首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Negatively charged carboxyl groups of mitochondrial porin have been converted into positively charged ones by means of reaction with water-soluble carbodiimide in the presence of ethylenediamine. Properties of channels formed in a planar lipid bilayer by native and modified porins are compared. Amidation has only little influence on the porin channel-forming activity as well as on the open-state conductance of the channel. However, the modification results in a significant enhancement of the voltage dependence of the channel gating and in an increase of the anionic selectivity. It is suggested that the voltage sensor of the porin channel gate is composed of a number of negative (greater than 14) and positive (greater than 22) charges.  相似文献   

4.
5.
The S promoter, one of the major hepatitis B virus (HBV) promoters, directs the synthesis of mRNA for surface antigen. Transient expression studies revealed that this promoter is highly active in the Alexander hepatoma cell line but not in SK-Hep1 and HeLa cells. We found that a distal element of the promoter (-103 to -48) confers this cell-type-specific behavior through a mechanism in which the promoter activity is repressed in HeLa and SK-Hep1 cells but increased in Alexander cells. By using an inhibitor of protein synthesis, we obtained evidence that a labile repressor(s) confers the negative effect in SK-Hep1 cells. We also found an enhancerlike activity associated with a small DNA segment of the S promoter (-27 to + 30). This proximal element was active in HeLa and SK-Hep1 cells only in the absence of the distal negative element. Finally, analysis of S promoter deletion mutants demonstrated that the -27 to -17 region of the S promoter is crucial for its activity.  相似文献   

6.
7.
The AtGRP5 gene from Arabidopsis thaliana encodes a glycine-rich protein which has a major activity in protoderm-derived cells and is expressed in cells that undergo the first anatomical modifications leading to somatic embryo development. It has been previously demonstrated that its minimum promoter is 316 bp long including the 5′UTR and presents three putative TATA-boxes sequences and several regions that are homologous to previous characterized cis-acting elements. In order to better characterize the AtGRP5 expression and to identify the promoter regions involved in its preferential epidermal expression, in situ hybridization and 5′ promoter deletions were employed. In situ hybridization and GUS expression assays indicate that, besides being present during somatic embryogenesis, AtGRP5 is also expressed during the zygotic embryo development. The sequential 5′ deletions indicate that multiple negative and positive regulatory elements are present in the AtGRP5 promoter and operate in order to confer its distinct expression pattern. A 44-bp region was shown to be essential for the epidermal expression of this gene in leaves, stems, flowers and fruits, and is also responsible for high activity of the AtGRP5 promoter in zygotic embryos. An element responsible for the phloem expression was also identified in a 35-bp region.  相似文献   

8.
Several promoter fragments from the barley gene coding for trypsin inhibitor, BTI-CMe, have been fused to the -glucuronidase (GUS) reporter gene and these chimeric constructs used for transient expression in protoplasts. Transfection of developing endosperm protoplasts from barley (cv Bomi) show a maximum GUS expression of about 50% of that driven by the cauliflower mosaic virus 35S promoter, while in wheat endosperm protoplasts expression is less than 10%. No significant expression is found in transfected leaf protoplasts from barley, wheat or tobacco (<2% of the 35S control). All the information required for endosperm and barley specificity is present in the 343 bp proximal to the translation initiation site.Abbreviations MS Murashige and Skoog medium - PEG polyethyleneglycol - GUS -glucuronidase - MU methylumbelliferone - MUG 4-methylumbelliferyl--D glucuronide - pp protoplasts  相似文献   

9.
10.
11.
The thyroid hormone response element (T3RE) of the rat GH (rGH) promoter is located at -188 to -165 relative to the mRNA start site (TSS). Similar sites have been identified in other genes regulated by T3. We have investigated some of these T3REs in positions within the rGH promoter to assess the relative influences of DNA-binding site and position on positive and negative regulation by T3. Synthetic oligonucleotides were used with sequences from the rGH T3RE and proposed negative T3REs (nT3RE) from the rat and human alpha-subunit and rat beta TSH genes. The nT3REs were placed in the background of the wild-type rGH promoter in two positions, at -55 and down-stream of the TSS, with up- and down-mutations of the rGH T3RE. Rat GH T3RE elements were placed 700 basepairs up-stream of a basal rGH promoter and some also at the -55 and TSS positions. Constructions were tested in a transient transfection assay in rat pituitary tumor cells. Two copies of the rGHPAL (palindromic T3RE) placed 700 basepairs up-stream of the rGH promoter conferred 10-fold T3 induction. In the -55 position, the rGHPAL increased T3 induction compared to that in controls, whereas a fragment from the rat and human alpha-subunit gene in the same position reduced induction. Negative T3REs from rat beta TSH and human alpha-subunit reduced T3 induction 50% when placed at the TSS position of a rGH promoter containing an up-mutant T3RE. The T3REPAL placed at the same site increased T3 induction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The chicken lysozyme gene is constitutively active in macrophages and under the control of steroid hormones in the oviduct. To investigate which DNA elements are involved in the control of its expression in macrophages we performed transient DNA transfer experiments with two different types of plasmids: 5'-deletion mutants of the upstream region of the chicken lysozyme gene and different fragments from this area in front of the thymidine kinase promoter (herpes simplex virus), each placed in front of the CAT (chloramphenicol acetyl transferase) coding sequence. Two enhancers (E-2.7 kb and E-0.2 kb) were characterized. They are active in macrophages, but not in chicken fibroblasts. Furthermore a negative element (N-2.4 kb) was identified, which is active in fibroblasts and promyelocytes, but not in mature macrophages. The combined action of all three elements contributes to the observed lysozyme gene activities: no activity in fibroblasts, moderate activity in promyelocytes and high activity in mature macrophages.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号