首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total in vitro activity of RuBPCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) enzyme was assayed spectrophotometrically by the continuous measurement of 3-phosphoglycerate-dependent NADH oxidation in a coupled enzyme system. RuBPCO activities were found in the ranges 1.01–2.76 and 1.23–3.10 µmol(CO2) m−2 s− 1 in current Norway spruce needles growing in ambient (AC) and elevated (EC) CO2 concentration, respectively. RuBPCO activity in AC needles from the upper layer (U) was 11–15 % higher compared to those from the middle (M) layer, and even 44–56 % higher compared to the lower (L) layer of spruce crown. Over the vegetation season, we observed a highly significant decrease of RuBPCO activity in the EC-U needles from 3.10 (July) to 1.60 (October) µmol(CO2) m−2 s−1 as a consequence of downward feedback regulation. Moreover, this down-regulation was not caused by a non-specific decrease in total leaf nitrogen content.The work forms a part of the research supported by grants no. LN00A141 and OC E21.001 (Ministry of Education CR), VaV640/18/03 (Ministry of Environment CR), and by the Research Intention of ILE AS CR AV0Z6087904.  相似文献   

2.
3.
Wang ZY  Portis AR 《Plant physiology》1992,99(4):1348-1353
Ribulose bisphosphate (RuBP), a substrate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is an inhibitor of Rubisco activation by carbamylation if bound to the inactive, noncarbamylated form of the enzyme. The effect of Rubisco activase on the dissociation kinetics of RuBP bound to this form of the enzyme was examined and characterized with the use of 3H-labeled RuBP and proteins purified from spinach (Spinacia oleracea L.) In the absence of Rubisco activase and in the presence of a large excess of unlabeled RuBP, the dissociation rate of bound [1-3H]RuBP was much faster after a short (30 second) incubation than after an extended incubation (1 hour). After 1 hour of incubation, the dissociation rate constant (Koff) of the bound RuBP was 4.8 × 10−4 per second, equal to a half-time of about 35 minutes, whereas the rate after only 30 seconds was too fast to be accurately measured. This time-dependent change in the dissociation rate was reflected in the subsequent activation kinetics of Rubisco in the presence of RuBP, CO2, and Mg2+, and in both the absence or presence of Rubisco activase. However, the activation of Rubisco also proceeded relatively rapidly without Rubisco activase if the RuBP level decreased below the estimated catalytic site concentration. High pH (pH 8.5) and the presence of Mg2+ in the medium also enhanced the dissociation of the bound RuBP from Rubisco in the presence of RuBP. In the presence of Rubisco activase, Mg2+, ATP (but not the nonhydrolyzable analog, adenosine-5′-O-[3-thiotriphosphate]), excess RuBP, and an ATP-regenerating system, the dissociation of [1-3H]RuBP from Rubisco was increased in proportion to the amount of Rubisco activase added. This result indicates that Rubisco activase-mediated hydrolysis of ATP is required for promotion of the enhanced dissociation of the bound RuBP from Rubisco. Furthermore, product analysis by ion-exchange chromatography demonstrated that the release of the bound RuBP, in an unchanged form, was considerably faster than the observed increase in Rubisco activity. Thus, RuBP dissociation was experimentally separated from activation and precedes the subsequent formation of active, carbamylated Rubisco during activation of Rubisco by Rubisco activase.  相似文献   

4.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase, EC 4.1.1.39) has been purified from orange [ Citrus sinensis (L.) Osbeck cv. Washington Navel] leaves using sucrose gradient centrifugation in a fixed angle rotor. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two major bands corresponding to the two subunits of RuBP carboxylase were found. The large subunit coincided with the polypeptide band that has been previously reported to be preferentially mobilized during the spring and summer flush periods.
The degradation of RuBP carboxylase during autodigestion of Citrus leaf extracts, investigated by SDS-PAGE, occurred mainly at acidic (2.5-5.5) pH. The two subunits showed differences in the rate of degradation, the smaller being more rapidly hydrolyzed than the larger. At least four proteolytic activities were identified by means of inhibitor experiments: 1) a pepstatin A-sensitive activity that acts on both RuBP carboxylase subunits, 2) a mercurial ( p -hydroxymercuribenzoate and p -chloromercuriphenylsulfonate)-sensitive activity that degrades only the small subunit, 3) an EDTA-sensitive activity that hydrolyzes both the large and small subunits, and 4) a mercurial-stimulated activity that acts only on the large subunit. It is suggested that the last two proteases may be responsible for the degradation of RuBP carboxylase observed in vivo during the periods of mobilization of leaf protein in Citrus .  相似文献   

5.
Metabolism of 2-carboxy-D-arabinitol 1-phosphate (CA1P) is an important component in the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity and whole leaf photosynthetic CO2 assimilation in many species, and functions as one mechanism for regulating Rubisco activity when photosynthesis is light-limited. Species differ in their capacity to accumulate CA1P, ranging from those which can synthesize levels of this compound approaching or in excess of the Rubisco catalytic site concentration, to those which apparently lack the capacity for CA1P synthesis. CA1P is structurally related to the six carbon transition state intermediate of the carboxylation reaction and binds tightly to the carbamylated catalytic site of Rubisco, making that site unavailable for catalysis. Under steady-state, the concentration of CA1P in the leaf is highest at low photon flux density (PFD) or in the dark. Degradation of CA1P and recovery of Rubisco activity requires light and is stimulated by increasing PFD. The initial degradation reaction is catalyzed by an enzyme located in the chloroplast stroma, CA1P phosphatase, which yields carboxyarabinitol (CA) and inorganic phosphate as its products. The pathway of CA metabolism in the plant remains to be determined. Synthesis of CA1P occurs in the dark, and in Phaseolus vulgaris this process has been shown to be stimulated by low PFD. The pathway of CA1P synthesis and its relationship to the degradative pathway remains unknown at the present time. The discovery of the existence of this previously unknown carbon pathway in photosynthesis indicates that we still have much to learn concerning the regulation of Rubisco activity and photosynthesis.Abbreviations CA 2-carboxy-D-arabinitol - CA1P 2-carboxy-D-arabinitol 1-phosphate - CABP 2-carboxy-D-arabinitol-1,5-bisphosphate (transition state analog) - PFD photon flux density - P1 inorganic phosphate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - RuBP ribulose-1,5-bisphosphate  相似文献   

6.
The rate of CO2 fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) following addition of ribulose 1,5-bisphosphate (RuBP) to fully activated enzyme, declined with first-order kinetics, resulting in 50% loss of rubisco activity after 10 to 12 minutes. This in vitro decline in rubisco activity, termed fall-over, was prevented if purified rubisco activase protein and ATP were added, allowing linear rates of CO2 fixation for up to 20 minutes. Rubisco activase could also stimulate rubisco activity if added after fallover had occurred. Gel filtration of the RuBP-rubisco complex to remove unbound RuBP allowed full activation of the enzyme, but the inhibition of activated rubisco during fallover was only partially reversed by gel filtration. Addition of alkaline phosphatase completely restored rubisco activity following fallover. The results suggest that fallover is not caused by binding of RuBP to decarbamylated enzyme, but results from binding of a phosphorylated inhibitor to the active site of rubisco. The inhibitor may be a contaminant in preparations of RuBP or may be formed on the active site but is apparently removed from the enzyme in the presence of the rubisco activase protein.  相似文献   

7.
Modulation of the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in low light and darkness was measured in A) 25 genotypes from the four cultivated species of Phaseolus (P. vulgaris, P. acutifolius, P. lunatus and P. coccineus), B) 8 non-cultivated Phaseolus species, and C) the related species Macroptileum atropurpureum. The activity ratio of Rubisco (the ratio of initial and total Rubisco activities, which reflects Rubisco carbamylation), and the molar activity of fully-activated Rubisco (which primarily reflects the inhibition of Rubisco activity by carboxyarabinitol 1-phosphate, CA1P) were assayed in leaves from the cultivated species sampled at midday in full sunlight, in low light at dusk (60 to 100 mol photons m-2s-1), and after at least 4 h in darkness. Dark inhibition of Rubisco molar activity was compared in both cultivated and non-cultivated species. In all cultivated genotypes, a significant reduction of the activity ratio of Rubisco was measured in leaves sampled at low light; however, the molar activity of fully activated Rubisco was not greatly reduced in these low light samples. In darkened leaves, molar activities substantially declined in most Phaseolus species with 11 of 13 exhibiting greater than 60% reduction. In P. vulgaris, the reduction of molar activity was extensive (greater than 69%) in all genotypes studied, which included wild progenitors as well as ancient and advanced cultivars. These results indicate that at low light late in the day, modulation of Rubisco activity is primarily through changes in carbamylation state, with CA1P playing a more limited role. By contrast in the dark, binding of CA1P dominates the modulation of Rubisco activity in Phaseolus in a pattern that appears to be conserved within a species, but can vary significantly between species within a genus. The degree of CA1P inhibition in Phaseolus was associated with phylogenetic affinities within the genus, as the species with extensive dark-inhibition of Rubisco activity tended to be more closely related to each other than to species with reduced inhibition of Rubisco activity.Abbreviations CA1P carboxyarabinitol 1-phosphate - CABP carboxyarabinitol bisphosphate - PFD photon flux density between 400 and 700 nm - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

8.
Xylulose-1,5-bisphosphate in preparations of ribulose-1,5-bisphosphate (ribulose-P2) arises from non-enzymic epimerization and inhibits the enzyme. Another inhibitor, a diketo degradation product from ribulose-P2, is also present. Both compounds simulate the substrate inhibition of ribulose-P2 carboxylase/oxygenase previously reported for ribulose-P2. Freshly prepared ribulose-P2 had little inhibitory activity. The instability of ribulose-P2 may be one reason for a high level of ribulose-P2 carboxylase in chloroplasts where the molarity of active sites exceeds that of ribulose-P2. Because the KD of the enzyme/substrate complex is ≤1 μM, all ribulose-P2 generated in situ may be stored as this complex to prevent decomposition.  相似文献   

9.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the enzyme assimilating CO2 in biology. Despite serious efforts, using many different methods, a detailed understanding of activity and regulation in Rubisco still eludes us. New results in X-ray crystallography may provide a structural framework on which to base experimental approaches for more detailed analyses of the function of Rubisco at the molecular level. This article gives a critical review of the field and summarizes recent results from structural studies of Rubisco.  相似文献   

10.
Catalysis by pure ribulose bisphosphate carboxylase from Rhodospirillum rubrum, which is a dimer (MW: 114,000) lacking small subunits, is inhibited by oxygen. Oxygen is a competitive inhibitor with respect to carbon dioxide. In the absence of carbon dioxide, the enzyme catalyzes the oxygenolytic cleavage of ribulose-1,5-bisphosphate with consumption of one mole of oxygen per mole of 3-phosphoglycerate produced.  相似文献   

11.
The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase fromEuglena gracilis decays steadily when exposed to agents that induce oxidative modification of cysteine residues (Cu2+, benzofuroxan, disulfides, arsenite, oxidized ascorbate). Inactivation takes place with a concomitant loss of cysteine sulfhydryl groups and dimerization of large subunits of the enzyme. 40% activity loss induced by the vicinal thiol-reagent arsenite is caused by modification of a few neighbor residues while the almost complete inactivation achieved with disulfides is due to extensive oxidation leading to formation of mixed disulfides with critical cysteines of the protein. In most cases oxidative inactivation is also accompanied by an increased sensitivity to proteolysis by trypsin, chymotrypsin or proteinase K. Both enzymatic activity and resistance to proteolysis can be restored through treatment with several thiols (cysteamine, cysteine, dithiothreitol and, more slowly, reduced glutathione). Redox effectors which are thought to regulate the chloroplast activity (NADPH, ferredoxin and thioredoxin) do not reactivate the oxidized enzyme. When ribulose-1,5-bisphoshate carboxylase/oxygenase is incubated with cystamine/cysteamine mixtures having different disulfide/thiol ratio (r), inactivation takes place around r=1.5 while proteolytic sensitization occurs under more oxidative conditions (r=4). It is suggested that oxidative modification may happen in vivo under exceptional circumstances, such as senescence, bleaching or different kinds of stress, leading to enzyme inactivation and triggering the selective degradation of the carboxylase that has been repeatedly observed during these processes.  相似文献   

12.
13.
14.
Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase   总被引:13,自引:0,他引:13  
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis, but O2 competes with CO2 for substrate ribulose 1,5-bisphosphate, leading to the loss of fixed carbon. Interest in genetically engineering improvements in carboxylation catalytic efficiency and CO2/O2 specificity has focused on the chloroplast-encoded large subunit because it contains the active site. However, there is another type of subunit in the holoenzyme of plants, which, like the large subunit, is present in eight copies. The role of these nuclear-encoded small subunits in Rubisco structure and function is poorly understood. Small subunits may have originated during evolution to concentrate large-subunit active sites, but the extensive divergence of structures among prokaryotes, algae, and land plants seems to indicate that small subunits have more-specialized functions. Furthermore, plants and green algae contain families of differentially expressed small subunits, raising the possibility that these subunits may regulate the structure or function of Rubisco. Studies of interspecific hybrid enzymes have indicated that small subunits are required for maximal catalysis and, in several cases, contribute to CO2/O2 specificity. Although small-subunit genetic engineering remains difficult in land plants, directed mutagenesis of cyanobacterial and green-algal genes has identified specific structural regions that influence catalytic efficiency and CO2/O2 specificity. It is thus apparent that small subunits will need to be taken into account as strategies are developed for creating better Rubisco enzymes.  相似文献   

15.
Glyoxylate is a slowly reversible inhibitor of the CO2/Mg2+-activated form of ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach leaves. Inactivation occurred with an apparent dissociation constant of 3.3 mM and a maximum pseudo-first-order rate constant of 7 X 10(-3) s-1. The rate constant for reactivation was 1.2 X 10(-2) s-1. Glyoxylate did not cause differential inhibition of ribulosebisphosphate carboxylase or oxygenase activities. 6-Phosphogluconate protected the enzyme from inactivation by glyoxylate. Glyoxylate was incorporated irreversibly into the large subunit of ribulosebisphosphate carboxylase after reduction with sodium borohydride. Activated enzyme incorporated 1.3 mol of glyoxylate per mole protomer, while enzyme treated with carboxyarabinitol 1,5-bisphosphate (CABP) to protect the active sites incorporated only 0.3 mol glyoxylate per mole protomer. The data suggest that glyoxylate forms a Schiff base with a lysyl residue in the region of the catalytic site. Glyoxylate stimulated the activity of the unactivated enzyme by about twofold. Pseudo-first-order inactivation also occurred with the unactivated enzyme after the initial stimulation by glyoxylate, although at a much slower rate than with the activated enzyme. Glyoxylate treatment of partially activated enzyme did not stimulate formation of the quaternary complex of enzyme X CO2 X Mg2+ X CABP.  相似文献   

16.
17.
18.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) has played a central role in our understanding of chloroplast biogenesis and photosynthesis. In particular, its catalysis of the rate-limiting step of CO2 fixation, and the mutual competition of CO2 and O2 at the active site, makes Rubisco a prime focus for genetically engineering an increase in photosynthetic productivity. Although it remains difficult to manipulate the chloroplast-encoded large subunit and nuclear-encoded small subunit of crop plants, much has been learned about the structure/function relationships of Rubisco by expressing prokaryotic genes in Escherichia coli or by exploiting classical genetics and chloroplast transformation of the green alga Chlamydomonas reinhardtii. However, the complexity of chloroplast Rubisco in land plants cannot be completely addressed with the existing model organisms. Two subunits encoded in different genetic compartments have coevolved in the formation of the Rubisco holoenzyme, but the function of the small subunit remains largely unknown. The subunits are posttranslationally modified, assembled via a complex process, and degraded in regulated ways. There is also a second chloroplast protein, Rubisco activase, that is responsible for removing inhibitory molecules from the large-subunit active site. Many of these complex interactions and processes display species specificity. This means that attempts to engineer or discover a better Rubisco may be futile if one cannot transfer the better enzyme to a compatible host. We must frame the questions that address this problem of chloroplast-Rubisco complexity. We must work harder to find the answers.  相似文献   

19.
The dissociation of D-ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach, which consists of eight large subunits (L, 53 kDa) and eight small subunits (S, 14 kDa) and thus has a quarternary structure L8S8, has been investigated using a variety of physical techniques. Gel chromatography using Sephadex G-100 indicates the quantitative dissociation of the small subunit S from the complex at 3-4 M urea (50 mM Tris/Cl pH 8.0, 0.5 mM EDTA, 1 mM dithiothreitol and 5 mM 2-mercaptoethanol). The dissociated S is monomeric. Analytical ultracentrifuge studies show that the core of large subunits, L, remaining at 3-4 M urea sediments with S20, w = 15.0 S, whereas the intact enzyme (L8S8) sediments with S20, w = 17.7S. The observed value is consistent with a quarternary structure L8. The dissociation reaction in 3-4 M urea can thus be represented by L8S8----L8 + 8S. At urea concentrations c greater than 5 M the L8 core dissociates into monomeric, unfolded large subunits. A large decrease in fluorescence emission intensity accompanies the dissociation of the small subunit S. This change is completed at 4 M urea. No changes are observed upon dissociating the L8 core. The kinetics of dissociation of the small subunit, as monitored by fluorescence spectroscopy, closely follow the kinetics of loss of carboxylase activity of the enzyme. Studies of the circular dichroism of D-ribulose-1,5-bisphosphate carboxylase in the wavelength region 200-260 nm indicate two conformational transitions. The first one ([0]220 from -8000 to -3500 deg cm2 dmol-1) is completed at 4 M urea and corresponds to the dissociation of the small subunit and coupled conformational changes. The second one ([0]220 from -3500 to -1200 deg cm2 dmol-1) is completed at 6 M urea and reflects the dissociation and unfolding of large subunits from the core. The effect of activation of the enzyme by addition of MgCl2 (10 mM) and NaHCO3 (10 mM) on these conformational transitions was investigated. The first conformational transition is then shifted to higher urea concentrations: a single transition ([0]220 from -8000 to -1200 deg cm2 dmol-1) is observed for the activated enzyme. From the urea dissociation experiments we conclude that both large (L) and small (S) subunits are important for carboxylase activity of spinach D-ribulose-1,5-bisphosphate carboxylase: the L-S subunit interactions tighten upon activation and dissociation of S leads to a coupled, proportional loss of enzyme activity.  相似文献   

20.
Methods are described which allow the isolation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (rubisco) in a very short time. Source of the material was highly impure commercial enzyme in the case of spinach rubisco or bacteria grown from a fermentor in the case of Alcaligenes eutrophus rubisco. Purity of the enzymes is demonstrated by gel electrophoreses. Enzyme isolated from fresh cells gave crystals of excellent diffraction, suitable for X-ray structure analyisis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号