首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S P Sivam  I K Ho 《Life sciences》1985,37(3):199-208
Drugs affecting various steps of GABA transmission exhibit analgesia in a variety of experimental models in animals; this analgesic response generally requires high doses of the drugs and does not appear to be opiate-like since the GABAergic analgesia is naloxone-insensitive and lacks dependence liability. The outcome of the analgesia response is variable when opiate and GABAergic drugs are administered together; however, directly acting GABA receptor stimulants and GABA-transaminase inhibitors generally enhance the analgesic effect of opiates. The development of newer GABAergic drugs with greater potency and specificity may offer an alternative to opiate analgesics. The results obtained over the years, on the possible involvement of the GABA system in morphine tolerance and dependence are equivocal. Studies on region-specific changes in opiate-GABA interaction as well as opiate-GABA-benzodiazepine interaction are needed to further elucidate the role of GABA on opiate system.  相似文献   

2.
Central or systemic administration of agonists directed at the mu or delta opiate receptors generally produce a greater degree of analgesia in males than in females. To date, most studies examining sex-based differences in opioid analgesia have used acute noxious stimuli (i.e., tail-flick and hot plate test); thus the potential dimorphic response of centrally acting opiates in the alleviation of persistent inflammatory pain is not well established. In the present study, right hind paw withdrawal latency (PWL) to radiant thermal stimuli was measured in intact male and cycling female Sprague-Dawley rats before and after unilateral hind paw injection of the inflammatory agent complete Freund's adjuvant (CFA). Control animals received intraplantar injection of saline. Twenty four hours after CFA or saline injection, animals received either saline or morphine bisulfate (0.5-15 mg/kg sc). Separate groups of control or inflamed animals were tested on their responsiveness to morphine at 7, 14, and 21 days post-CFA or saline. No sex differences were noted for baseline PWLs, and females displayed slightly less thermal hyperalgesia at 24 h post-CFA. At all morphine doses administered, both the antihyperalgesic effects of morphine in the inflamed animals and the antinociceptive effects of morphine in control animals were significantly greater in males compared with females. Similarly, in males, the antihyperalgesic effects of morphine increased significantly at 7-21 days post-CFA; no significant shift in morphine potency was noted for females. These studies demonstrate sex-based differences in the effects of morphine on thermal hyperalgesia in a model of persistent inflammatory pain.  相似文献   

3.
Synthetic peptides of 5-hydroxytryptophan (5-HTP), including N-acetyl-5-HTP-5-HTP amide (5-HTP-ACETYL-DP), specifically inhibit the binding of serotonin to serotonin binding protein. 5-HTP-ACETYL-DP also produces a long-lasting, opiate-sensitive analgesia following central, but not systemic administration. The present study evaluated an apolar derivative of 5-HTP dipeptide, N-hexanoyl-5-HTP-5-HTP amide (5-HTP-HEX-DP), for its analgesic properties in rats following systemic administration. 5-HTP-HEX-DP (5–50 mg/kg) significantly increased jump thresholds in a dose-dependent manner with peak analgesia occurring at 2.5 hr after injection, and lasting up to 5 hr. In the tail-flick assay, 5-HTP-HEX-DP (20 mg/kg) produced a significant antinociceptive effect at 1 hr post-injection using both high and low intensity levels of radiant heat. While 5-HTP-HEX-DP and morphine each elicited analgesia following acute administration, chronic (14 days) incremental dosing with 5-HTP-HEX-DP or morphine resulted in persistent analgesia in 5-HTP-HEX-DP-treated animals, and a loss of analgesia in morphine-treated rats. Thus, significant tolerance to morphine, but not 5-HTP-HEX-DP analgesia developed using this protocol. Hence, 5-HTP-HEX-DP is a systemically-active analgesic which fails to develop tolerance when administered daily over 14 days.  相似文献   

4.
家兔伏核—杏仁核神经通路在吗啡镇痛中的作用   总被引:6,自引:0,他引:6  
于龙川  韩济生 《生理学报》1990,42(3):277-283
用辐射热照射家兔鼻嘴侧部皮肤,测量其躲避反应潜伏期作为痛反应阈,简称痛阈。通过预先埋植的慢性套管向伏核或杏仁核内进行注射,结果表明:(1)在家兔的伏核内微量注射吗啡可产生镇痛作用,该作用可被杏仁核内注射纳洛酮所削弱,并有量效依从关系;在杏仁核内注射甲啡肽抗血清(ME AS)或β-內啡肽抗血清(β-EP AS)亦可削弱上述镇痛作用;(2)在杏仁核内微量注射吗啡可产生镇痛作用,此作用不能被伏核内注射纳洛酮所阻断;(3)在伏核内注射吗啡所产生的镇痛作用可被同一部位注射γ-氨基丁酸(GAEA)受体阻断剂氯甲基荷包牡丹碱所增强,被 GABA 受体激动剂异鹅羔胺所削弱。上述结果提示:在家兔脑内从伏核到杏仁核可能存在一条与镇痛有关的神经通路,伏核内的阿片样物质及杏仁核内的甲啡肽,β-内啡肽可能参与镇痛信息的传递,而伏核内的 GABA 可能有对抗吗啡镇痛的作用。  相似文献   

5.
GABA agonists     
Summary This review describes the development of GABA receptor agonists with no detectable affinity for other recognition sites in GABA-mediated synapses. The key compounds are THIP, isoguvacine, and piperidine-4-sulphonic acid (P4S), developed via extensive structural modifications of the potent but not strictly specific GABA agonist muscimol. The structural parameters, which have to be considered in the design of GABA agonists are discussed on the basis of the structures and biological activities of these GABA agonists and a number of related compounds.A model, which summarizes our present knowledge of the structure of the postsynaptic GABA receptor complex, is presented, and the interaction of GABA agonists with various sites in this complex is discussed. Of particular interest are the effects of GABA agonists on the binding of diazepam to the benzodiazepine binding site, assumed to be a structural unit of the GABA receptor complex. While rigid molecules like THIP are capable of activating the GABA receptors, a certain degree of conformational mobility of GABA agonists apparently is a prerequisite for stimulation of diazepam binding in vitro at 0 °C. These findings suggest that GABA receptor functions involve conformational changes of certain elements of the receptor complex.Some aspects of the pharmacology of GABA agonists are discussed, including the attempts to develop GABA agonists with desirable pharmacokinetic and toxicological characteristics. While muscimol is a toxic compound, THIP is well tolerated by animals, and in contrast to isoguvacine, THIP penetrates into the brain after systemic administration to animals, a difference which can be explained on the basis of their protolytic properties. The attempts to develop pro-drugs of isoguvacine capable of penetrating the blood-brain barrier with subsequent decomposition in the brain tissue to isoguvacine are described.  相似文献   

6.
The experiments on rats have shown that selective alpha 1 and alpha 2 adrenoceptor blockers (prazosin and yohimbine) and an inhibitor of dopamine-beta-hydrolase FD-008 failed to change the antinociceptive effect of baclofen, a direct GABAB receptor agonist. The antinociceptive effect of THIP and depakin, acting predominantly on GABAA receptors, was significantly reduced by prazosin, FD-008 and yohimbine in vocalization test. In tail-flick test the analgetic effect of THIP and depakin was not altered by prazosin and FD-008, but was increased by yohimbine. The role of adrenergic mechanisms in GABAA and GABAB receptor-mediated analgesia is discussed.  相似文献   

7.

Background

Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs) are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated.

Results

Intracerebroventricular (icv) administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs) and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than 2 weeks, and it also impaired the analgesic effects of cannabinoids.

Conclusion

In the brain, cannabinoids can produce analgesic tolerance that is not associated with the loss of surface CB1Rs or their uncoupling from regulated transduction. Neural specific Gz proteins are essential mediators of the analgesic effects of supraspinal CB1R agonists and morphine. These Gz proteins are also responsible for the long-term analgesic tolerance produced by single doses of these agonists, as well as for the cross-tolerance between CB1Rs and MORs.  相似文献   

8.
Improgan is the prototype drug from a new class of non-opioid analgesics chemically related to histamine and histamine antagonists, but the mechanism of action of these compounds has not been identified. Because several classes of analgesics act in the brain by reducing GABAergic inhibition of endogenous pain-relieving circuits, and because the activity of these substances is abolished by the GABA(A) agonist muscimol, the present study assessed the effects of muscimol on improgan antinociception in rats. Intracerebroventricular (icv) improgan (80 microg) and morphine (20 microg) both induced 80-100% of maximal analgesic responses on the tail flick test 10 to 30 min later. However, muscimol pretreatment (0.5 microg, icv) completely eliminated the antinociceptive activity of both compounds. Since improgan in vitro lacks activity at opioid and GABA(A) receptors, these findings: 1) confirm earlier literature showing that muscimol inhibits morphine analgesia, and 2) suggest that improgan activates a supraspinal, descending analgesic pathway, possibly via inhibition of GABAergic transmission. Since muscimol is the first compound discovered which inhibits improgan analgesia, muscimol will be a useful tool for the further characterization of this new class of pain-relieving substances.  相似文献   

9.
The present study investigates the effects of a neurosteroid tetrahydrodeoxycorticosterone (5alpha-pregnan-3alpha-21-diol-20-one) in two experimental models of pain sensitivity in mice. Tetrahydrodeoxycorticosterone (2.5, 5 mg/kg, i.p.) dose dependently decreased the licking response in formalin test and increased the tail flick latency (TFL) in tail flick test. Bicuculline (2 mg/kg, i.p.), a GABA(A) receptor antagonist blocked the antinociceptive effect of tetrahydrodeoxycorticosterone in TFL test but failed to modulate licking response in formalin test. Naloxone (1 mg/kg, i.p.), an opioid antagonist effectively attenuated the analgesic effect of tetrahydrodeoxycorticosterone in both the models. Tetrahydrodeoxycorticosterone pretreatment potentiated the antinociceptive response of morphine, an opioid compound and nimodipine, a calcium channel blocker in formalin as well as TFL test. Thus, tetrahydrodeoxycorticosterone exerts an analgesic effect, which may be mediated by modulating GABA-ergic and/or opioid-ergic mechanisms and voltage-gated calcium channels.  相似文献   

10.
Mice receiving daily injection of morphine (10 mg/kg) developed tolerance to morphine-induced analgesia, such that after 5–7 days of treatment their thermal response (paw licking) latencies in the hot plate test were indistinguishable from those of control animals. Exposure to a rotating magnetic field for thirty minutes before the daily morphine administrations significantly reduced the development of tolerance. These magnetic exposure also significantly increased over 7–10 days the basal nociceptive thresholds and paw licking response latencies of saline treated mice. Control and sham exposed mice that were fully tolerant to the analgesic effects of morphine failed to show any tolerance to morphine-induced analgesia when exposed to the magnetic stimuli prior to injection. Likewise, the partial tolerance to morphine shown by mice exposed to the rotating magnetic field pre-injection environmental cues was eliminated when control or sham pre-injection cues lacking the magnetic stimuli were provided. In all cases tolerance to morphine-induced analgesia was evident in the subsequent re-test with the original cues. These results indicate that magnetic field exposure can reduce the development of tolerance to the analgesic effects of morphine. They also show that magnetic stimuli function as significant environmental cues for the development of tolerance to morphine-induced analgesia. This suggests that magnetic stimuli affect both the associative (classical conditioning) and non-associative (physiological, pharmacological) mechanisms involved in the development of opiate tolerance.  相似文献   

11.
Morphine is widely used to treat chronic pain, however its utility is hindered by the development of tolerance to its analgesic effects. The aim of this study was to investigate effects of fluoxetine, a specific serotonin (5-HT) reuptake inhibitor, and LY 367265, an inhibitor of the 5-HT transporter and 5-HT2A receptor antagonist, on tolerance induced to the analgesic effect of morphine in rats. The study was carried out on male Wistar Albino rats (weighing 170-190 g). To constitute morphine tolerance, animals received morphine (50 mg/kg; s.c.) once daily for 3 days. After last dose of morphine, injected on day 4, morphine tolerance was evaluated. The analgesic effects of fluoxetine (10 mg/ kg; i.p.), LY 367265 (3 mg/kg; i.p.) and morphine were considered at 30-min intervals by tail-flick and hot-plate tests. The results showed that fluoxetine and LY 367265 significantly attenuated the development and expression of morphine tolerance. The maximal antinociceptive effects were obtained 30 min after administration of fluoxetine and 60 min after administration of LY 367265. In conclusion, we observed that co-injection of morphine with fluoxetine and LY 367265 increased the analgesic effects of morphine and delayed development of tolerance to morphine analgesia.  相似文献   

12.
Opioids are extensively used for the management of both chronic malignant and non malignant pains. One major serious limitation associated with chronic use of opioids is the development of tolerance to its analgesic effect. The effect of Bacopa monnieri, a renowned ayurvedic medicine for acquisition and expression of morphine tolerance in mice, was investigated. Bacopa monnieri, n-Butanol fraction was analyzed on High performance liquid chromatography (HPLC), for Bacopaside A major components i.e. Bacoside A3, Bacopaside ll and Bacosaponin C. Antinociceptive effect of n-Butanol extract of Bacopa monnieri (n Bt-ext BM) (5, 10 and 15 mg/kg) was assessed on hot plate. Effect of different doses of n Bt-ext BM on morphine antinociception was also assessed. n Bt-ext BM was also screened for development of tolerance to antinociceptive effect of Bacopa monnieri by administering 15 mg/kg n Bt-ext BM for seven days. Tolerance to morphine analgesia was induced in mice by administering intraperitoneally (I.P.) 20 mg/kg morphine twice daily for five days. Acute and Chronic administration of 5, 10 and 15 mg/kg n Bt-ext BM significantly reduced both expression and development of tolerance to morphine analgesia in mice. Additionally, Bacopa monnieri was found to enhance antinociceptive effect of morphine in intolerant animals. However, no tolerance to Bacopa monnieri antinociceptive effect was observed in seven days treatment schedule. These findings indicate effectiveness of Bacopa monnieri for management of morphine tolerance.  相似文献   

13.
《Life sciences》1997,62(2):PL/35-PL/41
Chronic (7 days), forced ethanol drinking can decrease the analgesic potency of opioid agonists in mice. In the present study, the effect of short-term ethanol treatment was examined using forced ethanol access and ethanol injection protocols. Mice were given forced access to 1, 3 or 7% (v/v) ethanol for 24 hr and then tested for s.c. morphine analgesia using the tailflick assay. Controls had access to water. Another group of mice was injected i.p. with 2.5 g/kg ethanol or water 4 times over a 21 hr period and tested 3 hr after the final injection for morphine analgesia. Other mice were injected once i.p. with 1, 2 or 3 g/kg ethanol or water and tested 24 hr later using the tailflick. In the forced access study, ethanol dose-dependently decreased morphine's analgesic potency with the highest dose (7%) producing a 1.6-fold shift in the ED50. This decrease in morphine potency was similar to that found in a related study using 7% ethanol for 7 days (1.8-fold shift). Repeated ethanol injections significantly reduced the analgesic potency of morphine (1.9-fold shift), whereas, a single injection of 1, 2 or 3 g/kg ethanol did not alter the potency of morphine. Control studies indicated that neither 24 hr water nor food deprivation affected morphine potency. Overall, these data show that sustained exposure to ethanol over a 24 hr period will dose-dependently decrease morphine's analgesic potency. © 1998 Elsevier Science Inc.  相似文献   

14.
Loperamide, a mu opioid receptor agonist, which is commonly used as an antidiarrhoeal agent has been reported to possess analgesic activity after intrathecal administration. However, the exact analgesic profile, i.e., onset, duration and intensity of analgesia in relation to morphine is not fully known. In the present study, the acute analgesic effect of loperamide (5 microg) was compared with that of morphine (5 microg) and morphine + loperamide (5 microg of each) using the tail flick method after intrathecal administration. Naloxone (5 mg/kg) reversibility of the analgesic effect was also studied. The analgesic response of loperamide was significantly higher than morphine. Even after 22 hr, maximum possible effect was greater than 49%. Naloxone partially antagonized the analgesic effect of loperamide. This suggested that loperamide may be acting through blockade of Ca2+ channels besides activating mu opioid receptors. Loperamide may prove to be a better substitute for morphine as spinal analgesic.  相似文献   

15.
Sprague-Dawley rats anesthetized with urethane were used to study the single cell responses of medial thalamic neurons following noxious input and their interactions with gamma-aminobutyric acid (GABA) agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and morphine sulfate applied microintophoretically . The majority of the medial thalamic neurons responded to noxious stimulation by an increase in their firing rate. Local application of both THIP and morphine attenuated the spontaneous and the noxious evoked responses of these neurons. The possibility of a role for GABA in mediating nonopiate pain suppression is discussed.  相似文献   

16.
Picomol doses of the acetylated derivative of beta-endorphin-(1-31), injected intracerebroventricularly (icv) in mice, reduced the analgesic activity of morphine, etorphine and beta-endorphin-(1-31), while the efficiency of DAGO and DADLE in producing analgesia was enhanced. The effects of the delta agonists DPDPE and [D-Ala2]-Deltorphin II were not altered by this treatment. After alpha N-acetyl beta-endorphin-(1-31) injection, morphine antagonized the analgesia of DAGO. The regulatory effect of alpha N-acetyl beta-endorphin-(1-31) was exhibited when giving the peptide both before (up to 24 h) and after the opioids. Naloxone did not prevent or reverse that modulatory activity; moreover, pretreatment with the acetylated peptide did not change the pA2 value displayed by the antagonist at the mu receptor. The antinociceptive activity of the alpha 2-adrenoceptor agonist clonidine was also increased in mice treated with alpha N-acetyl beta-endorphin-(1-31). The reducing activity of alpha N-acetyl beta-endorphin-(1-31) upon morphine- and beta-endorphin-induced analgesia was not exhibited in mice undergoing treatment with pertussis toxin or N-ethylmaleimide, agents known to impair the function of Gi/Go transducer proteins. However, the enhancing activity displayed by this peptide upon DAGO- DADLE and clonidine-evoked antinociception was still manifested. These results confirm and strengthen the idea of alpha N-acetyl beta-endorphin-(1-31) acting as a non-competitive regulator of mu opioid- and alpha 2-adrenoceptor-mediated supraspinal antinociception. A neural substrate acted on by both receptors (likely Gi/Go transducer proteins) appears to be involved in the effects of that neuropeptide.  相似文献   

17.
Pang CS  Tsang SF  Yang JC 《Life sciences》2001,68(8):943-951
The possible analgesic effect of melatonin was investigated in young male ICR mice. The formalin test which elicits typically 2 phases of pain response, the acute (first) phase and tonic (second) phase, was used. The test was performed in the late light period when the mice have been reported to be more sensitive to pain. Compared to control mice, no significant difference in nociceptive response was observed when melatonin was injected intraperitoneally at doses of 0.1, 5, and 20, mg/kg body weight. The combined effects of melatonin with diazepam and/or morphine, were also investigated. Melatonin, injected at 20 mg/kg 15 min before formalin test, significantly increased the antinociceptive response of diazepam (1 mg/kg) or morphine (5 mg/kg) in the second phase. In addition, when melatonin was given at 20 mg/kg together with diazepam and morphine, antinociceptive responses in both the first and second phase were increased. These data indicate the synergistic analgesia effect of melatonin with morphine and diazepam and suggest the possible involvement of melatonin as an adjunct medicine for pain patients.  相似文献   

18.
Cholera toxin, an agent that impairs the function of Gs transducer proteins, was injected (0.5 microgram/mouse, icv) and the antinociceptive activity of opioids and clonidine was studied 24h later in the tail-flick test. In these animals, an enhancement of the analgesic potency of morphine, beta-endorphin and clonidine could be observed. Cholera toxin did not modify the antinociception evoked by the enkephalin derivatives DAGO and DADLE. Pertussis toxin that catalyses the ADP ribosylation of alpha subunits of Gi/Go regulatory proteins was given icv (0.5 microgram/mouse). This treatment reduced the analgesic effect of opioids and clonidine. However, while the analgesia elicited by DAGO, DADLE and clonidine was greatly decreased, the effect of morphine and beta-endorphin was reduced to a moderate extent. It is concluded that Gi/Go regulatory proteins functionally coupled to opioid and alpha 2 receptors are implicated in the efficacy displayed by opioids and clonidine to produce supraspinal analgesia. Moreover, these two receptors are susceptible to regulation by a process that might involve a Gs protein.  相似文献   

19.
1. The terrestrial snail, Cepaea nemoralis, when placed on a warmed surface (40 degrees C) displays a thermal avoidance behaviour that entails an elevation of the anterior portion of the fully extended foot. The latency of this nociceptive response was increased by the prototypical mu and specific kappa opiate agonists, morphine and U-50, 488H, respectively, in a manner indicative of anti-nociception and the induction of 'analgesia'. Pretreatment with the prototypical opiate antagonist, naloxone, blocked the morphine- and reduced the U-50, 488H-induced analgesia. Naloxone had no effects on the thermal response latencies of saline treated animals. 2. Exposure to either cold (7 degrees C) or warm (38 degrees C) temperature stress increased the nociceptive thresholds of Cepaea in a manner indicative of the induction of 'stress-induced analgesia'. The warm stress-induced analgesia was opioid mediated, being blocked by naloxone, whereas, the cold stress-induced analgesia was insensitive to naloxone. 3. Exposure for 15-30 min to 0.5 Hz weak rotating magnetic fields (1.5-8.0 G) significantly reduced the analgesic effects of the mu and kappa opiate agonists in a manner similar to that observed with naloxone. The magnetic stimuli also inhibited the endogenous opioid mediated warm stress-induced analgesia and significantly reduced the cold stress-induced analgesia. The magnetic stimuli had no evident effects on the nociceptive responses of saline-treated animals. The dihydropyridine (DHP) and non-DHP calcium channel antagonists diltiazem, verapamil. and nifedipine differentially and significantly reduced, while the DHP calcium channel agonist, BAY K8644, significantly enhanced the inhibitory effects of the magnetic fields on morphine-induced analgesia.  相似文献   

20.
Circadian changes in the interactions between L-NG-nitroarginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, and morphine-induced antinociception were investigated by the mouse hot-plate test. Born the basal pain sensitivity and morphine-induced analgesia undergo significant 24h variations. L-NAME (40 mg/kg, ip) alone did not show any antinociceptive activity, but potentiated morphine-induced analgesia when combined with morphine at all injection times. In terms of percentage absolute potentiation (%AP), L-NAME dramatically augmented the analgesic effect of morphine in the late dark period at 19 hours after lights on (HALO). It is concluded that nitric oxide (NO) is involved in the modulation of the analgesic effect of morphine; thus, the L-NAME and morphine combination might be beneficial in alleviating pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号