首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In pre-streak chick embryos, the extraembryonic posterior marginal zone is able to induce an embryonic axis at an ectopic site without contributing cells to the induced primitive streak. This region expresses mesoderm-inducing factors that are capable of inducing an ectopic streak. Downstream of these events, chordin and bone morphogenetic protein acting within the central disc may play mutually opposing roles influencing streak formation. Although extraembryonic regions are important in establishing the embryonic axis, there does not appear to be an anterior region with head-inducing activity similar to that of the anterior visceral endoderm of the mammalian embryo.  相似文献   

2.
A model based upon minimization of surface energy as an explanation for the phenomena of compaction and internalization of cells during mammalian embryo development is generalized for three-dimensional cells. It is shown that, for a spherical embryo, if cells are assumed to be polygonal cones in shape, the simulation of these phenomena for three-dimensional cells is equivalent to simulations of deformations of two-dimensional cells on the surface of a sphere. This equivalence is used to show that in the optimal compacted structure, with no internal cells, the cross-sections of cells in general are not regular polyhedra. Further, the internalization occurs when the number of cells exceeds a critical value which seems to depend on the relative sizes and biophysical properties of cells.  相似文献   

3.
During early embryogenesis of Caenorhabditis elegans the serial stem cell-like cleavages of the germ line cells P0-P3 generate a number of somatic founder cells with different developmental potentials. Observations on partial embryos show that in the first two of these unequal divisions in the germ line the somatic daughter cell comes to lie anterior to the new germ line cell. In the following two, however, the somatic daughter cell comes to lie posterior to the new germ line cell, suggesting a reversal of polarity in the germ line. By the use of a laser microbeam, egg fragments can be extruded from young embryos; the fragments often cleave like partial twins. Depending on whether the fragment is derived from the posterior region of the uncleaved zygote P0 or its daughter P1, the mirror image duplications that are generated are joined at their larger soma-like cells or at their smaller germ line-like cells, respectively. This result is best explained as a reversal of polarity taking place in the germ line cell P2. This notion is strengthened by the finding that partial embryos derived from the posterior region of the P2 cell in late interphase do not undergo stem cell-like (i.e., unequal) cleavages in contrast to those derived from P0 or P1. Finally, an apparent early cell-cell interaction is described which is inconsistent with the classical notion of "mosaic" nematode development: removal of the germline cell P2 results in an altered developmental pattern of its somatic sister cell EMS. A working model is presented linking reversal of polarity and cell-cell interaction and offers an explanation for the unique behavior of the EMS cell in normal development.  相似文献   

4.
In early cleavage stage hamster embryos, the inability to regulate intracellular pH (pHi) properly is associated with reduced developmental competence in vitro. The disruption of mitochondrial organization is also correlated with reduced development in vitro. To determine the relationship between pHi and the disruption of cytoplasmic organization, we examined the effects of altering pHi on hamster embryo development, mitochondrial distribution, and cytoskeletal organization. The weak base trimethylamine was used to increase pHi and was found to reduce embryo development and disrupt the perinuclear organization of mitochondria. The weak acid 5,5-dimethyl-2,4-oxazolinedione was used to decrease pH(i) and was also found to reduce development and disrupt the perinuclear organization of mitochondria. With either treatment, the microfilament organization was perturbed, but the microtubule cytoskeleton was not. However, the temporal progression of the disruption of mitochondrial distribution was more rapid in alkalinized embryos than acidified embryos, as revealed by two-photon imaging of living embryos. Additionally, the disruption of the microfilament network by the two treatments was not identical. The cytoplasmic disruptions observed were not due to acute toxicity of the compounds because embryos recovered developmentally when the treatment compounds were removed. These observations link ionic homeostasis, structural integrity and developmental competence in preimplantation hamster embryos.  相似文献   

5.
During the process of compaction, mouse 8-cell blastomeres flatten upon each other and polarize along an axis perpendicular to cell contacts. If the process of flattening is prevented, polarization can still occur, but does so in a lower proportion of cells than for control populations, and without the normal contact-directed orientation. We compared contact-directed and noncontact-directed processes to see if they involve common mechanisms. In nonflattened cells, surface polarization was favored in cells with nuclei located close to the cell surface, and the positions of surface poles and of nuclei tended to coincide. We present evidence that microtubules are involved in the development of microvillous poles associated with nuclei. In contrast it is known that polarization of microvilli occurs in the absence of microtubules if blastomeres are allowed to flatten. We conclude that surface polarization of mouse blastomeres can be accomplished by at least two alternative routes. One requires flattening but is independent of microtubules, and another can occur without flattening but involves a microtubule-mediated interaction between the nucleus and the cell cortex. It seems that both these pathways operate in the undisturbed embryo.  相似文献   

6.
7.
The invasiveness of trophoblast cells is well known, but it is not clear whether they achieve this property by being transformed to other cell types (like malignant ones) or remain benign. Trophoblasts, in culture, were studied ultrastructurally by examining the surface morphology of the cell vis-à-vis their cytoplasmic outgrowth, and the presence and/or absence of ruffling membranes, filopodia, microvilli, pinocytotic pits or bleb-like structures was observed. Results revealed formation of ruffling membranes only on the leading edge, a presence of slender filopodia and pinocytotic pits but an absence of microvilli and bleb-like structures, the characteristic features of a transformed cell. The study indicated that the trophoblast cells, in spite of being invasive, do not convert to any other cell type.  相似文献   

8.
Zygotes of fucoid algae have long been studied as a paradigm for cell polarity. Polarity is established early in the first cell cycle and is then expressed as localized growth and invariant cell division. The fertilized egg is a spherical cell and, by all accounts, bears little or no asymmetry. Polarity is acquired epigenetically a few hours later in the form of a rhizoid/thallus axis. The initial stage of polarization is axis selection, during which zygotes monitor environment gradients to determine the appropriate direction for rhizoid formation. In their natural setting in the intertidal zone, sunlight is probably the most important polarizing vector; rhizoids form away from the light. The mechanism by which zygotes perceive environmental gradients and transduce that information into an intracellular signal is unknown but may involve a phosphatidylinositol cycle. Once positional information has been recorded, the cytoplasm and membrane are reorganized in accordance with the vectorial information. The earliest detectable asymmetries in the polarizing zygote are localized secretion and generation of a transcellular electric current. Vesicle secretion and the inward limb of the current are localized at the presumptive rhizoid. The transcellular current may establish a cytoplasmic Ca2+ gradient constituting a morphogenetic field, but this remains controversial. Localized secretion and establishment of transcellular current are sensitive to treatment with cytochalasins, indicating that cytoplasmic reorganization is dependent on the actin cytoskeleton. The nascent axis at first is labile and susceptible to reorientation by subsequent environmental vectors but soon becomes irreversibly fixed in its orientation. Locking the axis in place requires both cell wall and F-actin and is postulated to involve an indirect transmembrane bridge linking cortical actin to cell wall. This bridge anchors relevant structures at the presumptive rhizoid and thereby stabilizes the axis. Approximately halfway through the first cell cycle, the latent polarity is expressed morphologically in the form of rhizoid growth. Elongation is by tip growth and does not appear to be fundamentally different from tip growth in other organisms. The zygote always divides perpendicular to the growth axis, and this is controlled by the microtubule cytoskeleton. Two microtubule-organizing centers on the nuclear envelope rotate such that they align with the growth axis. They then serve as spindle poles during mitosis. Cytokinesis bisects the axial spindle, resulting in a transverse crosswall. Although the chronology of cellular events associated with polarity is by now rather detailed, causal mechanisms remain obscure.  相似文献   

9.
Summary Endogenous pH profiles were measured around single fertilized eggs of the brown algaPelvetia during the earliest stages of development. Profiles were constructed by measuring the pH near the cell surface at several positions using a pH sensitive microelectrode. Transcellular pH differences in the medium surrounding zygotes were detected soon after fertilization, as the developmental axis was being formed. The future rhizoid end of the cell was relatively alkaline and the presumptive thallus was acidic. At germination and throughout the first 5 d of embryogenesis, the apex of the elongating rhizoid was alkaline with respect to more distal regions. However, conditions that dissipated or reversed this extracellular pH gradient had little or no effect on polarization or growth, indicating that the gradient was not essential for early development.Inhibition of respiratory electron transport by cyanide and antimycin A eliminated the pH gradient, while uncouplers of oxidative phosphorylation [2,4-dinitrophenol (DNP) and carbonylcyanide m-chlorophenylhydrazone (CCCP)] stimulated acidification of the thallus regions. Proton ATPase inhibitors had no effect. Acidification, therefore, is not generated by ATP-dependent proton pumps in the plasma membrane, and instead probably reflects secretion of metabolic acids. Localized metabolism may establish an internal pH gradient that controls regional differentiation, and we are presently investigating this possibility.Abbreviations ASW artificial seawater - CCCP carbonylcyanide m-chlorophenylhydrazone - CD cytochalasin D - DNP 2,4-dinitrophenol  相似文献   

10.
Eight-cell embryos were recovered from mated golden hamsters that had been superovulated with pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). Embryos were cultured for 24 or 32 h in a defined medium (modified Tyrode's solution) designed for fertilization of hamster oocytes in vitro. This medium was supplemented in some experiments with amino acids (glutamine, phenylalanine, methionine and isoleucine) and with vitamins (Eagle's Minimum Essential Medium vitamin supplement). At the end of the culture period, the numbers of embryos developing to the blastocyst stage were recorded. In other experiments, the effects of varying the osmotic pressure (225, 250, 275 and 300 m0smol/kg) and the pH (6.8 and 7.4) of the culture medium on blastocyst formation were examined. A difference was found between the ability of early 8-cell embryos (approx. 54 h post-egg activation) and late 8-cell embryos (approx. 62 h post-egg activation) to develop in culture. In the unsupplemented culture medium, only 2% of early 8-cell embryos developed to the blastocyst stage compared with 22% of late 8-cell embryos. A marked effect of the four amino acids on development was found. In the presence of amino acids 36% of early 8-cell embryos developed into blastocysts (18-fold increase). The amino acids also increased the percentage of late 8-cell embryos that developed into blastocysts from 22% to 66%. These data suggest that an important metabolic change may occur in hamster embryos during a critical period at the 8-cell stage of development. No additional effect on development was observed when vitamins were included in the culture medium. No significant effect of either osmotic pressure of pH of the culture medium on development was found. When blastocysts formed from cultured 8-cell embryos were transferred surgically to pseudopregnant hamsters, about 25% developed into normal-looking fetuses and 5 normal-looking young were born, 4 of which have survived. These results represent an approach towards achieving complete preimplantation development of hamster embryos in vitro.  相似文献   

11.
The effect of increasing the embryo:medium volume ratio on overcoming the hamster two-cell block was examined. Two-cell golden hamster embryos from each superovulated female were cultured in microdrops (estimated at 0.75 microliter) or 100 microliter macrodrops of chemically defined medium (modified Tyrode's solution [TLP] plus glutamine, isoleucine, methionine, phenylalanine, and taurine). In 11 trials (i.e., with embryos from 11 donors), 28.6% of 269 embryos developed to the four-cell stage in microdrops, whereas only 2 (0.7%) embryos developed in the macrodrops. When two microdrops were used to culture the two-cell embryos from each donor (n = 8), 17.8% of 304 embryos developed to four cells. Increasing the embryo:medium volume ratio further by culturing all of the embryos from each donor (n = 10) in single microdrops resulted in 53.1% of 397 embryos developing to four cells. Conditioning of the culture medium by these embryos could not be demonstrated. Increasing the embryo:medium volume ratio may protect against loss of some intracellular component essential for growth of early-stage hamster embryos. Alternatively, increasing this ratio may permit embryos to reduce the concentration of a substance detrimental to their growth. This work represents the first report of cleavage of hamster two-cell embryos in vitro. These findings are a significant step towards our goal of obtaining complete preimplantation developmental of hamster embryos in vitro and may be helpful for solving the in vitro developmental blocks in embryos from other species.  相似文献   

12.
One-cell stage embryos, recovered from superovulated golden hamsters (8 to 12 weeks of age) 12 hours after egg activation, were cultured in HECM-1 medium at 37 degrees C and 5% CO(2) in air. The culture conditions investigated were the time and temperature required for embro recovery, the pH shift of the washing medium, and the oxygen concentration of the gas phase during and after embryo recovery. Each condition was assessed by the developmental efficiency of the embryo as determined by morphological criteria. As the time required for embryo recovery was reduced, the developmental rates of the embryos were improved: 2.3% (3 128 ) 26.9% (35 130 ) at 5 and 3 minutes, respectively, as determined by the number of embryos developed to the blastocyst stage. No blastocysts were obtained when more than 10 minutes were required for embryo recovery. As the oxygen concentration was reduced from 40 to 20% or to 5%, rather high developmental rates were obtained even when the time required for embryo recovery was prolonged: 6.9% (9 130 ) and 21.7% (28 129 ) of the embryos developed to the blastocyst stage when they were recovered under 5% oxygen within 10 and 5 minutes, respectively. Neither the temperature during embryo recovery (37 degrees C and 25 degrees C) nor the pH shift (pH 7.22 to 7.52) of the washing medium used in embryo recovery procedures influenced the development of the embryos. These findings suggest that the developmental block in hamster embryos may involve oxidative stress, which may result from exposure to high oxygen concentration and light during the manipulation of oocytes and embryos.  相似文献   

13.
Summary The distribution of actin, myosin and tropomyosin in freshly isolated and short-term cultured rat hepatocytes was investigated by use of both rhodaminyl-phalloidin staining and immunofluorescence techniques. The cytoskeletal proteins were mainly located in distinct areas of the hepatocyte membrane, corresponding to their accumulation in the bile-canalicular region of liver tissue. In freshly prepared cells, these sections resembled sharp, angled or branched bands, similar to the pattern of hemicanaliculi. During incubation in a monolayer culture, these bands were transformed to circular formations. Simultaneously, enclosed bile-canalicular spaces between undissociated hepatocytes were visualized by staining of actin, myosin, and tropomyosin. The preservation of canalicular cytoskeletal structures in isolated hepatocytes is an indication of cellular polarity. Our findings suggest a uniform association of membrane-bound F-actin with myosin and tropomyosin.  相似文献   

14.
This study characterized the activation of the regulatory activity of the Na+/H+ antiporter during fertilization of hamster embryos. Hamster oocytes appeared to lack any mechanism for the regulation of intracellular pH in the acid range. Similarly, no Na+/H+ antiporter activity could be detected in embryos that were collected from the reproductive tract between 1 and 5 h post-egg activation (PEA). Activity of the Na+/H+ antiporter was first detected in embryos collected at 5.5 h PEA and gradually increased to reach maximal activity in embryos collected at 7 h PEA. Parthenogenetically activated one-cell and two-cell embryos demonstrate Na+/H+ antiporter activity, indicating that antiporter activity is maternally derived and initiated by activation of the egg. The inability of cycloheximide, colchicine, or cytochalasin D to affect initiation of antiporter activity indicates that antiporter appearance is not dependent on the synthesis of new protein or recruitment of existing protein to the cell membrane. In contrast, incubation of one-cell embryos with sphingosine did inhibit the appearance of Na+/H+ antiporter activity, showing that inhibition of normal protein kinase C activity is detrimental to antiporter function. Furthermore, incubation of oocytes with a phorbol ester which stimulates protein kinase C activity induced Na+/H+ antiporter activity in oocytes in which the activity was previously absent. Incubation with an intracellular calcium chelator also reduced the appearance of antiporter activity. Taken together, these data indicate that the appearance of Na+/H+ antiporter activity following egg activation may be due, at least in part, to regulation by protein kinase C and intracellular calcium levels.  相似文献   

15.
Planar cell polarity is a common and probably universal feature of epithelial cells throughout their life. It is not only visible in the external parts of adult animals and plants, but also present in newborn cells such as in the primary Drosophila epithelium. It controls not only cell shape and differentiation, but also cell motility, cell shape changes and it directs how animals are shaped. In this review, we report how planar cell polarity arises in Drosophila embryos and thereby illustrate how general and extensive planar polarity is during development, from the very beginning to the end. We present the main features of planar cell polarization in Drosophila embryos, in particular the fact that it occurs over a short range of just a few cell diameters, and within a very short time window. We contrast these with other systems, such as the adult Drosophila wing where planar cell polarity occurs at longer range.  相似文献   

16.
17.
Summary Cytoplasm removal/transplant techniques applied to Drosophila cleavage-stage embryos induced changes in anteroposterior polarity. Removal of anterior cytoplasm or anterior transplantation of posterior cytoplasm caused the anterior formation of posterior (telson) structures, and the replacement of anterior cytoplasm with posterior cytoplasm induced double-abdomen embryos, as reported by Frohnhöfer et al. [J Embryol Exp Morphol 97 (suppl):169–179 (1986)]. Changing the conditions of anterior cytoplasm removal we showed that greater volumes, earlier stages, and removal from the periphery were efficient. In addition we found that double-cephalon embryos are induced by replacing posterior cytoplasm with anterior cytoplasm, while removal of posterior cytoplasm or the posterior transplantation of anterior cytoplasm was without effect. However, introduction of anterior cytoplasm into the posterior of nanos embryos, which are mutants not developing abdominal segments, caused the formation of double-cephalon embryos. Similarly, double-abdomen embryos are produced by introducing posterior cytoplasm into the anterior of bicoid embryos, which are mutants not forming cephalic and thoracic structures. These results are compatible with the initial involvement of separate anterior, posterior and terminal cytoplasmic factors deduced from mutant analysis (Nüsslein-Volhard and Roth 1989).  相似文献   

18.
《Reproductive biology》2023,23(1):100725
Pre-implantation embryos release extracellular vesicles (EVs) to extracellular environment. In this work it is hypothesized that the EVs miRNA cargo will vary during pre-implantation development due to the constant changes in gene expression that take place through this period. The concentration, size and miRNA cargo of EVs secreted by competent bovine embryos during the period from compaction to blastulation (Day 3‐7) were analyzed. For this analysis tow developmental windows were defined: W2 from 8-cells (D3) to morula (D5) and W3 from morula (D5) to blastocyst (D7). For W2, in vitro produced embryos were individually cultured in EVs-depleted medium from D3 to D5; culture media were collected and assigned to Group W2. Morulae were kept in culture up to blastocyst stage to determine the developmental competence. For W3, D5 morulae were collected and cultured individually in EVs-depleted medium up to blastocyst stage; culture media were assigned to Group W3, and blastocysts were kept in culture up to day 11 to define their competence. The mean size of EVs was similar between groups, however, EVs concentration was lower in W2. A total of 140 miRNAs were identified. From them, 79 were differentially expressed between the groups, 28 upregulated and 51 downregulated. miRNAs differentially detected between both developmental windows participate in the regulation of signaling pathways which crucial for embryonic development. It was concluded that the secretion of EVs is regulated by the developmental progress of the embryo during the pre-implantation period.  相似文献   

19.
Hamster early two-cell embryos developed to the expanded blastocyst stage within the isolated mouse ampulla maintained in organ culture system. Mouse ampullae isolated at different times after treating the mice with human chorionic gonadotropin (hCG) (0–72 h) or pregnant mare's serum gonadotropin (PMSG) (30–32 h) were flushed with culture medium, and hamster early two-cell embryos were introduced into these ampullae. Mouse ampullae isolated at 14–32 h after hCG injection were more favorable for the development of the embryos than those isolated at 70–72 h. When mouse ampullae were isolated 30–32 h after hCG or PMSG treatment, 39% of the cultured eggs developed, some of them to the expanded blastocyst stage after additional culture for 65–70 h. These results indicate that unknown oviductal factors stimulate the development of hamster early two-cell embryos, and these factors are under the control of hCG or PMSG. In addition, these factors are common to the mouse and hamster.  相似文献   

20.
In C. elegans one-cell embryos, polarity is conventionally defined along the anteroposterior axis by the segregation of partitioning-defective (PAR) proteins into anterior (PAR-3, PAR-6) and posterior (PAR-1, PAR-2) cortical domains. The establishment of PAR asymmetry is coupled with acto-myosin cytoskeleton rearrangements. The small GTPases RHO-1 and CDC-42 are key players in cytoskeletal remodeling and cell polarity in a number of different systems. We investigated the roles of these two GTPases and the RhoGEF ECT-2 in polarity establishment in C. elegans embryos. We show that CDC-42 is required to remove PAR-2 from the cortex at the end of meiosis and to localize PAR-6 to the cortex. By contrast, RHO-1 activity is required to facilitate the segregation of CDC-42 and PAR-6 to the anterior. Loss of RHO-1 activity causes defects in the early organization of the myosin cytoskeleton but does not inhibit segregation of myosin to the anterior. We therefore propose that RHO-1 couples the polarization of the acto-myosin cytoskeleton with the proper segregation of CDC-42, which, in turn, localizes PAR-6 to the anterior cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号