首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Region E3 encodes four major overlapping mRNAs with different splicing patterns. There are two poly(A) sites, an upstream site called E3A and a downstream site called E3B. We have analyzed virus mutants with deletions or insertions in E3 in order to identify sequences that function in the alternative processing of E3 pre-mRNAs, and to understand what determines which poly(A) sites and which splice sites are used. In previous studies we established that the 5' boundary of the E3A poly(A) signal is at an ATTAAA sequence. We now show, using viable virus mutants, that the 3' boundary of the E3A signal is located within 47-62 nucleotides (nt) downstream of the ATTAAA (17-32 nt downstream of the last microheterogenous poly(A) addition site). Our data further suggest that the spacing between the ATTAAA, the cleavage sites, and the essential downstream sequences may be important in E3A 3' end formation. Of particular interest, these mutants suggest a novel mechanism for the control of alternative pre-mRNA processing. Mutants which are almost completely defective in E3A 3' end formation display greatly increased use of a 3' splice site located 4 nt upstream of the ATTAAA. The mRNA that uses this 3' splice site is polyadenylated at the E3B poly(A) site. We suggest, for this particular case, that alternative pre-mRNA processing could be determined by a competition between trans-acting factors that function in E3A 3' end formation or in splicing. These factors could compete for overlapping sequences in pre-mRNA.  相似文献   

3.
4.
5.
Alternative splicing of SV40 early pre-mRNA in vitro.   总被引:12,自引:4,他引:8       下载免费PDF全文
  相似文献   

6.
7.
Metazoan replication-dependent histone mRNAs are the only eukaryotic mRNAs that are not polyadenylated. The cleavage of histone pre-mRNA to form the unique 3' end requires the U7 snRNP and the stem-loop binding protein (SLBP) that binds the 3' end of histone mRNA. U7 snRNP contains three novel proteins, Lsm10 and Lsm11, which are part of the core U7 Sm complex, and ZFP100, a Zn finger protein that helps stabilize binding of the U7 snRNP to the histone pre-mRNA by interacting with the SLBP/pre-mRNA complex. Using a reporter gene that encodes a green fluorescent protein mRNA ending in a histone 3' end and mimics histone gene expression, we demonstrate that ZFP100 is the limiting factor for histone pre-mRNA processing in vivo. The overexpression of Lsm10 and Lsm11 increases the cellular levels of U7 snRNP but has no effect on histone pre-mRNA processing, while increasing the amount of ZFP100 increases histone pre-mRNA processing but has no effect on U7 snRNP levels. We also show that knocking down the known components of U7 snRNP by RNA interference results in a reduction in cell growth and an unsuspected cell cycle arrest in early G(1), suggesting that active U7 snRNP is necessary to allow progression through G(1) phase to S phase.  相似文献   

8.
9.
10.
Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation.  相似文献   

11.
Nonsense-mediated decay does not occur within the yeast nucleus   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
14.
Dominski Z  Marzluff WF 《Gene》1999,239(1):1-14
All metazoan messenger RNAs, with the exception of the replication-dependent histone mRNAs, terminate at the 3' end with a poly(A) tail. Replication-dependent histone mRNAs end instead in a conserved 26-nucleotide sequence that contains a 16-nucleotide stem-loop. Formation of the 3' end of histone mRNA occurs by endonucleolytic cleavage of pre-mRNA releasing the mature mRNA from the chromatin template. Cleavage requires several trans-acting factors, including a protein, the stem-loop binding protein (SLBP), which binds the 26-nucleotide sequence; and a small nuclear RNP, U7 snRNP. There are probably additional factors also required for cleavage. One of the functions of the SLBP is to stabilize binding of the U7 snRNP to the histone pre-mRNA. In the nucleus, both U7 snRNP and SLBP are present in coiled bodies, structures that are associated with histone genes and may play a direct role in histone pre-mRNA processing in vivo. One of the major regulatory events in the cell cycle is regulation of histone pre-mRNA processing, which is at least partially mediated by cell-cycle regulation of the levels of the SLBP protein.  相似文献   

15.
Metazoan replication-dependent histone mRNAs are the only nonpolyadenylated cellular mRNAs. Formation of the histone mRNA 3' end requires the U7 snRNP, which contains Lsm10 and Lsm11, and FLASH, a processing factor that binds Lsm11. Here, we identify sequences in Drosophila FLASH (dFLASH) that bind Drosophila Lsm11 (dLsm11), allow localization of dFLASH to the nucleus and histone locus body (HLB), and participate in histone pre-mRNA processing in vivo. Amino acids 105-154 of dFLASH bind to amino acids 1-78 of dLsm11. A two-amino acid mutation of dLsm11 that prevents dFLASH binding but does not affect localization of U7 snRNP to the HLB cannot rescue the lethality or histone pre-mRNA processing defects resulting from an Lsm11 null mutation. The last 45 amino acids of FLASH are required for efficient localization to the HLB in Drosophila cultured cells. Removing the first 64 amino acids of FLASH has no effect on processing in vivo. Removal of 13 additional amino acids of dFLASH results in a dominant negative protein that binds Lsm11 but inhibits processing of histone pre-mRNA in vivo. Inhibition requires the Lsm11 binding site, suggesting that the mutant dFLASH protein sequesters the U7 snRNP in an inactive complex and that residues between 64 and 77 of dFLASH interact with a factor required for processing. Together, these studies demonstrate that direct interaction between dFLASH and dLsm11 is essential for histone pre-mRNA processing in vivo and for proper development and viability in flies.  相似文献   

16.
Alternative splicing is an important process contributing to proteome diversity without involving an increase in the number of genes. In some cases, alternative splicing is carried out under 'trans-mode', called alternative trans-splicing, in which exons located on separate pre-mRNA molecules are selectively joined to produce mature mRNAs encoding proteins with distinct structures and functions. However, it is not known how widespread or how frequently trans-splicing occurs in vivo. Recently, trans-allelic trans-splicing has been unambiguously demonstrated in Drosophila using a SNP (single nucleotide polymorphism) as a marker. In this review, we provide an overview of alternative trans-splicing in Drosophila and mammals, and discuss its mechanisms.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号