首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria mediate dual metabolic and Ca2+ shuttling activities. While the former is required for Ca2+ signalling linked to insulin secretion, the role of the latter in β cell function has not been well understood, primarily because the molecular identity of the mitochondrial Ca2+ transporters were elusive and the selectivity of their inhibitors was questionable. This study focuses on NCLX, the recently discovered mitochondrial Na+/Ca2+ exchanger that is linked to Ca2+ signalling in MIN6 and primary β cells. Suppression either of NCLX expression, using a siRNA construct (siNCLX) or of its activity, by a dominant negative construct (dnNCLX), enhanced mitochondrial Ca2+ influx and blocked efflux induced by glucose or by cell depolarization. In addition, NCLX regulated basal, but not glucose-dependent changes, in metabolic rate, mitochondrial membrane potential and mitochondrial resting Ca2+. Importantly, NCLX controlled the rate and amplitude of cytosolic Ca2+ changes induced by depolarization or high glucose, indicating that NCLX is a critical and rate limiting component in the cross talk between mitochondrial and plasma membrane Ca2+ signalling. Finally, knockdown of NCLX expression was followed by a delay in glucose-dependent insulin secretion. These findings suggest that the mitochondrial Na+/Ca2+ exchanger, NCLX, shapes glucose-dependent mitochondrial and cytosolic Ca2+ signals thereby regulating the temporal pattern of insulin secretion in β cells.  相似文献   

2.
The efflux of Ca2+ from mitochondria respiring at steady state, and much of uncoupler-induced Ca2+ efflux, is shown to be a consequence of the Ca2+-induced membrane transition (the Ca2+-induced transition is the Ca2+-dependent sudden increase in the nonspecific permeability of the mitochondrial inner membrane which occurs spontaneously when mitochondria are incubated under a variety of conditions (D. R. Hunter, R. A. Haworth, and J. H. Southard, 1976, J. Biol. Chem.251, 5069–5077)). Ca2+ release from mitochondria respiring at steady state is shown to be transitional by four criteria: (1) Ca2+ release is inhibited by Mg2+, ADP, and bovine serum albumin (BSA), all inhibitors of the transition; (2) release is selective for Ca2+ over Sr2+, a selectivity also found for the transition; (3) the time course of Ca2+ release is identical to the time course of the change in the mitochondrial population from the aggregated to the orthodox configuration; and (4) from kinetics, Ca2+ release from individual mitochondria is shown to occur suddenly, following a lag period during which no release occurs. Ca2+ release induced by uncoupler is shown to be mostly by a transitional mechanism, as judged by four criteria: (1) release of Ca2+ is ruthenium red-insensitive and is an order of magnitude faster than Sr2+ release which is ruthenium red-sensitive; (2) release of Ca2+ is strongly inhibited by keeping the mitochondrial NAD+ reduced; (3) the kinetics of Ca2+ release indicates a transitional release mechanism; and (4) uncoupler addition triggers the aggregated to orthodox configurational transition which, at higher levels of Ca2+ uptake, occurs in the whole mitochondrial population at a rate equal to the rate of Ca2+ release. Na2+-induced Ca2+ release was not accompanied by a configurational change; we therefore conclude that it is not mediated by the Ca2+-induced transition.  相似文献   

3.
Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.  相似文献   

4.
Mitochondria contribute to cytosolic Ca2+ homeostasis through several uptake and release pathways. Here we report that 1,2-sn-diacylglycerols (DAGs) induce Ca2+ release from Ca2+-loaded mammalian mitochondria. Release is not mediated by the uniporter or the Na+/Ca2+ exchanger, nor is it attributed to putative catabolites. DAGs-induced Ca2+ efflux is biphasic. Initial release is rapid and transient, insensitive to permeability transition inhibitors, and not accompanied by mitochondrial swelling. Following initial rapid release of Ca2+ and relatively slow reuptake, a secondary progressive release of Ca2+ occurs, associated with swelling, and mitigated by permeability transition inhibitors. The initial peak of DAGs-induced Ca2+ efflux is abolished by La3+ (1 mM) and potentiated by protein kinase C inhibitors. Phorbol esters, 1,3-diacylglycerols and 1-monoacylglycerols do not induce mitochondrial Ca2+ efflux. Ca2+-loaded mitoplasts devoid of outer mitochondrial membrane also exhibit DAGs-induced Ca2+ release, indicating that this mechanism resides at the inner mitochondrial membrane. Patch clamping brain mitoplasts reveal DAGs-induced slightly cation-selective channel activity that is insensitive to bongkrekic acid and abolished by La3+. The presence of a second messenger-sensitive Ca2+ release mechanism in mitochondria could have an important impact on intracellular Ca2+ homeostasis.  相似文献   

5.
6.
The rate of ruthenium-red-induced Ca2+ efflux depends on the time that the calcium interacts with the mitochondria prior to the addition of the inhibitor. This time-dependency is abolished in the presence of nupercaine; it does not occur in the case of Sr2+ efflux from mitochondria in which the endogenous Ca2+ has been substituted by strontium (strontium-treated mitochondria, STM). Ruthenium red inhibits the respiratory-inhibitor- or uncoupler-induced Sr2+ efflux from STM, but not the Ca2+ efilux from standard mitochondria. The influence of the calcium-induced mitochondrial damage upon the effect of ruthenium red is discussed.  相似文献   

7.
Alloxan at millimolar concentrations slightly inhibited the velocity of Ca2+ uptake by isolated rat liver mitochondria irrespective of the free Ca2+ concentration between 1 and 10 µM and was an effective concentration-dependent stimulator of mitochondrial Ca2+ efflux. Ninhydrin also slightly inhibited the velocity of mitochondrial Ca2+ uptake but only at free Ca2+ concentrations above 5 µM. However, ninhydrin was a strong stimulator of mitochondrial Ca2+ efflux even at micromolar concentrations, 10–50 times more potent than alloxan. The mitochondrial membrane potential was reduced 10–20% at most by alloxan and ninhydrin. Alloxan and ninhydrin also stimulated Ca2+ efflux from isolated permeabilized liver cells. When isolated intact liver cells had been pre-incubated with alloxan or ninhydrin before permeabilization of the cells the ability of spermine to induce mitochondrial Ca2+ uptake was abolished. Glucose provided the typical protection against the effects of alloxan on mitochondrial Ca2+ transport only in experiments with intact cells but not in experiments with permeabilized cells or isolated mitochondria. Therefore glucose protection is apparently due to inhibition of alloxan uptake into the cell. Glucose provided no protection against effects of ninhydrin under any of the experimental conditions. Thus both alloxan and ninhydrin are potent stimulators of Ca2+ efflux by isolated mitochondria but very weak inhibitors of the velocity of mitochondrial Ca2+ uptake. The direct effects of ninhydrin on mitochondrial Ca2+ efflux may contribute to the cytotoxic action of this agent whereas the direct effects of alloxan on mitochondrial Ca2+ transport require concentrations which are too high to be of relevance for the induction of the typical pancreatic B-cell toxic effects of alloxan. However, the effects on mitochondrial Ca2+ transport during incubation of intact cells which may result from the generation of cytotoxic intermediates during alloxan xenobiotic metabolism may well contribute to the pancreatic B-cell toxic effect of alloxan. Mol Cell Biochem 118: 141–151, 1992)  相似文献   

8.
Excessive “excitotoxic” accumulation of Ca2+ and Zn2+ within neurons contributes to neurodegeneration in pathological conditions including ischemia. Putative early targets of these ions, both of which are linked to increased reactive oxygen species (ROS) generation, are mitochondria and the cytosolic enzyme, NADPH oxidase (NOX). The present study uses primary cortical neuronal cultures to examine respective contributions of mitochondria and NOX to ROS generation in response to Ca2+ or Zn2+ loading. Induction of rapid cytosolic accumulation of either Ca2+ (via NMDA exposure) or Zn2+ (via Zn2+/Pyrithione exposure in 0 Ca2+) caused sharp cytosolic rises in these ions, as well as a strong and rapid increase in ROS generation. Inhibition of NOX activation significantly reduced the Ca2+-induced ROS production with little effect on the Zn2+- triggered ROS generation. Conversely, dissipation of the mitochondrial electrochemical gradient increased the cytosolic Ca2+ or Zn2+ rises caused by these exposures, consistent with inhibition of mitochondrial uptake of these ions. However, such disruption of mitochondrial function markedly suppressed the Zn2+-triggered ROS, while partially attenuating the Ca2+-triggered ROS. Furthermore, block of the mitochondrial Ca2+ uniporter (MCU), through which Zn2+ as well as Ca2+ can enter the mitochondrial matrix, substantially diminished Zn2+ triggered ROS production, suggesting that the ROS generation occurs specifically in response to Zn2+ entry into mitochondria. Finally, in the presence of the sulfhydryl-oxidizing agent 2,2''-dithiodipyridine, which impairs Zn2+ binding to cytosolic metalloproteins, far lower Zn2+ exposures were able to induce mitochondrial Zn2+ uptake and consequent ROS generation. Thus, whereas rapid acute accumulation of Zn2+ and Ca2+ each can trigger injurious ROS generation, Zn2+ entry into mitochondria via the MCU may do so with particular potency. This may be of particular relevance to conditions like ischemia in which cytosolic Zn2+ buffering is impaired due to acidosis and oxidative stress.  相似文献   

9.
《Cell calcium》2015,57(6):457-466
Mitochondrial Ca2+ plays a critical physiological role in cellular energy metabolism and signaling, and its overload contributes to various pathological conditions including neuronal apoptotic death in neurological diseases. Live cell mitochondrial Ca2+ imaging is an important approach to understand mitochondrial Ca2+ dynamics. Recently developed GCaMP genetically-encoded Ca2+ indicators provide unique opportunity for high sensitivity/resolution and cell type-specific mitochondrial Ca2+ imaging. In the current study, we implemented cell-specific mitochondrial targeting of GCaMP5G/6s (mito-GCaMP5G/6s) and used two-photon microscopy to image astrocytic and neuronal mitochondrial Ca2+ dynamics in culture, revealing Ca2+ uptake mechanism by these organelles in response to cell stimulation. Using these mitochondrial Ca2+ indicators, our results show that mitochondrial Ca2+ uptake in individual mitochondria in cultured astrocytes and neurons can be seen after stimulations by ATP and glutamate, respectively. We further studied the dependence of mitochondrial Ca2+ dynamics on cytosolic Ca2+ changes following ATP stimulation in cultured astrocytes by simultaneously imaging mitochondrial and cytosolic Ca2+ increase using mito-GCaMP5G and a synthetic organic Ca2+ indicator, x-Rhod-1, respectively. Combined with molecular intervention in Ca2+ signaling pathway, our results demonstrated that the mitochondrial Ca2+ uptake is tightly coupled with inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release from the endoplasmic reticulum and the activation of G protein-coupled receptors. The current study provides a novel approach to image mitochondrial Ca2+ dynamics as well as Ca2+ interplay between the endoplasmic reticulum and mitochondria, which is relevant for neuronal and astrocytic functions in health and disease.  相似文献   

10.
Ca2+ loading in mitochondria promotes the opening of a non-selective transmembrane pathway. Permeability transition is also associated with the interaction of cyclophilin D at the internal surface of the non-specific transmembrane pore. This interaction is circumvented by cyclosporin A and ADP. Our results show that, in the absence of ADP, liver mitochondria were unable to retain Ca2+, they underwent a fast and large amplitude swelling, as well as a rapid collapse of the transmembrane potential. In contrast, in the absence of ADP, kidney mitochondria retained Ca2+, swelling did not occur, and the collapse of the membrane potential was delayed. Ca2+ efflux was reversed by the addition of ADP and cyclosporin A. Our findings indicate that the differences between liver and kidney mitochondria are due to the low association of cyclophilin D to the ADP/ATP carrier found in kidney mitochondria as compared to liver mitochondria.  相似文献   

11.
Parallel measurements of Ca2+ uptake, oxygen consumption, endogenous Mg2+ efflux, and swelling in rotenone-poisoned rat liver and rat heart mitochondria showed that heart mitochondria is much more resistant to uncoupling by Ca2+ in the presence of phosphate than rat liver mitochondria. The extent of Mg2+ efflux and swelling induced by Ca2+ accumulation are much less pronounced in heart mitochondria. Uncoupling and swelling in liver mitochondria seem to result from the loss of membrane-bound Mg2+ as a consequence of Ca2+ recycling across the membrane as induced by phosphate. Exogenous Mg2+ protects liver mitochondria against the deleterious effects of Ca2+ by inhibiting a ruthenium red-insensitive Ca2+ efflux induced by phosphate. Phosphate does not induce recycling of Ca2+ in heart mitochondria. On the other hand, heart mitochondria respiring on NAD-linked substrates or with succinate in the absence of rotenone behave like liver mitochondria with respect to the alterations caused by Ca2+ recycling. In heart mitochondria the recycling of Ca2+ is related to the redox state of pyridine nucleotides, which suggests that the ruthenium red-insensitive efflux of Ca2+ is subject to metabolic control. In addition it has been observed that Sr2+does not undergo cyclic movements across the membrane. The data indicate that the efflux pathway is more specific for Ca2+ than the ruthenium red-sensitive influx transporter.  相似文献   

12.
Bongkrekic acid and atractyloside, inhibitors of adenine nucleotide translocase, do not inhibit Ca2+ uptake and H+ production by pig heart mitochondria. However, bongkrekic acid, but not atractyloside, inhibits dinitrophenol-induced Ca2+ efflux and H+ uptake. Conversely, ruthenium red blocks Ca2+ uptake and H+ production but does not prevent dinitrophenol-induced Ca2+ efflux and H+ uptake by mitochondria. These results suggest that mitochondrial Ca2+ uptake and release exist as two independent pathways. The efflux of Ca2+ from mitochondria is mediated by a bongkrekic acid sensitive component which is apparently not identical to the ruthenium red sensitive Ca2+ uptake carrier.  相似文献   

13.
N.-E.L. Saris  P. Bernardi 《BBA》1983,725(1):19-24
The effect of Sr2+ on the set point for external Ca2+ was studied in rat heart and liver mitochondria with the aid of a Ca2+-sensitive electrode. In respiring mitochondria the set point is determined by the rates of Ca2+ influx on the Ca2+ uniporter and efflux by various mechanisms. We studied the Ca2+-Na+ exchange pathway in heart mitochondria and the Δψ-modulated efflux pathway in liver mitochondria. Prior accumulation of Sr2+ was found to shift the set points towards lower external Ca2+ both in heart mitochondria under conditions of Ca2+-Na+ exchange and in liver mitochondria under conditions that should promote opening of the Δψ-modulated pathway. The effect on the set point was found to be due to inhibition of Ca2+ efflux by Sr2+ taken up by the mitochondria, while Sr2+ efflux was too slow to be measurable.  相似文献   

14.
Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca2+ signaling may play a central role in this process. Free Ca2+ dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca2+ dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca2+ uniporter machinery in mammals. MICU binds Ca2+ and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca2+ sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca2+ in the matrix. Furthermore, Ca2+ elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca2+ signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca2+ uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca2+ uptake by moderating influx, thereby shaping Ca2+ signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca2+ signaling in plants.  相似文献   

15.
Intracellular Zn2+ toxicity is associated with mitochondrial dysfunction. Zn2+ depolarizes mitochondria in assays using isolated organelles as well as cultured cells. Some reports suggest that Zn2+-induced depolarization results from the opening of the mitochondrial permeability transition pore (mPTP). For a more detailed analysis of this relationship, we compared Zn2+-induced depolarization with the effects of Ca2+ in single isolated rat liver mitochondria monitored with the potentiometric probe rhodamine 123. Consistent with previous work, we found that relatively low levels of Ca2+ caused rapid, complete and irreversible loss of mitochondrial membrane potential, an effect that was diminished by classic inhibitors of mPT, including high Mg2+, ADP and cyclosporine A. Zn2+ also depolarized mitochondria, but only at relatively high concentrations. Furthermore Zn2+-induced depolarization was slower, partial and sometimes reversible, and was not affected by inhibitors of mPT. We also compared the effects of Ca2+ and Zn2+ in a calcein-retention assay. Consistent with the well-documented ability of Ca2+ to induce mPT, we found that it caused rapid and substantial loss of matrix calcein. In contrast, calcein remained in Zn2+-treated mitochondria. Considered together, our results suggest that Ca2+ and Zn2+ depolarize mitochondria by considerably different mechanisms, that opening of the mPTP is not a direct consequence of Zn2+-induced depolarization, and that Zn2+ is not a particularly potent mitochondrial inhibitor.  相似文献   

16.
The transfer of Ca2+ across the inner mitochondrial membrane is an important physiological process linked to the regulation of metabolism, signal transduction, and cell death. While the definite molecular composition of mitochondrial Ca2+ uptake sites remains unknown, several proteins of the inner mitochondrial membrane, that are likely to accomplish mitochondrial Ca2+ fluxes, have been described: the novel uncoupling proteins 2 and 3, the leucine zipper-EF-hand containing transmembrane protein 1 and the mitochondrial calcium uniporter. It is unclear whether these proteins contribute to one unique mitochondrial Ca2+ uptake pathway or establish distinct routes for mitochondrial Ca2+ sequestration. In this study, we show that a modulation of Ca2+ release from the endoplasmic reticulum by inhibition of the sarco/endoplasmatic reticulum ATPase modifies cytosolic Ca2+ signals and consequently switches mitochondrial Ca2+ uptake from an uncoupling protein 3- and mitochondrial calcium uniporter-dependent, but leucine zipper-EF-hand containing transmembrane protein 1-independent to a leucine zipper-EF-hand containing transmembrane protein 1- and mitochondrial calcium uniporter-mediated, but uncoupling protein 3-independent pathway. Thus, the activity of sarco/endoplasmatic reticulum ATPase is significant for the mode of mitochondrial Ca2+ sequestration and determines which mitochondrial proteins might actually accomplish the transfer of Ca2+ across the inner mitochondrial membrane. Moreover, our findings herein support the existence of distinct mitochondrial Ca2+ uptake routes that might be essential to ensure an efficient ion transfer into mitochondria despite heterogeneous cytosolic Ca2+ rises.  相似文献   

17.
Mitochondria, the major source of cellular ATP, display high vulnerability to metabolic stress, in particular to excessive Ca2+ loading. Here, we show that Ca2+-inhibited mitochondrial ATP generation could be restored through stimulated Ca2+ discharge from mitochondrial matrix. This was demonstrated using a Ca2+ ionophore or through Na+/Ca2+ exchange-mediated decrease of mitochondrial Ca2+ load. Furthermore, diazoxide, a mitochondrial potassium channel opener, which maintained mitochondrial Ca2+ homeostasis, also restored Ca2+-inhibited ATP synthesis and preserved the structural integrity of Ca2+-challenged mitochondria. Thus, under conditions of excessive mitochondrial Ca2+ overload targeting mitochondrial Ca2+ transport pathways restores oxidative phosphorylation required for vital cellular processes. This study, therefore, identifies an effective strategy capable to rescue Ca2+-disrupted mitochondrial energetics.  相似文献   

18.
Ca2+ stimulates the binding of a variety of prostaglandins (PG) to liver mitochondria. Optimal binding is observed at slightly acidic pH and at concentrations of Ca2+ between 200 and 500 μm. The stimulation of the binding requires the active transport of Ca2+ in mitochondria and is only observed in the absence of permeant anions. The maximal amount of PG bound is about 3 nmol/mg of mitochondrial protein. All PG tested induce efflux of the Ca2+ taken up by mitochondria without impairing the ability of mitochondria to actively accumulate it. Optimal stimulation of the efflux of Ca2+ requires concentrations of PG higher than those used in the PG-binding experiments and is associated with an evident uncoupling of the respiration that follows a Ca2+-induced O2 uptake jump. The “uncoupling” by PG is explained by postulating the entrance of protonated PG into mitochondria, followed by their exit from the organelle as 2:1 complexes with Ca2+.  相似文献   

19.
The effect of bile acids as inducers of Ca2+ efflux from the matrix was studied on isolated rat liver mitochondria. Mitochondria in the presence of cyclosporin A (CsA) were energized by succinate, then loaded with Ca2+ and after the addition of the calcium uniporter inhibitor ruthenium red were de-energized by malonate. It was shown that under these conditions hydrophobic bile acids lithocholic and chenodeoxycholic at concentrations of 10 and 30 μM respectively and hydrophilic bile acids ursodeoxycholic and cholic at a concentration of 400 μM induce Ca2+ efflux from the mitochondrial matrix. It is noted that the efflux of these ions is not associated with damage of the inner mitochondrial membrane by bile acids, since it is accompanied by the generation of Δψ, i.e., the formation of the diffusion potential. It is assumed that along with induction of calcium efflux from the matrix, bile acids are also capable of transporting hydrogen and potassium ions in the opposite direction, i.e., perform H+/Ca2+ and K+/Ca2+ exchange. It was found that ruthenium red added to Ca2+-loaded energized mitochondria prevents the return of these ions to the matrix and weakens the effect of chenodeoxycholic acid as an inducer of the CsA-sensitive mitochondrial pore and the effect of ursodeoxycholic acid as an inducer of CsA-insensitive permeability of the inner mitochondrial membrane. We conclude that in the conditions of the calcium uniporter activity decrease, Ca2+ efflux from the matrix induced by bile acids can be considered as one of the mechanisms reducing their effectiveness as inducers of the Ca2+-dependent CsA-sensitive pore and CsA-insensitive permeability transition in mitochondria.  相似文献   

20.
Mitochondrial Ca2+ flux is crucial for the regulation of cell metabolism. Ca2+ entry to the mitochondrial matrix is mediated by VDAC1 and MCU with its regulatory molecules. We investigated hepatocytes isolated from conplastic C57BL/6NTac-mtNODLtJ mice (mtNOD) that differ from C57BL/6NTac mice (controls) by a point mutation in mitochondrial-encoded subunit 3 of cytochrome c oxidase, resulting in functional and morphological mitochondrial adaptations. Mice of both strains up to 12 months old were compared using mitochondrial GEM-GECO1 and cytosolic CAR-GECO1 expression to gain knowledge of age-dependent alterations of Ca2+ concentrations. In controls we observed a significant increase in glucose-induced cytosolic Ca2+ concentration with ageing, but only a minor elevation in mitochondrial Ca2+ concentration. Conversely, glucose-induced mitochondrial Ca2+ concentration significantly declined with ageing in mtNOD mice, paralleled by a slight decrease in cytosolic Ca2+ concentration. This was consistent with a significant reduction of the MICU1 to MCU expression ratio and a decline in MCUR1. Our results can best be explained in terms of the adaptation of Ca2+ concentrations to the mitochondrial network structure. In the fragmented mitochondrial network of ageing controls there is a need for high cytosolic Ca2+ influx, because only some of the isolated mitochondria are in direct contact with the endoplasmic reticulum. This is not important in the hyper-fused elongated mitochondrial network found in ageing mtNOD mice which facilitates rapid Ca2+ distribution over a large mitochondrial area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号