首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation of terrestrial bryophyte species diversity and community structure along an altitudinal gradient from 2,001 to 4,221 m a.s.l. in Gongga Mountain in Sichuan, China was carried out in June 2010. Factors which might affect bryophyte species composition and diversity, including climate, elevation, slope, depth of litter, vegetation type, soil pH and soil Eh, were examined to understand the altitudinal feature of bryophyte distribution. A total of 14 representative elevations were chosen along an altitudinal gradient, with study sites at each elevation chosen according to habitat type (forests, grasslands) and accessibility. At each elevation, three 100 m × 2 m transects that are 50 m apart were set along the contour line, and three 50 cm × 50 cm quadrats were set along each transect at an interval of 30 m. Species diversity, cover, biomass, and thickness of terrestrial bryophytes were examined. A total of 165 species, including 42 liverworts and 123 mosses, are recorded in Gongga mountain. Ground bryophyte species richness does not show any clear elevation trend. The terrestrial bryophyte cover increases with elevation. The terrestrial bryophyte biomass and thickness display a clear humped relationship with the elevation, with the maximum around 3,758 m. At this altitude, biomass is 700.3 g m−2 and the maximum thickness is 8 cm. Bryophyte distribution is primarily associated with the depth of litter, the air temperature and the precipitation. Further studies are necessary to include other epiphytes types and vascular vegetation in a larger altitudinal range.  相似文献   

2.
The unimodal species richness-altitude distribution pattern seems to be universal. To investigate the validity of this phenomenon in homogeneous substrate and vegetation conditions, we sampled beech-dominated forests in five volcanic mountain ranges in the Western Carpathians. European beech (Fagus sylvatica L.) formed monodominant closed-canopy stands at altitudes from 300 to 1,200 m. Along this gradient, the influence of beech on understory plant species richness was expected to be strong and uniform. The shape of the species richness-altitude relationship was analyzed for three datasets: herb layer, shrub layer, and both layers merged together. Contrary to prediction, the studied species richness-altitude relationship was inversely unimodal, with a minimum at intermediate altitudes. Quadratic regression models were statistically significant for all three datasets (P<0.001) and the explained variability ranged from 12 % to 20 %. The possible explanation for the observed pattern is twofold. In the central part of the altitudinal gradient, low species richness is due to strong competition by monodominant beech with accumulation of leaf litter and uptake soil resources, mainly water. This influence is somewhat released towards the margins of the gradient. Secondly, the species pool from the neighbouring communities increases species richness only in the lower parts of the altitudinal gradient.  相似文献   

3.
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m–2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes.  相似文献   

4.
Marisol Castrillo 《Oecologia》1995,101(2):193-196
The ribulose-1,5-bis-phosphate (RBPC) 14CO2 fixation rate was measured at four different temperatures, 5°, 15°, 25° and 35° C, in three populations of Espeletia schultzii at different altitudes, 3100, 3550 and 4200 ma.s.l. The fixation rate increased with temperature increase in the populations studied. The population at 4200 m showed the higher rate at any temperature, followed by those at 3550 and 3100 m. The Km(CO2) increased with temperature increase, but the values were similar among populations. The Vmax values increased with temperature and were higher for the 4200-m population. These results suggest that the RBPC enzyme is more activated in the highland population and that the enzyme kinetics are not similar among populations.  相似文献   

5.
Steep environmental gradients provide ideal settings for studies of potentially adaptive phenotypic and genetic variation in plants. The accurate timing of flowering is crucial for reproductive success and is regulated by several pathways, including the vernalization pathway. Among the numerous genes known to enable flowering in response to vernalization, the most prominent is FLOWERING LOCUS C (FLC). FLC and other genes of the vernalization pathway vary extensively among natural populations and are thus candidates for the adaptation of flowering time to environmental gradients such as altitude. We used 15 natural Arabidopsis (Arabidopsis thaliana) genotypes originating from an altitudinal gradient (800–2,700 m above sea level) in the Swiss Alps to test whether flowering time correlated with altitude under different vernalization scenarios. Additionally, we measured the expression of 12 genes of the vernalization pathway and its downstream targets. Flowering time correlated with altitude in a nonlinear manner for vernalized plants. Flowering time could be explained by the expression and regulation of the vernalization pathway, most notably by AGAMOUS LIKE19 (AGL19), FLOWERING LOCUS T (FT), and FLC. The expression of AGL19, FT, and VERNALIZATION INSENSITIVE3 was associated with altitude, and the regulation of MADS AFFECTING FLOWERING2 (MAF2) and MAF3 differed between low- and high-altitude genotypes. In conclusion, we found clinal variation across an altitudinal gradient both in flowering time and the expression and regulation of genes in the flowering time control network, often independent of FLC, suggesting that the timing of flowering may contribute to altitudinal adaptation.Environmental gradients, such as temperature or water availability, provide an ideal setting to study how species adapt to contrasting environmental scenarios (Reich et al., 2003; Keller et al., 2013). Many studies have shown that phenotypic plant traits such as leaf number, allocation to reproductive biomass, and height change along environmental gradients (Etterson, 2004; Leger and Rice, 2007; Fischer et al., 2011), and some studies could correlate environmental clines to changes in allelic frequencies at specific candidate genes (Manel et al., 2010; Poncet et al., 2010; Fischer et al., 2013).Although allelic variation at genes with major effects may explain variation in some phenotypes, fine-tuning of other quantitative traits along an environmental gradient may require an adjustment of larger regulatory networks (Whitehead and Crawford, 2006; Hodgins-Davis and Townsend, 2009; Hodgins et al., 2013). In Arabidopsis (Arabidopsis thaliana), numerous genetic pathways have been studied extensively, mainly using laboratory accessions (Shinozaki and Yamaguchi-Shinozaki, 2007; Wellmer and Riechmann, 2010; Ó’Maoiléidigh et al., 2014). However, how consistently such pathways are expressed in natural populations, and how they respond to different environmental conditions, often remains unclear. Studying the expression of genetic pathways in natural genotypes originating from an environmental cline under a variety of climatic scenarios provides an ideal approach to understanding how plants can adapt to contrasting environments along a climatic gradient.Across altitudes, environmental gradients are particularly steep: climatic conditions, including temperature, solar radiation, and precipitation, may change dramatically on a small geographic scale (Körner, 2007), while daylength and other factors remain constant. Many phenotypic traits, such as height, total seed weight, leaf size, and allocation to vegetative reproduction, have been found to change along altitudinal gradients in plants (Byars et al., 2007; Gonzalo-Turpin and Hazard, 2009; Fischer et al., 2011). Among these, the timing of flowering (i.e. the transition from vegetative growth to the reproductive phase) is a key developmental phase transition in seasonal alpine environments, as its accuracy is crucial for reproductive success: too-early flowering increases the risk of encountering detrimental frost (Kollas et al., 2013), whereas time for seed maturation may run out if flowering starts too late (Inouye and Wielgolaski, 2003; Chuine, 2010). These contrasting selective pressures may change along an altitudinal gradient, where the vegetation period becomes shorter with increasing altitude.In Arabidopsis, an annual weed native to Eurasia and northern Africa, two different life cycles have been described (Koornneef et al., 2004; Alonso-Blanco et al., 2009): summer annuals germinate and flower within one growing season and do not require winter to initiate flowering; winter annuals germinate usually in autumn, overwinter as vegetative rosettes, and flower in the following spring. Accessions expressing a winter-annual life cycle need vernalization (a prolonged cold period) in order to initiate flowering; otherwise, they remain in a vegetative rosette stage for an extended period of time.On the molecular level, the transition to flowering is among the best-studied processes in plants (Wellmer and Riechmann, 2010; Andrés and Coupland, 2012), and in Arabidopsis, several genetic pathways controlling flowering are known. Signals from the vernalization pathway, photoperiod pathway, autonomous pathway, GA pathway, and plant age all contribute to ensuring the correct timing of flowering (Ehrenreich et al., 2009; Wellmer and Riechmann, 2010; Srikanth and Schmid, 2011). Within the vernalization pathway, a number of key players have been identified (Andrés and Coupland, 2012; Schmitz and Amasino, 2012; Song et al., 2012; Zografos and Sung, 2012). In winter annuals, a functional FRIGIDA (FRI) allele is required to activate FLOWERING LOCUS C (FLC). FLC strongly suppresses the flowering promoters FLOWERING LOCUS T (FT) and AGAMOUS LIKE20 (AGL20; also referred to as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1) and thus inhibits flowering. During vernalization, VERNALIZATION INSENSITIVE3 (VIN3) represses FLC, and the repressed state is maintained in subsequent warm periods by epigenetic silencing (Crevillén and Dean, 2011; Zografos and Sung, 2012), allowing FT, AGL20, and, through positive feedback with AGL20, AGL24 (Liu et al., 2008) to initiate flowering. Many natural populations and most laboratory accessions, among them Columbia-0 (Col-0), carry nonfunctional FRI or FLC alleles and thus respond only weakly to vernalization, resulting in fast flowering, summer-annual life cycles (Johanson et al., 2000; Gazzani et al., 2003; Shindo et al., 2005).In addition to the well-studied FLC branch of the vernalization pathway, FLC-independent components of the vernalization response have been identified. For example, AGL19 has been found to promote flowering following vernalization without interacting with FLC (Schönrock et al., 2006), and relatives of FLC, the MADS AFFECTING FLOWERING genes (MAF1MAF5; MAF1 is also referred to as FLOWERING LOCUS M [FLM]; De Bodt et al., 2003), have been shown to inhibit flowering in a similar way to FLC (Ratcliffe et al., 2003; Scortecci et al., 2003; Werner et al., 2005; Sung et al., 2006; Gu et al., 2013). Genes MAF2 to MAF5 (Ratcliffe et al., 2003) are arranged in a tandem gene array and vary extensively among natural populations (Caicedo et al., 2009; Rosloski et al., 2010), and several recent studies have associated this polymorphic region with natural variation in flowering time (Salomé et al., 2011; Silady et al., 2011; Lasky et al., 2012; Fournier-Level et al., 2013; Grillo et al., 2013), making these genes interesting candidates for studying associations between flowering time and ecological parameters.Associating genetic variation at a single gene with latitude or altitude has often proven to be difficult (Shindo et al., 2005; Stinchcombe et al., 2005; Méndez-Vigo et al., 2011), although Caicedo et al. (2004) found evidence for epistatic interactions between FRI and FLC alleles associated with latitude. Interestingly, some recent studies suggest that regulatory processes within the vernalization pathway may contribute to natural phenotypic variability (Shindo et al., 2006; Strange et al., 2011). Overall, the response to vernalization appears to be a complex process in natural populations, potentially involving epigenetic regulation of a number of genes. Therefore, to gain a better understanding of the involvement of this complex genetic network in the response to ecological parameters, it is essential to study multiple interacting genes of the vernalization pathway simultaneously.Here, we used 15 natural Arabidopsis genotypes originating from an altitudinal cline (800–2,700 m) in the Swiss Alps to study the associations between vernalization, flowering initiation, gene expression and regulation, and altitude. Importantly, all genotypes originated from a restricted geographic range; thus, confounding effects such as differences in daylength, as found along latitudinal clines, can be excluded. We measured flowering time and the expression of 12 genes of the vernalization pathway under different vernalization scenarios to assess whether the response to vernalization is associated with altitude. In particular, we tested the hypotheses that (1) flowering time correlates with altitude; (2) genotypes from high altitudes need longer vernalization periods to initiate flowering reliably; (3) gene expression and regulation of the vernalization pathway can explain flowering time; (4) gene expression and regulation of the vernalization pathway is associated with altitude; and (5) FLC-independent branches of the vernalization pathway are important for initiating flowering and, thus, for altitudinal adaptation in natural populations.  相似文献   

6.
Variation in body size and sexual size dimorphism(SSD) can have important consequences for animal ecology, behavior, population dynamics and the evolution of life-history traits. Organisms are expected to be larger in colder climate(i.e., Bergmann's rule) and SSD varies with body size(i.e., Rensch's rule). However, the underlying mechanisms are still elusive. The plateau brown frog(Rana kukunoris), a medium-sized anuran species with femalebiased SSD, is endemic to the Qinghai-Tibetan Plateau(QTP). From 1797 m(Maoxiang'ping) to 3453 m(Heihe'qiao) in the eastern margin of the QTP, we surveyed 10 populations of R. kukunoris and collected phalanges and snout vent length(SVL) data for 258 adult individuals(199 males versus 59 females). Based on these data, we explored how body size and SSD varying along the altitudinal gradient and examined the corresponding effects of temperature. We found body size to be larger at higher altitude for males but not for females, with likely effects from the temperature on the variation in male body size. Sex differences in growth rates may be the main cause of the variation in SSD. Our results suggested that only males follow the Bergmann's rule and variation in SSD of R. kukunoris do not support the Rensch's rule and its inverse. Therefore, the variations of body size can be different between sexes and the applicability of both Bergmann's rule and Rensch's rule should depend on species and environment where they live.  相似文献   

7.
Photosynthesis was compared in three altitudinal populations of Espeletia schultzii: 3,100, 3,550 and 4,200 masl. The measured parameters were Rubisco activity (EC 4.1.139), chlorophyll, soluble protein and soluble sugars contents, and specific leaf area (SLA). The 4,200 m population had a higher Rubisco activity (at 4 degrees C) followed by those at 3,550 m and 3,100 m. There were no significant differences between populations at 3,100 m and 3,550 m (ANOVA), but their activities were different from those of the 4,200 m population. Chlorophyll a content decreased slightly with elevation, while chlorophyll b was constant; therefore, the Ra/b ratio decreased with elevation, but not significantly. The leaf soluble sugars content increased along the altitudinal gradient. Leaf protein content did not differ. The SLA decreased with altitude. The increase in Rubisco activity might reflect higher enzyme activation and not higher enzyme protein. The increase in soluble sugars is probably associated to Rubisco activity. Three out of the five measured parameters revealed differences with altitude, suggesting a compromise between a higher metabolic activity and a smaller cellular volume.  相似文献   

8.
Bacterioplankton community diversity was investigated in the subtropical Brisbane River-Moreton Bay estuary, Australia (27°25′S, 153°5′E). Bacterial communities were studied using automated rRNA intergenic spacer analysis (ARISA), which amplifies 16S-23S ribosomal DNA internally transcribed spacer regions from mixed-community DNA and detects the separated products on a fragment analyzer. Samples were collected from eight sites throughout the estuary and east to the East Australian Current (Coral Sea). Bacterioplankton communities had the highest operational taxonomic unit (OTU) richness, as measured by ARISA at eastern bay stations (S [total richness] = 84 to 85 OTU) and the lowest richness in the Coral Sea (S = 39 to 59 OTU). Richness correlated positively with bacterial abundance; however, there were no strong correlations between diversity and salinity, NO3 and PO43− concentrations, or chlorophyll a concentration. Bacterioplankton communities at the riverine stations were different from communities in the bay or Coral Sea. The main differences in OTU richness between stations were in taxa that each represented 0.1% (the detection limit) to 0.5% of the total amplified DNA, i.e., the “tail” of the distribution. We found that some bacterioplankton taxa are specific to distinct environments while others have a ubiquitous distribution from river to sea. Bacterioplankton richness and diversity patterns in the estuary are potentially a consequence of greater niche availability, mixing of local and adjacent environment communities, or intermediate disturbance. Furthermore, these results contrast with previous reports of spatially homogeneous bacterioplankton communities in other coastal waters.  相似文献   

9.
Stream water dissolved organic carbon (DOC) correlates positively with soil organic carbon (SOC) in many biomes. Does this relationship hold in a small geographic region when variations of temperature, precipitation and vegetation are driven by a significant altitudinal gradient? We examined the spatial connectivity between concentrations of DOC in headwater stream and contents of riparian SOC and water-soluble soil organic carbon (WSOC), riparian soil C:N ratio, and temperature in four vegetation types along an altitudinal gradient in the Wuyi Mountains, China. Our analyses showed that annual mean concentrations of headwater stream DOC were lower in alpine meadow (AM) than in subtropical evergreen broadleaf forest (EBF), coniferous forest (CF), and subalpine dwarf forest (SDF). Headwater stream DOC concentrations were negatively correlated with riparian SOC as well as WSOC contents, and were unrelated to riparian soil C:N ratio. Our findings suggest that DOC concentrations in headwater streams are affected by different factors at regional and local scales. The dilution effect of higher precipitation and adsorption of soil DOC to higher soil clay plus silt content at higher elevation may play an important role in causing lower DOC concentrations in AM stream of the Wuyi Mountains. Our results suggest that upscaling and downscaling of the drivers of DOC export from forested watersheds when exploring the response of carbon flux to climatic change or other drivers must done with caution.  相似文献   

10.
The morphological differentiation and taxonomic treatment of lowland and high-mountain morphotypes within the Solidago virgaurea group are controversial. To clarify the taxonomic status of these taxa, we conducted a morphometric analysis of 1,746 individuals from 80 localities along an altitudinal gradient from the lowlands of northern Poland to the Carpathians and Sudetes of southern Poland. Multivariate morphometric analyses, cluster analyses and principal component analyses, were used to examine the morphological differentiation within the S. virgaurea group in Poland. Canonical discriminant analysis was applied to determine the morphological characters that best discriminate among the taxa. The stability of the high-mountain Solidago minuta morphotype was tested in an experimental field established in lowland Poland; individuals transplanted from various mountain sites were cultivated at this site, and the morphotypes remained stable in terms of their floral and vegetative characters. Multivariate analyses revealed two morphologically distinct taxa in the S. virgaurea group, which correspond to lowland S. virgaurea s. str. and high-mountain S. minuta as recognised in some European floras. The most important morphological characters for distinguishing the taxa are the number of tubular florets per capitulum, inner involucral bract width and involucre height. Vegetative and inflorescence characters appear to have less taxonomic value because they changed continuously with altitude. A key for identifying S. virgaurea and S. minuta in Poland is presented.  相似文献   

11.
ent-Kaurenic acid and many natural derivatives of this diterpene are known to have interesting biological properties. ent-15-Oxo-kaur-16-en-19-oic acid can be easily obtained from grandiflorolic acid which was first isolated from Espeletia grandiflora. The present work describes the proapoptotic effect of ent-15-oxo-kaur-16-en-19-oic acid on the human prostate carcinoma epithelial cell line PC-3 as evidenced by the changes in the expression level of proteins associated with the execution and regulation of apoptosis. Cell viability was affected upon exposure to the compound, the IC(50) were determined as 3.7 microg/ml, which is 4 times lower than that corresponding to a primary cell culture of fibroblasts (14.8 microg/mL). Through Western blot analysis, active forms of caspace-3 associated with the specific proteolysis of Poly(ADP-ribose) polymerase (PARP) were detected. Reduced levels of the antiapoptotic protein Bcl-2, as well as the appearance of internucleosomal DNA fragmentation, were also demonstrated. Thus, ent-15-oxo-kaur-16-en-19-oic acid may be a promising lead compound for new chemopreventive strategies, alone or in combination with traditional chemotherapy agents to overcome drug resistance in tumoral cells.  相似文献   

12.
Species richness describes the number of species of a given taxon in a given time and space. The energy limitation hypothesis links the species richness of consumer taxa to net primary productivity (NPP) through two relationships: NPP limits a taxon's density, and taxon density limits species richness. We study both relationships with a survey of 15 ground ant assemblages, along a productivity gradient from deserts to rain forests. Ant density (colonies m-2) was a positive, decelerating function of net aboveground productivity (NAP). A stepwise regression suggests that the efficiency with which NAP is converted to ant colonies increases with maximum summer temperature and decreases with precipitation. Ant species richness was a positive decelerating function of density at three spatial scales. This supports the energy limitation hypothesis' assumption that average population densities are higher in environments that are more productive. These two nonlinear functions (NAP-density and density-species richness) combine to create, at a variety of scales, positive, decelerating, productivity-diversity curves for a common, ecologically dominant taxon across the terrestrial productivity gradient. However, variance in the density and diversity explained by NAP decreases with scale, suggesting that energy limitation of diversity predominates at small spatial scales (<1 ha).  相似文献   

13.
常绿阔叶林是福建梅花山国家级自然保护区地带性植被。采用样带与典型群落调查法对区内的常绿阔叶林14400m2样地展开调查,并对植物多样性海拔梯度格局进行分析,结果表明:(1) 群落植物物种丰富度、Gleason丰富度指数、Simpson指数、Shannon Wiener指数和Pielou均匀度指数的均值分别为64.42、10.75、5.75、3.50、0.58,且这5种指数在各样带间差异极为显著,并随海拔的升高均呈单峰曲线变化,峰值出现在海拔700m~900m。(2) 群落各层次的植物物种丰富度、Shannon Wiener指数均呈现灌木层(包括幼树和层间植物)〉乔木层〉草本层的特征。乔木、灌木层物种丰富度与乔木层Shannon Wiener指数在海拔梯度上的样带间差异极显著,变化趋势与群落相似;灌木层与草本层Shannon Wiener指数以及草本层物种丰富度随海拔梯度变化不明显。因此,梅花山自然保护区常绿阔叶林植物物种多样性的海拔梯度格局呈现单峰分布,并支持中间高度膨胀模式(mid domain model)。  相似文献   

14.
In the state of Veracruz, Mexico, fruits from 38 sites at various altitudes were collected monthly over a period of 2 years, and the tephritid fruit flies of the genus Anastrepha and associated parasitoids that emerged from these fruits were identified and counted. Of the 26 species of fruits that contained Anastrepha larvae, 18 species also contained a total of 10 species of Anastrepha parasitoids. These consisted of 4 native and 1 exotic species of opiine braconid larval–pupal parasitoids, 2 native species of eucoilid larval–pupal parasitoids, 1 exotic species of eulophid larval–pupal parasitoid, 1 exotic species of pteromalid pupal parasitoid, and 1 native species of diapriid pupal parasitoid. Overall parasitism (including flies from fruit species that bore no parasitoids) was 6% and was greatest, 16%, at 600–800 m in altitude. The relative contributions of individual parasitoid species to overall parasitism were frequently influenced by both the altitude (and correlated changes in temperature and precipitation) and the species of plant in which the Anastrepha larvae were found. This was particularly the case among the more abundant and widespread Braconidae. To distinguish the role of altitude from that of the distributions of the host plants, these braconids were examined in 4 individual species of fruit that grew over a broad range of altitudes. In guava (Psidium guajava L.) and “jobo” (Spondias mombin L.) the parasitoid Doryctobracon areolatus (Szepligeti) was relatively more common at low altitudes. Its congener, Doryctobracon crawfordi (Viereck), was relatively more abundant at high altitudes in sour orange (Citrus aurantium L.). Utetes anastrephae (Viereck) became relatively more common at higher altitudes in S. mombin, whereas Diachasmimorpha longicaudata (Ashmead) tended to become relatively rare at the highest altitudes in C. aurantium, but increased at high altitudes in P. guajava compared to other braconids. Different altitudinal patterns of abundance in different fruits suggests the importance of both biotic and abiotic factors in parasitoid distributions. We discuss the effect of an expanding agricultural frontier on parasitoid abundance and relate our findings to the design of a fruit fly biological control program that tailors mass releases to parasitoid climate preferences.  相似文献   

15.
根据西藏地衣分类和区系的文献资料,对西藏地衣物种多样性的海拔梯度进行了分析。267个分类群按照生长型或者基物被分为六组。每一组地衣的物种丰度随海拔增加呈现单峰曲线形式的变化。多数组物种丰度的峰值出现在海拔3400~3900m之间,对应于山地寒温带针叶林带的上半部分,比尼泊尔对应类群出现极值的海拔要高。此植物带谱内复杂的生态系统可能是物种多样性高的主要原因。壳状地衣物种丰度的峰值出现在5100~5400m区间则可能是因为该区内高大的树木的消失以及具有充裕的阳光。西藏的地衣物种多样性远低于尼泊尔,两地共有的物种数量很少。对西藏地衣物种多样性的调查不充分应当是其主要原因,因此今后中国地衣学工作者应当加强西藏地衣多样性的研究。  相似文献   

16.
Niche complementarity in resource use has been proposed as a key mechanism to explain the positive effects of increasing plant species richness on ecosystem processes, in particular on primary productivity. Since hardly any information is available for niche complementarity in water use, we tested the effects of plant diversity on spatial and temporal complementarity in water uptake in experimental grasslands by using stable water isotopes. We hypothesized that water uptake from deeper soil depths increases in more diverse compared to low diverse plant species mixtures. We labeled soil water in 8 cm (with 18O) and 28 cm depth (with ²H) three times during the 2011 growing season in 40 temperate grassland communities of varying species richness (2, 4, 8 and 16 species) and functional group number and composition (legumes, grasses, tall herbs, small herbs). Stable isotope analyses of xylem and soil water allowed identifying the preferential depth of water uptake. Higher enrichment in 18O of xylem water than in ²H suggested that the main water uptake was in the upper soil layer. Furthermore, our results revealed no differences in root water uptake among communities with different species richness, different number of functional groups or with time. Thus, our results do not support the hypothesis of increased complementarity in water use in more diverse than in less diverse communities of temperate grassland species.  相似文献   

17.
The accumulation of cadmium, copper and zinc and the induction of metallothioneins (MT) in liver of three freshwater fish species was studied. Gudgeon (Gobio gobio), roach (Rutilus rutilus) and perch (Perca fluviatilis) were captured at 6 sampling sites along a cadmium and zinc gradient and one reference site in a tributary of the Scheldt River in Flanders (Belgium).At each site up to 10 individuals per species were collected and analyzed on their general condition factor (K), hepatosomatic index (HSI) and gonadosomatic index (GSI). From each individual fish the liver was dissected and analyzed on Cd, Cu and Zn and MT-content. Although not all species were present at each site, hepatic Cd and Zn levels generally followed the pollution gradient and highest levels were measured in perch, followed by roach and gudgeon. Nevertheless also an effect of site was observed on this order. MT-levels appeared to be the highest in gudgeon although differences with the other species were not very pronounced and depended on the site. Significant relationships were found between hepatic zinc accumulation and MT levels. For each species the ratio MTtheoretical/ MTmeasured was calculated, which gives an indication of the relative capacity to induce MTs and thus immobilize the metals. Perch had the lowest capacity in inducing MTs (highest ratio). Relationships between hepatic metal levels and fish condition indices were absent or very weak.  相似文献   

18.
A central challenge in ecology and biogeography is to determine the extent to which physiological constraints govern the geographic ranges of species along environmental gradients. This study tests the hypothesis that temperature and desiccation tolerance are associated with the elevational ranges of 12 ground beetle species (genus Nebria) occurring on Mt. Rainier, Washington, U.S.A. Species from higher elevations did not have greater cold tolerance limits than lower-elevation species (all species ranged from -3.5 to -4.1°C), despite a steep decline in minimum temperature with elevation. Although heat tolerance limits varied among species (from 32.0 to 37.0°C), this variation was not generally associated with the relative elevational range of a species. Temperature gradients and acute thermal tolerance do not support the hypothesis that physiological constraints drive species turnover with elevation. Measurements of intraspecific variation in thermal tolerance limits were not significant for individuals taken at different elevations on Mt. Rainier, or from other mountains in Washington and Oregon. Desiccation resistance was also not associated with a species’ elevational distribution. Our combined results contrast with previously-detected latitudinal gradients in acute physiological limits among insects and suggest that other processes such as chronic thermal stress or biotic interactions might be more important in constraining elevational distributions in this system.  相似文献   

19.
20.
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号