首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
经硫酸铵分部,DEAE—纤维素、羟基磷灰石、Sephadex G—200及磷酸纤维素柱层析,从菠萝叶片分离得到电泳均一的依赖焦磷酸的磷酸果糖激酶(PFP)。SDS电泳图谱表明有一条分子量为62kD的主带和一条57 kD的弱带。Fru—2,6—P_2对酶的正反应活性有促进作用。动力学研究表明,Fru—2,6—P_2增加V_(max)及酶对底物Fru—6—P和Mg~(2+)的亲和性。  相似文献   

2.
从玉米叶片中部分纯化了依赖焦磷酸的磷酸果糖激酶(PPi-PFK),对果糖2,6-二磷酸具有很高的敏感性(K_a≈15nmol/L)。纯化过程中酶的生糖方向活性对酵解方向活性的比值逐渐增加。F2,6-P_2的参与使这一比值下降,并且解除高浓度PPi对酶FBP形成活性的抑制。 用胰蛋白酶限制酶解,90min使80%酶的酵解方向活性丧失而仍然保持几乎全部的酶的生糖方向活性。胰蛋白酶修饰的酶的动力学结果表明F6P饱和曲线呈明显S型而且V_(max)大大下降。在F2,6-P_2存在下修饰酶的K_m(F6P)值比天然酶约大4倍。 酶的生糖方向活性动力学特性的比较说明天然酶和胰蛋白酶修饰酶几乎具有相同的催化能力和底物(F6P)亲合力。 实验支持植物PPi-PFK存在两种可以相互转化的酶分子型的调节酶的活性和作用方向的模型。  相似文献   

3.
从成熟香蕉果实中部分纯化了焦磷酸:果糖—6—磷酸磷酸转移酶(PFP)。研究了酶的果糖—2,6—二磷酸的活化动力学特性.果糖—2,6—二磷酸通过降低酶的K_m(F6P)值和增进最大反应速度(V_(max))促进酶的果糖—6—磷酸磷酸化活性。底物(F6P)浓度和温度影响果糖—2,6—二磷酸对酶的活化作用。 本工作中还观察了香蕉成熟过程中PFP和依赖ATP的磷酸果糖激酶(PFK)活性的变化,并对PFP在果实成熟中的生理意义和调节特性进行了讨论。  相似文献   

4.
菠菜叶片提取液经PEG-6000沉淀、DE-52离子交换柱层析及分子筛SephectylS-300凝胶过滤得到两种分子量不同的依赖ATP的磷酸果糖激酶(PFK)。一为大分子酸型,分子量大于2000kD,其活力可被Pi、3-PGA、柠檬酸激活,被PEP强烈抑制,Pi能减缓此抑制作用,Mg2+为必需金属离子,但其浓度高于0.5mmol/L时酶活力降低;一为小分子酸型,分子量为300kD,其活性受Pi、3-PGA、柠檬酸和PEP抑制,Mg2+亦为必需金属离子,Hill系数为0.67,表现负协同效应。实验证明小分子酸型可能存在叶绿体中,大分子酸型属于胞质酶。  相似文献   

5.
【目的】球形芽孢杆菌缺乏EMP、HMP、ED途径的关键酶,如磷酸果糖激酶等被认为是其不能以糖类物质进行生长的主要原因。杀蚊球形芽孢杆菌C3-41全基因组序列分析表明,在染色体DNA上存在的磷酸果糖激酶基因pfk,为了进一步分析球形芽孢杆菌糖酵解途径,进一步确定磷酸果糖激酶在糖酵解途径中的功能。【方法】通过pfk基因在球形芽孢杆菌菌株中的Southern-blot拷贝数鉴定,在C3-41pfk基因克隆的基础上进行pfk基因在大肠杆菌中的融合表达、序列分析和序列比对等方法进行研究。【结果】证明了球形芽孢杆菌pfk基因由960bp核苷酸组成,表达42kDa的PFK融合蛋白,有保守的底物结合域和ATP结合域,同时pfk基因重组表达质粒可以回复大肠杆菌pfk缺陷型菌株DF1020代谢糖的能力。【结论】杀蚊球形芽孢杆菌C3-41的pfk表达产物具有磷酸果糖激酶活性,为今后深入研究球形芽孢杆菌产能代谢机理奠定了基础。  相似文献   

6.
6_磷酸果糖激酶(PFK)是糖酵解途径一个关键酶。基于腾冲嗜热厌氧菌基因组中的注释,基因TTE1816可能是PFK的一种,但是,它是否确有生物活性还必须有实验数据的支持。腾冲嗜热厌氧菌在最适温度培养后,提取细菌全蛋白,并采用双向电泳将可溶性蛋白质分离,然后运用质谱鉴定若干染色斑点。实验表明,TTE1816在高温条件下能够表达蛋白质。将TTE1816基因体外克隆至细菌表达载体,并在BL_21大肠杆菌中表达为可溶性蛋白。酶动力学实验表明,重组蛋白TTE1816具有PFK的催化活性,最适反应温度在60℃。它还能够催化葡萄糖、果糖、甘露糖和6_磷酸葡萄糖的磷酸化反应。另外,在高底物浓度和酶浓度的条件下,TTE1816还表现果糖二磷酸酶的特性。结果证明,TTE1816是腾冲嗜热厌氧菌中PFK家族的一个新成员。  相似文献   

7.
【目的】确定蛹虫草甲羟戊酸途径中的2个关键酶——磷酸甲羟戊酸激酶(CmErg8)和焦磷酸甲羟戊酸脱羧酶(CmErg19)的功能及其对麦角甾醇和虫草素含量的影响。【方法】通过生物信息学分析鉴定蛹虫草中CmErg8和CmErg19,并采用酵母互补确定其功能是否保守;以蛹虫草尿嘧啶营养缺陷型CmΔpyrG为背景菌株,利用农杆菌介导的转化方法对CmErg8和CmErg19进行过表达,观察其对麦角甾醇和虫草素含量的影响。【结果】CmErg8和CmErg19不能互补酵母erg8和erg19突变体的温度敏感表型;CmErg8和CmErg19过表达菌株中麦角甾醇和虫草素含量均有所增加,特别是CmErg19基因过表达可以使虫草素含量提升5倍左右。【结论】本研究揭示了蛹虫草CmErg8和CmErg19的功能,并且发现蛹虫草麦角甾醇合成通路基因可能会影响虫草素含量。  相似文献   

8.
高粱幼苗黄化叶片经照光转绿后,其PEP-Case活性提高4~15倍,mRNA含量提高了1.03倍,并测定出PEPCase mRNA的分子量为3.4kb。以等量的总RNA及mRNA进行体外翻译,发现转绿后PEPCase专一性翻译活性提高了51%~53%。这表明光照可以在转录水平上调节PEP-Case的基因表达。  相似文献   

9.
6-磷酸果糖激酶是糖酵解途径中的关键酶,它催化糖酵解途径中第一个不可逆反应。本研究利用pK18mobsacB自杀质粒采用同源双交换的方法对野油菜黄单胞菌Xcc8004中的6-磷酸果糖激酶基因(XC_0872)进行缺失突变,获得无标记的缺失突变体DM0872。表型检测结果显示DM0872突变体不影响野油菜黄单胞菌对葡萄糖和果糖的利用,不影响胞外多糖的合成,也不影响其致病性。该结果显示糖酵解途径在野油菜黄单胞菌的地位并不重要。另外,我们利用RT-PCR方法检测了XC_0872的转录情况,结果显示XC_0872在Xcc8004中是转录的。而之前曾有报道称黄单胞菌中无法检测出6-磷酸果糖激酶活性,这表明XC_0872进行了转录后调控从而使6-磷酸果糖激酶活性受到限制。本研究为野油菜黄单胞菌中糖酵解途径的调控提供了理论依据,对揭示野油菜黄单胞菌中该途径的调控机制具有一定的意义。  相似文献   

10.
F。。PZ(果糖一2,6一二磷酸)是真核生物中广泛存在的小分子代谢调节物,而PFP则是它的一个广泛存在于植物组织中的重要靶酶(Stilt1990)。该酶在80年代初被发现并为植物生化界所重视。它催化下列可逆反应:F。P+PPi-Fl,。PZ+Pi。此酶既可在酵解或生糖作用中催化形成净碳流(Hatzfeld等1989),也可以与PFK或F;,6Pase形成循环催化PPi的产生和消除(Sung等1988)。许多植物的urn由a和P两种亚基组成(Botha等1988,Yan和Tao1984)。其中a亚基为调节亚基,与F。,。PZ对催化活性的调节有关;卢亚基为催化亚基,具有活性位…  相似文献   

11.
To evaluate the role of pyrophosphate-dependent phosphofructokinase (PFP. EC 2.7.1.90) in the sugar metabolism of pollen. its occurrence and properties were studied in pollen grains of several plants including camellia ( Camellia japonica L.). In all pollen samples, PFP was strongly activated by fructose-2,6-bisphosphate (F2,6BP), and the activity of F2,6BP-activated PFP was higher than that of phosphofructokinase (PFK. EC 2.7.1.11). PFP partially purified from camellia pollen required Mg2+ for activity with an optimum at 1 m M . and was almost unaflected by a variety of metabolites at 1 m M . Its molecular mass was around 220 kDa, and apparent Km values for F6P, PPi. F1, 6BP and Pi were 294, 4, 20 and 580 u M , respectively. The levels of F2.6BP. PPi and F6P in camellia pollen were sufficent to support the forward reaction by PFP, and PFP, was 20- to 40-fold more active than PFK during pollen growth. These results suggest that pollen PFP plays a role in glycolysis but not gluconeogenesis. and the possible relevance of this to pollen tube growth is discussed.  相似文献   

12.
Levels of phosphofructokinase and metabolites known to affect its activity were monitored at different stages of wheat grain development. Phosphofructokinase activity peaked at 28 days after anthesis, declining thereafter. The amount of citrate increased up to 14 days after anthesis. PEP, ATP, ADP and AMP showed peak values at 28 days after anthesis. Phosphofructokinase from 28-day-old grains was purified × 23 with 49% recovery by ammonium sulphate fractionation and chromatography on DEAE-Sephadex A-50. A normal hyperbolic curve was observed with F-6-P. ATP inhibited the enzyme above 0.75 mM. ADP, citrate and 2-P-glycolate inhibited the enzyme noncooperatively; Ki values being 2.2, 1.6 and 5.0 mM, respectively. PEP and AMP failed to inhibit the enzyme activity  相似文献   

13.
Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone) isolated from Plumbago zeylanica Linn, when administered orally, at a dosage of 4 mg/kg body weight induces tumour regression in 3-methyl-4-dimethyl aminoazobenzene (3Me-DAB) induced hepatoma in Wistar male rats. The purpose of this investigation was to identify the changes in the rate of glycolysis and gluconeogenesis in tumour-bearing rats and the effects of treatment with Plumbagin. The levels of certain glycolytic enzymes, namely, hexokinase; phosphoglucoisomerase; and aldolase levels increased (p<0.001) in hepatoma bearing rats, whereas they decreased in Plumbagin administered rats to near normal levels. Certain gluconeogenic enzymes, namely, glucose-6-phosphatase and fructose-1,6-diphosphatase decreased (p<0.001) in tumour hosts, whereas Plumbagin administration increased the gluconeogenic enzyme levels in the treated animals. These investigations indicate the molecular basis of the different biological behaviour of 3MeDAB induced hepatoma and the anticarcinogenic property of Plumbagin against hepatoma studied in rats.  相似文献   

14.
Phosphofructokinase was partially purified from carrot root extracts. Monovalent cations stimulated carrot phosphofructokinase activity. The enzyme was strongly inhibited by P-enolpyruvate and this inhibition was relieved by NACl or KCl. Pi inhibited the enzyme at pH 7.9 but was stimulatory at pH 6.6.  相似文献   

15.
    
SYNOPSIS. It was shown in an investigation of the phosphofructokinases of Leishmania donovani and Leishmania braziliensis that both enzymes are similar to that of Crithidia fasciculata. Although the enzymes are allosteric with respect to their substrates and require AMP for activation, there is no influence by other heterotropic modifiers. The Mg2+-ATP chelate activates these enzymes in a first order process and they can be inhibited by free ATP. The inhibition is reversed by the activator, AMP, in a competitive manner. The requirement for the nucleotide in L. donovani can be eliminated by decreasing the pH. The data indicate that phosphofructokinase, a pivotal enzyme in glycolysis for most organisms, probably does not play an important role in glycolysis in Leishmania.  相似文献   

16.
The ability of Zn to modulate key metabolic processes was investigated in a study of gluconeogenesis in isolated hepatocytes from fasted rats. Zn (100 μM) inhibited glucose production from fructose by 41%, sorbitol by 28%; glycerol by 17%, and glyceraldehyde by 26%. Maximum inhibition of gluconeogenesis from fructose occurred at 25 μM Zn. Zn inhibited the rate of lactate production from fructose by 24% but not from sorbitol, glycerol, or glyceraldehyde. Fructose uptake by hepatocytes was not affected by Zn. A positive linear relationship (r=0.994) was obtained between inhibition by Zn of glucose and lactate production, indicating that a common step in both pathways is inhibited by Zn. The effect of Zn on fructokinase, aldolase-B, and triokinase activities was determined on semipurified rat liver enzyme preparations. Zn had no affect on triokinase activity but inhibited the two other enzymes in a dose-dependent manner, with the inhibition of aldolase-B being much greater than of fructokinase for concentrations of Zn between 2.5 and 20 μM. Zn increased the intracellular concentration of fructose-1-P in hepatocytes incubated with fructose, indicating a more potent Zn inhibition of aldolase-B than fructokinase. In addition, hepatocytes treated with Zn had decreased ATP and ADP concentrations, but had normal energy charge, suggesting an effect of Zn on adenine nucleotide degradation or synthesis. The demonstration that Zn inhibits two enzymes in fructose metabolism adds to the growing list of metabolic pathways that are catalyzed by enzymes that are sensitive to Zn.  相似文献   

17.
Fructose 6-phosphate metabolism in plants   总被引:6,自引:0,他引:6  
The kinetic and regulatory properties of the ATP-dependent phosphofructokinase from various plant tissues are reviewed. Particular attention is given to the differences in properties between the plastid and cytosolic isozymes of this enzyme. A model for fructose 6-phosphate utilization in plants is presented which incorporates a role for the pyrophosphate-dependent phosphofructokinase.  相似文献   

18.
Evolving concepts in plant glycolysis: two centuries of progress   总被引:4,自引:0,他引:4  
Glycolysis, the process responsible for the conversion of monosaccharides to pyruvic acid, is a ubiquitous feature of cellular metabolism and was the first major biochemical pathway to be well characterized. Although the majority of glycolytic enzymes are common to all organisms, the past quarter of a century has revealed that glycolysis in higher plants possesses numerous distinctive features. Research in the nineteenth century established convincingly that plants carry out alcoholic fermentation under anaerobic conditions. In 1878, Wilhelm Pfeffer asserted that a non-oxygen-requiring ‘intramolecular respiration’ was involved in the aerobic respiration of plants. Between 1900 and 1950 it was demonstrated that plants metabolize sugar and starch by a glycolytic pathway broadly similar to that of yeasts and muscle tissue. In 1948, the first purification and characterization of a plant glycolytic enzyme, aldolase, was published by Paul Stumpf. By 1960 the presence of each of the 10 enzymes of glycolysis, presumed at the time to be located in the cytosol, had been confirmed in higher plants. Shortly after 1960 it was shown that the mechanism of glycolytic regulation in plants had features in common with that of animals and yeasts, especially as regards the important role played by the enzyme phosphofructokinase; but important regulatory properties peculiar to plants were soon demonstrated. In the last 30 years, higher-plant glycolysis has been found to exhibit a number of additional characteristics peculiar to plant systems. One conspicuous feature of plant glycolysis, discovered in the 1970s, is the presence of a complete or nearly complete sequence of glycolytic enzymes in plastids, distinct and spatially separated from the glycolytic enzymes located in the cytosol. Plastidic and cytosolic isoenzymes of glycolysis have been shown to differ in their kinetic and regulatory properties, suggesting that the two pathways are independently regulated. Since about 1980 it has become increasingly clear that the cytosolic glycolysis of plants may make use of several enzymes other than the conventional ones found in yeasts, muscle tissue and plant plastids: these enzymes include a pyrophosphate-dependent phosphofructokinase, a non-reversible and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, a phosphoenolpyruvate phosphatase (vacuolar location) and a three-enzyme sequence able to produce pyruvate from phosphoenolpyruvate avoiding the pyruvate-kinase step. These non-conventional enzymes may catalyze glycolysis in the plant cytosol especially under conditions of metabolic stress. Experiments on transgenic plants possessing significantly elevated or reduced (reduced to virtually nil in some cases) levels of glycolytic enzymes are currently playing an important part in improving our understanding of the regulation of plant glycolysis; such experiments illustrate an impressive degree of flexibility in the pathway's operation. Plant cells are able to make use of enzymes bypassing or substituting for several of the conventional enzymic steps in the glycolytic pathway; the extent and conditions under which these bypasses operate are the subject of current research. The duplication of the glycolytic pathway in plants and the flexible nature of the pathway have possibly evolved in relation to the crucial biosynthetic role played by plant glycolysis beyond its function in energy generation; both functions must proceed if a plant is to survive under varying and often stressful environmental or nutritional conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号