. The disturbance in passive membrane permeability and the DNA damage may be the most dramatic cell impairments induced by t-BHP treatment. The presence of another oxidant, hypochlorous acid (HOCl), completely prevented t-BHP-induced DNA strand breaks, perhaps due to extracellular oxidation of t-BHP by HOCl.  相似文献   

20.
In vitro DNA synthesis by isolated cytoplasmic DNA polymerases of human leukemic cells was found to be inhibited by 1,3-bis(2-chloroethyl)-1-nitrosourea, 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea and 1-(2-chloroethyl)-3-(trans-4-methyl-cyclohexyl)-1-nitrosourea. 2-Chloroethyl isocyanate and cyclohexyl isocyanate, the decomposition products of 1,3-bis(2-chloroethyl)-1-nitrosourea and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea, respectively, are as effective as their parent nitrosoureas in inhibiting the enzyme activity. Preincubation studies indicated that these compounds inhibit DNA synthesis primarily by altering the enzyme DNA polymerases without significantly affecting the DNA template activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号