首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flash photolysis techniques have been utilized to investigate the reactivity patterns of flavin radical species. Rate constants for disproportionation were found to be la the following order: lumiflavin>FMN>FAD and neutral radicals>anionic radicals. Neutral flavin radicals react with oxygen at a rate which is at least 104 times slower than the anionic species. No evidence for an intermediate complex or adduct is obtained in this reaction. The pK values for the ionization of the neutral flavin radicals are in the order FAD>FMN>riboflavin=limiflavin. The rates of reaction of ferricyanide with flavin radicals are essentially independent of pH, whereas benzoquinone reacts slightly more slowly (5 times) with the neutral flavin radical than with the anionic form. Cytochromec reacts at least ten times more slowly with flavin radicals than does ferricyanide.  相似文献   

2.
P F Heelis  T Okamura  A Sancar 《Biochemistry》1990,29(24):5694-5698
Escherichia coli DNA photolyase contains a stable flavin radical that is readily photoreduced in the presence of added electron donors. Picosecond, nanosecond, and conventional flash photolysis technique have been employed to investigate the events leading to photoreduction from 40 ps to tens of milliseconds following flash excitation. Direct light absorption by the flavin radical produces the first excited doublet state which undergoes rapid (within 100 ps) intersystem crossing to yield the lowest excited quartet (n pi*) state. In contrast, light absorption by the folate chromophore produces a new intermediate state via interaction of the folate excited singlet state with the ground-state flavin radical, leading to an enhanced yield of the excited radical doublet state and hence quartet state. Subsequent reaction of the excited quartet state involves hydrogen atom abstraction from a tryptophan residue. Secondary electron transfer from added electron donors occurs to the oxidized tryptophan radical with rate constants ranging from 10(4) (dithiothreitol) to 4 x 10(6) M-1 s-1 (n-propyl gallate). The low value of the latter rate compared to reduction of the tryptophan radical in lysozyme suggests that the reactive tryptophan is highly buried in photolyase. A redox potential diagram has been constructed for the ground and excited states involved. It is concluded that the one-electron reduction potential of the excited quartet state of the flavin radical must be at least 1.23 V more positive than the ground state, in agreement with the value of delta E greater than 1.77 V calculated from spectroscopic data.  相似文献   

3.
Upper-axial (beta-position) ligand analogs of the B12 coenzymes 5'-deoxy-5'-adenosylcob(III)alamin and methylcob(III)alamin have been synthesized by reaction of the 5'-chloro-5'-deoxy derivatives of fluorescent nucleosides (1,N6-ethenoadenosine, formycin, 2-amino-nebularine, and 2,6-diaminonebularine) and a fluorescent alkyl halide (dansylamidopropyl chloride) with cob(I)alamin. These analogs were nonfluorescent, but fluorescent products could be generated by photolysis or cyanolysis of the carbon-cobalt bonds. Under anaerobic and aerobic conditions, the major fluorescent photolysis products of 1,N6-ethenoadenosylcob(III)alamin were 1,N6-etheno-5',8-cyclic-5'-deoxyadenosine, and the 5'-aldehyde of 1,N6-ethenoadenosine, respectively. The cryptofluorescent property of these analogs was utilized to follow the kinetics of aerobic photolysis. First-order rate constants determined by this method were comparable to those obtained spectrophotometrically [via appearance of of aquacob(III)alamin]. Pseudo-first-order rate constants determined fluorometrically for the cyanolysis (at 25 degrees C) of 1,N6-ethenoadenosylcob(III)alamin, 2,6-diaminonebularinylcob(III)alamin, 2-aminonebularinylcob(III)alamin and formycinylcob(III)alamin were 5.8 X 10(-2), 2 X 10(-2), 1.8 X 10(-2), and 3 X 10(-5) min-1, respectively; values in good agreement were obtained spectrophotometrically (via appearance of dicyanocobalamin). Dansylamidopropylcob(III)alamin was stable in the presence of cyanide. The nucleoside alpha-ribazole is fluorescent in the free state but nonfluorescent when present as the lower axial (alpha-position) ligand in cobalamin coenzymes. Thus fluorescence of ligands in both the alpha- and beta-positions of cobalamins is quenched, probably as a result of intramolecular energy transfer between the ligands and the nonfluorescent corrinoid.  相似文献   

4.
Adrenodoxin reductase, the flavoprotein moiety of the adrenal cortex mitochondrial steroid hydroxylating system, participates in adrenodoxin-dependent cytochrome c and adrenodoxin-independent ferricyanide reduction, with NADPH as electron donor for both of these 1-electron reductions. For ferricyanide reduction, adrenodoxin reductase cycles between oxidized and 2-electron-reduced forms, reoxidation proceeding via the neutral flavin (FAD) semiquinone form (Fig. 9). Addition of adrenodoxin has no effect upon the kinetic parameters of flavoprotein-catalyzed ferricyanide reduction. For cytochrome c reduction, the adrenodoxin reductase-adrenodoxin 1:1 complex has been shown to be the catalytically active species (Lambeth, J. D., McCaslin, D. R., and Kamin, H. (1976) J. Biol. Chem. 251, 7545-7550). Present studies, using stopped flow techniques, have shown that the 2-electron-reduced form of the complex (produced by reaction with 1 eq of NADPH) reacts rapidly with 1 eq of cytochrome c (k approximately or equal to 4.6 s-1), but only slowly with a second cytochrome c (k = 0.1 to 0.3 s-1). However, when a second NADPH is included, two more equivalents of cytochrome are reduced rapidly. Thus, the adrenodoxin reductase-adrenodoxin complex appears to cycle between 1- and 3-electron reduced states, via an intermediate 2-electron-containing form produced by reoxidation by cytochrome (Fig. 10). For ferricyanide reduction by adrenodoxin reductase, the fully reduced and semiquinone forms of flavin each transfer 1 electron at oxidation-reduction potentials which differ by approximately 130 mV. However, adrenodoxin in a complex with adrenodoxin reductase allows electrons of constant potential to be delivered from flavin to cytochrome c via the iron sulfur center...  相似文献   

5.
The photochemistry of three structurally very similar triphenylmethylsilanes 1, 2, 3 [p-X-C(6)H(4)-CPh(2)-SiMe(3): X = PhCO, 1; H, ; Ph(OCH(2)CH(2)O)C, 3] is described by means of 248 and 308 nm nanosecond laser flash photolysis (ns-LFP), femtosecond LFP, EPR spectroscopy, emission spectroscopy (fluorescence, phosphorescence), ns-pulse radiolysis (ns-PR), photoproduct analysis studies in MeCN, and X-ray crystallographic analysis of the two key-compounds 1 and 2. The photochemical behavior of 1, 2 and 3 is discussed and compared with that of a fourth one, 4, bearing on the p-position an amino group (X = Me(2)N) and whose detailed photochemistry we reported earlier (J. Org. Chem., 2000, 65, 4274-4280). Silane 1 undergoes on irradiation with 248 and 308 nm laser light a fast photodissociation of the C-Si bond giving the p-(benzoyl)triphenylmethyl radical (1*) with a rate constant of k(diss)= 3 x 10(7) s(-1). The formation of 1* is a one-quantum process and takes place via the carbonyl triplet excited state with high quantum yield (Phi(rad)= 0.9); the intervention of the triplet state is clearly demonstrated through the phosphorescence spectrum and quenching experiments with ferrocene (k(q)= 9.3 x 10(9) M(-1) s(-1)), Et(3)N (1.1 x 10(9) M(-1) s(-1)), and styrene (3.1 x 10(9) M(-1) s(-1)) giving quenching rate constants very similar to those of benzophenone. For comparative reasons radical 1* was generated independently from p-(benzoyl)triphenylmethyl bromide via pulse radiolysis in THF and its absorption coefficient at lambda(max)= 340 nm was determined ([epsilon]= 27770 M(-1) cm(-1)). We found thus that the p-PhCO-derivative 1 behaves similar to the p-Me(2)N one (the latter giving the p-(dimethylamino)triphenylmethyl radical with Phi(rad)= 0.9), irrespective of their completely different ground state electronic properties. In contrast, compounds 2, 3 that bear only the aromatic chromophore give by laser or lamp irradiation both, (i) radical products [Ph(3)C* and p-Ph(OCH(2)CH(2)O)C-C(6)H(4)-C(*)Ph(2), respectively] after dissociation of the central C-Si bond (Phi(rad)= 0.16), and (ii) persistent photo-Fries rearrangement products (of the type of 5-methylidene-6-trimethylsilyl-1,3-cyclohexadiene) absorbing at 300-450 nm and arising from a 1,3-shift of the SiMe(3) group from the benzylic to the ortho-position of the aromatic ring (Phi approximately 0.85 for 2). Using fs-LFP on 2 we showed that the S(1) state recorded at 100 fs after the pulse decays on a time scale of 500 fs giving Ph(3)C* through C-Si bond dissociation. In a second step and within the next 10 ps trityl radicals either escape from the solvent cage (the quantum yield of Ph(3)C* formation Phi(rad)= 0.16 was measured with ns-LFP), or undergo in-cage recombination to photo-Fries products. Thus, singlet excited states (S(1)) of the aromatic organosilanes (2, 3) prefer photo-Fries rearrangement products, while triplet excited states (1, 4) favor free radicals. Both reactions proceed via a common primary photodissociation step (C-Si bond homolysis) and differentiate obviously in the multiplicity of the resulting geminate radical pairs; singlet radical pairs give preferably photo-Fries products following an in-cage recombination, while triplet radical pairs escape the solvent cage (MeCN). The results demonstrate the crucial role which is played by the chromophore which prescribes in a sense, (i) the multiplicity of the intervening excited state and consequently that of the resulting geminate radical pair, and (ii) the dominant reaction path to be followed: the benzophenone- and anilino-chromophore present in silanes 1 and 4, respectively, impose effective intersystem crossing transitions (k(isc)= 10(11) s(-1) and 6 x 10(8) s(-1), respectively) leading to triplet states and finally to free radical products, while the phenyl chromophore in 2 and 3, possessing ineffective isc (k(isc)= 6 x 10(6) s(-1)) leads to photo-Fries product formation via the energetic high lying S(1) state [approximately 443 kJ mol(-1)(106 kcal mol(-1))].  相似文献   

6.
C4a-hydroperoxyflavin is found commonly in the reactions of flavin-dependent monooxygenases, in which it plays a key role as an intermediate that incorporates an oxygen atom into substrates. Only recently has evidence for its involvement in the reactions of flavoprotein oxidases been reported. Previous studies of pyranose 2-oxidase (P2O), an enzyme catalyzing the oxidation of pyranoses using oxygen as an electron acceptor to generate oxidized sugars and hydrogen peroxide (H(2)O(2)), have shown that C4a-hydroperoxyflavin forms in P2O reactions before it eliminates H(2)O(2) as a product (Sucharitakul, J., Prongjit, M., Haltrich, D., and Chaiyen, P. (2008) Biochemistry 47, 8485-8490). In this report, the solvent kinetic isotope effects (SKIE) on the reaction of reduced P2O with oxygen were investigated using transient kinetics. Our results showed that D(2)O has a negligible effect on the formation of C4a-hydroperoxyflavin. The ensuing step of H(2)O(2) elimination from C4a-hydroperoxyflavin was shown to be modulated by an SKIE of 2.8 ± 0.2, and a proton inventory analysis of this step indicates a linear plot. These data suggest that a single-proton transfer process causes SKIE at the H(2)O(2) elimination step. Double and single mixing stopped-flow experiments performed in H(2)O buffer revealed that reduced flavin specifically labeled with deuterium at the flavin N5 position generated kinetic isotope effects similar to those found with experiments performed with the enzyme pre-equilibrated in D(2)O buffer. This suggests that the proton at the flavin N5 position is responsible for the SKIE and is the proton-in-flight that is transferred during the transition state. The mechanism of H(2)O(2) elimination from C4a-hydroperoxyflavin is consistent with a single proton transfer from the flavin N5 to the peroxide leaving group, possibly via the formation of an intramolecular hydrogen bridge.  相似文献   

7.
p-Cresol methylhydroxylase, a heterodimer consisting of one flavoprotein subunit and one cytochrome c subunit, may be resolved into its subunits, and the holoenzyme may then be fully reconstituted from the pure subunits. In the present study we have characterized the reduction kinetics of the intact enzyme and its subunits, by using exogenous 5-deazariboflavin semiquinone radical generated in the presence of EDTA by the laser-flash-photolysis technique. Under anaerobic conditions the 5-deazariboflavin semiquinone radical reacts rapidly with the native enzyme with a rate constant approaching that of a diffusion-controlled reaction (k = 2.8 X 10(9) M-1 X s-1). Time-resolved difference spectra at pH 7.6 indicate that both flavin and haem are reduced initially by the deazariboflavin semiquinone radical, followed by an additional slower intramolecular electron transfer (k = 220 s-1) from the endogenous neutral flavin semiquinone radical to the oxidized haem moiety of the native enzyme. During the steady-state photochemical titration of the native enzyme at pH 7.6 with deazariboflavin semiquinone radical generated by light-irradiation the haem appeared to be reduced before the protein-bound flavin and was followed by the formation of the protein-bound anionic flavin radical. This result suggests that the redox potential of the haem is higher than that of the flavin, and that deprotonation of the flavin neutral radical occurred during the photochemical titration. Reduction kinetics of the flavoprotein and cytochrome subunits were also investigated by laser-flash photolysis. The protein-bound flavin of the isolated flavin subunit was reduced rapidly by the deazariboflavin semiquinone radical (k = 2.2 X 10(9) M-1 X s-1), as was the haem of the pure cytochrome c subunit (k = 3.7 X 10(9) M-1 X s-1). Flash-induced difference spectra obtained for the flavoprotein and cytochrome subunits at pH 7.6 were consistent with the formation of neutral flavin semiquinone radical and reduced haem, respectively. Investigation of the kinetic properties of the neutral flavin semiquinone radical of the flavoprotein subunit at pH 7.6 and at longer times (up to 5s) were consistent with a slow first-order deprotonation reaction (k = 1 s-1) of the neutral radical to its anionic form.  相似文献   

8.
Despite numerous reports on the N-demethylation reactions catalyzed by peroxidases, to our knowledge, O-demethylation reactions with the same enzymes seem to be still a questionable matter. Unexpectedly, a peroxidase system (horseradish peroxidase and hydrogen peroxide) is able to effect the O-demethylation of the cytotoxic agents 9-methoxyellipticine and N2-methyl-9-methoxyellipticinium acetate. The reaction leads directly to the formation of the corresponding quinone-imine derivatives with the concomitant formation of one molecule of methanol per molecule of methoxy compound. One hydrogen peroxide molecule is consumed during the process. Experiments in H218O-enriched water clearly indicate that 18O is nearly quantitatively incorporated in the carbonyl group of the generated quinone-imine compound with the concomitant elimination of the methoxy group as methanol. So this peroxidase-catalyzed apparent O-demethylation in fact implies an oxidative demethoxylation step. This enzymatic reaction exhibits normal Michaelis-Menten saturation kinetics. Like the 9-hydroxylated ellipticines, both the 9-methoxylated ellipticines show a good affinity for the peroxidase itself (Km approximately 10 microM) but are slowly transformed to the corresponding quinone-imines. The Vmax values for methoxylated ellipticines are 10(-1)-10(-3) lower than those for hydroxylated compounds. This new route for the in vitro formation of electrophilic derivatives from the cytotoxic 9-methoxyellipticine and N2-methyl-9-methoxyellipticinium might be considered as a novel possible metabolic pathway for these drugs, especially if we bear in mind the "bio-oxidative alkylation" process previously described for at least one of the corresponding hydroxylated ellipticine derivatives (see Bernadou, J., Meunier, B., Meunier, G., Auclair, C., and Paoletti, C. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1297-1301; and Monsarrat, B., Maftouh, M., Meunier, G., Dugué, B., Bernadou, J., Armand, J. P., Picard-Fraire, C., Meunier, B., and Paoletti, C. (1983) Biochem. Pharmacol. 32, 3887-3890).  相似文献   

9.
Recent studies suggest that the allosteric state of the protein surrounding the hemes in hemoglobin affects both geminate recombination of CO and the apparent quantum efficiency (AQE) for photolysis (Rohlfs, R.J., J.S. Olson, and Q.H. Gibson, 1988, J. Biol. Chem. 263: 1803-1813. We report combined flow/flash experiments in which the AQE for photolysis of Hb(CO)1 was measured as a function of time delay after its formation. Experiments were carried out at 20 degrees C in 0.1 M phosphate buffer at pH 7.0 with CO saturations of 10% or less. The AQE was observed to decrease from a value close to 1.0 at short times to approximately 0.6 after 2 s. The fundamental photolysis step for carboxyhemoglobin is known to have a quantum efficiency of nearly 1.0, whereas the lower AQE values we observe result from competition between rapid geminate recombination and a rapid reaction step leading to escape of the CO to the solution phase. Changes in AQE values reflect changes in these rapid reaction steps which presumably result from conformational change in Hb(CO)1. The change in AQE is consistent with conversion of one or more hemes to an R-like state but these changes could not be even approximately described in terms of a simple two-state allosteric model.  相似文献   

10.
Summary The synthesis of amphiphilic flavins substituted with C18-hydrocarbon sidechains in positions 3, 5, 7, 8 and 10 is described. 3-, 7-, and 10-amphiflavins were obtained by new total syntheses. Furthermore, 3-amphiflavin was obtained by C18-alkylation of natural flavin in the oxidized state, whereas 5-amphi(dihydro)flavin was obtained by alkylation under reducing conditions.In the course of these studies, a novel, selective oxidation reaction was found taking place with the 8-methyl group of natural flavins. In this way lumiflavin and riboflavin derivatives could be converted directly to flavin-8-nor-8-carboxylic acids or the corresponding alkyl esters.The new flavin derivatives lend themselves for incorporation into lipid vesicles, thus yielding the basis for model studies of anisotropic flavin chemistry and redox transfer through membranes, as described in the concomitant paper (Schmidt, W., Hemmerich, P. 1981).J. Membrane Biol. 59:129. The new flavins are characterized by means of absorption, fluorescence, and proton nuclear magnetic resonance spectroscopy.  相似文献   

11.
P F Heelis  A Sancar 《Biochemistry》1986,25(25):8163-8166
Escherichia coli DNA photolyase contains a stable flavin neutral blue radical that is involved in photosensitized repair of pyrimidine dimers in DNA. We have investigated the effect of illumination on the radical using light of lambda greater than 520 nm from either a camera flash or laser. We find that both types of irradiations result in the photoreduction of the flavin radical with a quantum yield of 0.10 +/- 0.02. While photoreduction with the camera flash is minimal in the absence of an electron donor (dithiothreitol), laser flash photolysis at 532 nm reduces the flavin to the same extent in the presence or absence or an electron donor. Thus, it is concluded that the primary step in photoreduction involves an electron donor that is a constituent of the enzyme itself. Laser flash photolysis produces a transient absorption band at 420 nm that probably represents the absorption of the lowest excited doublet state (2(1)IIII*) of the radical and decays with first-order kinetics with k1 = 0.8 X 10(6) s-1. The photoreduction data combined with the results of recent studies on the activity of dithionite-reduced enzyme suggest that electron donation by excited states of E-FADH2 is the mechanism of flavin photosensitized dimer repair by E. coli DNA photolyase.  相似文献   

12.
Cénas N  Lê KH  Terrier M  Lederer F 《Biochemistry》2007,46(15):4661-4670
Saccharomyces cerevisiae flavocytochrome b2 (L-lactate:cytochrome c oxido reductase, EC 1.1.2.3) is a homotetramer, with FMN and protoheme IX binding on separate domains. The flavin-binding domains form the enzyme tetrameric core, while the cytochrome b2 domains appear to be mobile around a hinge region (Xia, Z. X., and Mathews, F. S. (1990) J. Mol. Biol. 212, 867-863). The enzyme catalyzes electron transfer from L-lactate to cytochrome c, or to nonphysiological acceptors such as ferricyanide, via FMN and heme b2. The kinetics of this multistep reaction are complex. In order to clarify some of its aspects, the tetrameric FMN-binding domain (FDH domain) has been independently expressed in Escherichia coli (Balme, A., Brunt, C. E., Pallister, R., Chapman, S. K., and Reid, G. A. (1995) Biochem. J. 309, 601-605). We present here an additional characterization of this domain. In our hands, it has essentially the same ferricyanide reductase activity as the holo-enzyme. The comparison of the steady-state kinetics with ferricyanide as acceptor and of the pre-steady-state kinetics of flavin reduction, as well as the kinetic isotope effects of the reactions using L-2-[2H]lactate, indicates that flavin reduction is the limiting step in lactate oxidation. During the oxidation of the reduced FDH domain by ferricyanide, the oxidation of the semiquinone is much faster than the oxidation of two-electron-reduced flavin. This order of reactivity is reversed during flavin to heme b2 transfer in the holo-enzyme. Potentiometric studies of the protein yielded a standard redox potential for FMN at pH 7.0, E(o)7, of -81 mV, a value practically identical to the published value of -90 mV for FMN in holo-flavocytochrome b2. However, as expected from the kinetics of the oxidative half-reaction, the FDH domain was characterized by a significantly destabilized flavin semiquinone state compared with holo-enzyme, with a semiquinone formation constant K of 1.25-0.64 vs 33.5, respectively (Tegoni, M., Silvestrini, M. C., Guigliarelli, B., Asso, M., and Bertrand, P. (1998) Biochemistry, 37, 12761-12771). As in the holo-enzyme, the semiquinone state in the FDH domain is significantly stabilized by the reaction product, pyruvate. We also studied the inhibition exerted in the steady and pre steady states by the reaction product pyruvate and by anions (bromide, chloride, phosphate, acetate), with respect to both flavin reduction and reoxidation. The results indicate that these compounds bind to the oxidized and the two-electron-reduced forms of the FDH domain, and that excess L-lactate also binds to the two-electron-reduced form. These findings point to the existence of a common or strongly overlapping binding site. A comparison of the effect of the anions on WT and R289K holo-flavocytochromes b2 indicates that invariant R289 belongs to this site. According to literature data, it must also be present in other members of the family of L-2-hydroxy acid-oxidizing enzymes.  相似文献   

13.
These experiments indicate that absorbance changes observed at the 425 nm isosbestic point of the Hb and HbCO following laser photolysis of HbCO provide a direct measure of the rates of quaternary conformational changes between rapidly reacting Hb (the immediate product of full photolysis) and slowly reacting normal deoxyhemoglobin. Hb, first observed by Gibson (Gibson, Q.H. (1959) Biochem. J. 71, 293-303), Has been interpreted as deoxyhemoglobin remaining in the liganded quaternary conformation following rapid removal of ligand by a light pulse. In borate buffers between pH 8.4 and 9.6 particularly simple pH-independent results were obtained which allowed the use of a Monod. Wyman, and Changeux model (Monod, J., Wyman, J., and Changeux, J (1965) J. Mol. Biol. 12, 88-118) to fit the data. In this case Hb is taken to be R state deoxyhemoglobin. Partial photolysis experiments at 425 nm show that the rate of the R - T conformational change at 20 degrees decreases by about a factor of 2 for each additional bound ligand. The rate of the ligand-free conformational change is found to be 920 +/- 60s(-1), 6400 +/- 600s(-1), and 15,700 +/- 700(-1) respectively at 3 degrees, 20 degrees, and 30 degrees. The previously uninterpreted effects of flash length and partial photolysis on the CO recombination kinetics can be explained in terms of the present model. Kinetic results obtained below pH 8 are found to be inconsistent with a two-state model. It appears that binding of inositol hexaphosphate produces a new rapidly reacting quaternary conformation of HbCO.  相似文献   

14.
The kinetics of the sensitized photodegradation of a variety of well-defined lignin model compounds was studied to determine the mechanisms responsible for lignin's photochemically-mediated oxidation. Monomeric and dimeric models representing lignin's phenolic end groups and nonphenolic dimers representing its inner core were studied. It was determined that the rate constants for the reaction of the deprotonated phenolic models with singlet oxygen (1O2) range from 0.96 to 7.2 x 10(7) M(-1) s(-1). The models were substituted with zero, one, or two electron-donating methoxy groups on both aryl rings and, while the rate constants showed little dependence on the substitution of the nonphenolic ring, the rate constants increased dramatically with increasing methoxy substitution of the phenol. Reaction between these deprotonated models and 1O2 is thus proposed to occur at the phenolate ring. Under neutral conditions, it was observed that the phenolic models react with excited state sensitizer, with this reaction also occuring at the phenol ring. The sum of the rate constants for quenching of and reaction with excited state sensitizer by lignin model compound ranges from 5.4 to 75 x 10(7) M(-1) s(-1). This study corrects previous reports that attribute the sensitized degradation of neutral lignin model compounds to reaction with 1O2. A nonphenolic aromatic ketone inner-core model was observed to undergo direct photolysis, and its reduced analog was not degraded by direct photolysis or reaction with 1O2 or excited state sensitizer. The oxidized inner-core model was also shown to be able to act as a sensitizer for the degradation of a phenolic lignin model compound.  相似文献   

15.
Liver microsomal flavin-containing monooxygenase (MFMO) has been shown to exhibit a stable 4a-flavin hydroperoxide intermediate in the absence of oxygenatable substrate (Poulsen, L. L., and Ziegler, D. M. (1979) J. Biol. Chem. 254, 6449-6455; Beaty, N. B., and Ballou, D. P. (1981) J. Biol. Chem. 256, 4619-4625). The reaction of this intermediate with an assortment of substrates was studied by stopped flow techniques. The first observed spectral change is a small blue shift in the absorbance peak of the 4a-flavin intermediate. The rate of this spectral change is dependent on the concentration of the substrate. This small spectral change is succeeded by a large increase in the absorbance at 450 nm. The rate of appearance of oxidized flavin is independent of substrate concentration but does increase at higher pH. Steady state turnover rates also greater at higher pH, consistent with earlier observations that the formation of oxidized flavin is rate determining in catalysis. Upon oxygenation by MFMO, thiobenzamide and iodide each undergo a spectral change which is dependent on substrate concentration. The spectral changes corresponding to oxygenation of these substrates occur at the same rates as do the initial small spectral changes contributed by the flavin chromophore as observed with all substrates. However, no substrate tested to date shows any effect on the rate of formation of oxidized flavin. Previous work has shown MFMO to catalyze the oxygenation of a variety of nitrogen- and sulfur-containing hydrophobic compounds. Two new classes of compounds are shown here to be substrates for this enzyme. The nucleophilic anions, iodide and thiocyanate, catalyze the decomposition of the 4a-flavin hydroperoxide. Organic boronic acids (e.g. phenylboronic acid and butylboronic acid) also appear to be oxygenated with no striking differences in kinetic characteristics from those of nucleophilic substrates. These organic boronic acids are classic electrophiles and suggest that like peracids, the 4a-flavin hydroperoxide is capable of oxygenating both nucleophiles and electrophiles (Lee, J. B., and Uff, B. C. (1967) Quart. Rev. 21, 429-457).  相似文献   

16.
The kinetics of CO and NO recombination with the giant approximately 3600-kDa hexagonal bilayer hemoglobin of Lumbricus terrestris and its subunits, the approximately 200-kDa dodecamer of globin chains (3 x chains (I + II + III + IV] (see preceding paper (Vinogradov S.N., Sharma, P.K., Qabor, A.N., Wall, J.S., Westrick, J.A., Simmons, J.H., and Gill, S.J. (1991) J. Biol. Chem. 266, 13091-13096], the 50-kDa disulfide-bonded trimer (chains II-IV), the monomer (chain I), and the approximately 30-kDa linker (chains VA, VB, and VI), were measured following photolysis over time scales ranging from picosecond to millisecond. CO recombination at 436 nm subsequent to excitation (9 ns) at 532 nm showed three phases covering a 100-fold range for the Hb, dodecamer, trimer, and linker protein. The proportion of the fast phase was 0.1-0.2 for the trimer, dodecamer, and Hb. The relative rates and amplitudes of the phases were not affected by changes in CO concentration or excitation intensity. The monomer showed a single phase with a rate of 2 x 10(6) M-1 s-1. The second-order reaction with NO showed two rates. The faster rate was 90 x 10(6) M-1 s-1 and accounted for approximately 0.7 of the reaction for all species except the monomer, where it accounted for the full reaction. The slower rate was 15 x 10(6) M-1 s-1 for all species except the monomer.  相似文献   

17.
p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida have been reconstituted with 13C- and 15N-enriched FAD. The protein preparations were studied by 13C-NMR, 15N-NMR and 31P-NMR techniques in the oxidized and in the two-electron-reduced states. The chemical shift values are compared with those of free flavin in water or chloroform. It is shown that the pi electron distribution in oxidized free p-hydroxybenzoate hydroxylase is comparable to free flavin in water, and it is therefore suggested that the flavin ring is solvent accessible. Addition of substrate has a strong effect on several resonances, e.g. C2 and N5, which indicates that the flavin ring becomes shielded from solvent and also that a conformational change occurs involving the positive pole of an alpha-helix microdipole. In the reduced state, the flavin in p-hydroxybenzoate hydroxylase is bound in the anionic form, i.e. carrying a negative charge at N1. The flavin is bound in a more planar configuration than when free in solution. Upon binding of substrate the resonances of N1, C10a and N10 shift upfield. It is suggested that these upfield shifts are the result of a conformational change similar, but not identical, to the one observed in the oxidized state. The 13C chemical shifts of FAD bound to apo(salicylate hydroxylase) indicate that in the oxidized state the flavin ring is also fairly solvent accessible in the free enzyme. Addition of substrate has a strong effect on the hydrogen bond formed with O4 alpha. It is suggested that this is due to the exclusion of water from the active site by the binding of substrate. In the reduced state, the flavin is anionic. Addition of substrate forces the flavin ring to adopt a more planar configuration, i.e. a sp2-hybridized N5 atom and a slightly sp3-hybridized N10 atom. The NMR results are discussed in relation to the reaction catalyzed by the enzymes.  相似文献   

18.
The role of ribityl side chain hydroxyl groups of the flavin moiety in the covalent flavinylation reaction and catalytic activities of recombinant human liver monoamine oxidases (MAO) A and B have been investigated using the riboflavin analogue: N(10)-omega-hydroxypentyl-isoalloxazine. Using a rib5 disrupted strain of Saccharomyces cerevisiae which is auxotrophic for riboflavin, MAO A and MAO B were expressed separately under control of a galactose inducible GAL10/CYC1 promoter in the presence of N(10)-omega-hydroxypentyl-isoalloxazine as the only available riboflavin analogue. Analysis of mitochondrial membrane proteins shows both enzymes to be expressed at levels comparable to those cultures grown on riboflavin and to contain covalently bound flavin. Catalytic activities, as monitored by kynuramine oxidation, are equivalent to (MAO A) or 2-fold greater (MAO B) than control preparations expressed in the presence of riboflavin. Although N(10)-omega-hydroxypentyl-isoalloxazine is unable to support growth of riboflavin auxotrophic S. cerevisiae, it is converted to the FMN level by yeast cell free extracts. The FMN form of the analogue is converted to the FAD level by the yeast FAD synthetase, as shown by expression of the recombinant enzyme in Escherichia coli. These data show that the ribityl hydroxyl groups of the FAD moiety are not required for covalent flavinylation or catalytic activities of monoamine oxidases A and B. This is in contrast to the suggestion based on mutagenesis studies that an interaction between the 3'-hydroxyl group of the flavin and the beta-carbonyl of Asp(227) is required for the covalent flavinylation reaction of MAO B (Zhou et al., J. Biol. Chem. 273 (1998) 14862-14868).  相似文献   

19.
The kinetics of reduction of oxidized Clostridium pasteurianum rubredoxin (Rdox) by free flavin semiquinones generated by the laser flash photolysis technique and by spinach ferredoxin:NADP+ reductase (FNR) semiquinone (also produced by flavin semiquinone reduction) have been investigated under anaerobic conditions. 5-Deazariboflavin semiquinone (5-dRf) rapidly reduces oxidized rubredoxin (Rdox) (k = 3.0 X 10(8) M-1 S-1) and oxidized ferredoxin:NADP+ reductase (FNRox) to the semiquinone level (k = 5.5 X 10(8) M-1 S-1). Lumiflavin semiquinone reduces Rdox more slowly (k = 1.3 X 10(7) M-1 S-1) and is not measurably reactive with FNRox. Absorption difference spectroscopy and difference CD indicate that Rdox and FNRox form a 1:1 complex at low ionic strength (10 mM), which is completely dissociated at higher ionic strength (310 mM). Apparent second order rate constants for reduction of Rdox in its free and complexed state by lumiflavin semiquinone are the same. Reduction of Rdox (both free and complexed) by free FNR semiquinone and intracomplex electron transfer were investigated using 5-dRf as the reductant. At I = 10 mM, a first order rate constant of 2.0 X 10(3) S-1 was obtained, which corresponds to the processes involved in intracomplex electron transfer from FNR semiquinone to Rdox. A second order reaction between free FNR semiquinone and complexed Rdox was also observed to occur (k = 5 X 10(7) M-1 S-1). At I = 310 mM, these reactions are not observed and the reaction of FNR semiquinone with free Rdox is second order (k = 4 X 10(6) M-1 S-1).  相似文献   

20.
The kinetics of the reaction with oxygen and carbon monoxide of the homodimeric hemoglobin from the bivalve mollusc Scapharca inaequivalvis has been extensively investigated by flash and dye-laser photolysis, temperature jump relaxation, and stopped flow methods. The results indicate that cooperativity in ligand binding, already observed for oxygen at equilibrium, finds its kinetic counterpart in a large decrease of the oxygen dissociation velocity in the second step of the binding reaction. In the case of carbon monoxide, cooperativity is clearly evident in the increase of the combination velocity constant as the reaction proceeds. Therefore, the ligand-binding kinetics of this dimeric hemoglobin shows the characteristic features of the corresponding reactions of tetrameric hemoglobins. Analysis of the data in terms of the allosteric model proposed by Monod et al. (Monod, J., Wyman, J., and Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118) has shown that the values of the allosteric parameters cannot be fixed uniquely for a dimeric hemoglobin. The rapid changes in absorbance observed at the isosbestic points of unliganded and liganded hemoglobin following laser photolysis provided a value of 7 X 10(4) S-1 at 20 degrees C for the rate of the ligand-free quarternary conformational change, postulated on the basis of cooperative ligand binding. Comparison of the rapid absorbance changes observed during ligand rebinding in this hemoglobin with those observed in tuna hemoglobin indicate that, at full photolysis, binding to the T state is followed by further binding and conversion to the liganded R state; at partial photolysis, population of the liganded T state occurs immediately and is followed by a decay to the liganded R state upon further ligand binding. These new results, in conjunction with previous equilibrium data on the same system, show unequivocally that the presence of two different types of chain is not an absolute prerequisite for cooperativity in hemoglobins, contrary to currently accepted ideas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号