首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TNF-related apoptosis-inducing ligand (TRAIL, also called Apo2L), a novel member of TNF superfamily, induces apoptosis in transformed cell lines of diverse origin. TRAIL is expressed in most of the cells, and the expression is up-regulated in activated T cells. Four receptors for TRAIL have been identified, and there is complex interplay between TRAIL and TRAIL receptors in vivo. The actual biological function of TRAIL/TRAIL receptor is still not clear. Growing evidence has demonstrated that members of TNF superfamily transduce signals after engagement with their receptors. Cross-linking of TRAIL by plate-bound rTRAIL receptor, death receptor 4-Fc fusion protein enhanced T cell proliferation and increased IFN-gamma production in conjunction with immobilized suboptimal anti-CD3 stimulation in mouse splenocytes. The increase of T cell proliferation by death receptor 4-Fc was dose dependent, and this effect could be blocked by soluble rTRAIL proteins, indicating the occurrence of reverse signaling through TRAIL on T cell. The enhanced secretion of IFN-gamma mediated via TRAIL could be blocked by SB203580, a p38 mitogen-activated protein kinase-specific inhibitor. Thus, in addition to its role in inducing apoptosis by binding to the death receptors, TRAIL itself can enhance T cell proliferation after TCR engagement and signal the augmentation of IFN-gamma secretion via a p38-dependent pathway. This provides another example of reverse signaling by a member of TNF superfamily. In conclusion, our data suggest that TRAIL can itself transduce a reverse signal, and this may shed light on the biological function of TRAIL.  相似文献   

2.
Dependence receptors form a family of functionally related receptors which are all able to induce two completely opposite intracellular signals depending on the availability of their ligand. Indeed, in its presence, they mediate a positive, classical signal transduction of survival, differentiation or migration but without it, they trigger a negative signal which leads to cell death. The molecular mechanisms involved in triggering cell death in the absence of ligand are starting to be unravelled: dependence receptors are recruited at well-defined domains at the plasma membrane, they trigger cell death through a monomeric form, they are cleaved by caspases and they recruit a caspase activating complex.  相似文献   

3.
Recent studies have led a different view about membrane receptors. While a receptor used to be considered as inactive until bound by its ligand, it has been proposed that some receptors may also be active in the absence of their ligand. These so-called dependence receptors induce a specific death signal when the ligand is absent from the cell. Therefore, the expression of one of these receptors drives the cell to become dependent on the presence of the ligand for its survival. We have hypothesized that this mechanism allows inhibition of tumor growth, by inducing apoptosis of "abnormal" cells that would usually grow when ligand are unavailable--i.e., during local growth of tumor cells or growth beyond primary tumor site -. Along this line, back in the early 90s, Vogelstein and colleagues suggested that a gene called DCC (for "deleted in colorectal cancer") could be a tumor suppressor gene because it was found to be deleted in more than 70 % of colorectal cancers, as well as in many other cancers. During the last fifteen years, controversial data have failed to firmly establish whether DCC is indeed a tumor suppressor gene. However, our observation that DCC behaves as a dependence receptor that induces cell death unless its ligand netrin-1 is present, together with the fact that mice engineered to block DCC-induced cell death by overexpressing netrin-1 are predisposed to develop colorectal tumors, strengthen the role of dependence receptors as tumor suppressors. In this review, we will describe the implication of the netrin-1/receptor pairs as novel negative regulators of tumor development.  相似文献   

4.
A cell-death signaling system has been described recently that involves the ligand TRAIL and corresponding TRAIL-specific cell-surface receptors. These include two receptors able to transduce a death signal and, as a previously unsuspected control mechanism, two other receptors able to prevent this transduction.  相似文献   

5.
Netrins are secreted proteins that play a crucial role in neuronal migration and in axon guidance during the development of the nervous system. Netrin-1 has been shown to interact with the transmembrane receptors DCC and UNC5H and these receptors appeared of key importance in mediating the chemotropic activity of netrin-1. Before the discovery of DCC as a netrin-1 receptor, the gene encoding DCC was proposed as a putative tumor suppressor gene because one DCC allele was deleted in roughly 70% of colorectal cancers and its expression was often reduced or absent in colorectal cancer tissues. A putative explanation for such dual roles has recently emerged with the observation that DCC belongs to the growing family of dependence receptors. Such receptors share the property of inducing apoptosis in the absence of ligand, hence creating a cellular state of dependence on the ligand. The other netrin-1 receptors UNC5H were also subsequently proposed to be dependence receptors, suggesting that netrin-1 may not only be a chemotropic factor for neurons but also a survival factor. We describe here netrin-1 and its receptors, together with the molecular signaling pathways initiated upon netrin-1 binding or upon netrin-1 withdrawal leading respectively to axonal/neuronal guidance or cell death induction. We then conclude to the possible roles of DCC and UNC5H pro-apoptotic activities in both nervous system development and tumorigenesis.  相似文献   

6.
Extracellular signals are transmitted to cells through two classes of cell-surface receptors: signaling receptors that directly transduce signals and signaling co-receptors that bind ligand but that, traditionally, have not been thought to signal directly. Signaling co-receptors modulate the ligand binding and signaling of their respective signaling receptors. In recent years, roles for co-receptors have expanded to include essential functions in morphogen gradient formation, localizing signaling, signaling independently, regulating cell adhesion and orchestrating the signaling of several pathways. The importance of signaling co-receptors is demonstrated by their ubiquitous expression, their conservation during evolution, their prominent role in signaling cascades, their indispensable role during development and their frequent mutation or altered expression in human disease.  相似文献   

7.
Cytokine receptors and signal transduction.   总被引:16,自引:0,他引:16  
T Taga  T Kishimoto 《FASEB journal》1992,6(15):3387-3396
Most of the recently cloned cytokine receptors that operate in the immune and hematopoietic systems contain no tyrosine kinase domains in their cytoplasmic regions, unlike the family of growth factor receptors defined earlier. However, they can be assigned to several new types of receptor families based on structural similarities among them. It is characteristic of these receptors that many of them require a receptor-associated molecule in order to achieve high-affinity ligand binding and/or transmission of cytoplasmic signals. Receptor-associated molecules have been found that transduce cytoplasmic signals and are shared by different cytokine receptors. Phosphorylation of the receptors and of various cytoplasmic proteins after ligand stimulation seems to be a common event in cytokine systems. Insight into the pleiotropic and redundant nature of cytokine action is provided by the discovery of several new cytokine receptor families and of shared signal transduction molecules and by the idea that several cytoplasmic kinases may be able to functionally substitute for one another in transmitting cytokine signals.  相似文献   

8.
In the absence of their cognate ligand, dependence receptors trigger programmed cell death. This function is the defining feature of dependence receptors, which include members of several different protein families. The integrins are a family of heterodimeric receptors for extracellular matrix (ECM) proteins, mediating cell anchorage and migration. Integrins share characteristics with dependence receptors, and integrin binding to substrate ECM ligands is essential for cell survival. Although integrins do not conform in all characteristics to the established definitions of dependence receptors, alterations in the expression of integrins and their ligands during physiological and pathological events, such as wound healing, angiogenesis and tumorigenesis, do regulate cell fate in a ligand-dependent manner. This biosensory function of integrins fits well with our current concept of dependence receptor action, and thus integrins may rightly be considered to comprise a distinct subclass of dependence receptor.  相似文献   

9.
Eph receptors have been implicated in regulating a diverse array of cellular functions in the developing nervous system. Recently, Eph receptors have been shown to promote cell death in adult germinal zones; however, their mechanisms of action remain ill-defined. In this study, we demonstrate that EphA4 is a new member of the dependence receptors family, which can initiate cell death in the absence of its ligand ephrinB3. Upon removal of its ligand, EphA4 triggers cell death that is dependent on caspase activation as caspase inhibitors prevent cell death. EphA4 itself is cleaved by caspase-3-like caspase in the intracellular domain at position D773/774, which is necessary for cell death initiation as mutation of the cleavage site abolishes apoptosis. In the adult subventricular zone, abolishing ephrinB3 results in increased cell death, while the absence of EphA4 results in excessive numbers of neuroblasts. Furthermore, infusion of soluble ephrinB3 into the lateral ventricle reduced cell death, and together these results support a dependence role for EphA4 in adult neurogenesis.  相似文献   

10.
11.
Tumor necrosis factor (TNF) is the prototypic member of the TNF ligand family and has a key role in the regulation of inflammatory processes. TNF exerts its functions by interaction with the death domain-containing TNF-receptor 1 (TNF-R1) and the non-death domain-containing TNF-receptor 2 (TNF-R2), both members of a receptor family complementary to the TNF ligand family. Due to the prototypic features of the TNF receptors and their importance for the regulation of inflammation, the signal transduction mechanisms utilized by these receptors have been extensively studied. Several proteins that interact directly or indirectly with the cytoplasmic domains of TNF-R1 and TNF-R2 have been identified in the recent years giving ideas how these receptors are connected to the apoptotic pathway and the signaling cascades leading to activation of NF-kappaB and JNK. Of special interest are TNF receptor-associated factor (TRAF) 1 and 2, which defines a novel group of adaptor proteins involved in signal transduction by most members of the TNF receptor family, of IL-1 receptor and IL-17 receptor as well as some members of the TOLL-like receptor family. TRAF 2 is currently the best-characterized TRAF family member, having a key role in mediating TNF-R1-induced activation of NF-kappaB and JNK. Moreover, recent studies suggest that TRAF 2 represents an integration point for pro- and antiapoptotic signals. This review focuses on the molecular mechanisms that underlay signal initiation by TNF-R1 and TNF-R2, with particular consideration of the role of TRAF 2, and highlights the importance of this molecule for the integration of such antagonizing pathways as death induction and NF-kappaB-mediated surviving signals.  相似文献   

12.
Heterotrimeric G proteins (Gα, Gβ/Gγ subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane α-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Gα subunit. This leads to the dissociation of Gβ/Gγ dimer from Gα. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Gα-GTP is hydrolyzed to GDP and Gα becomes inactive (Gα-GDP), which leads to its re-association with the Gβ/Gγ dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role.Key words: heterotrimeric G proteins, GPCRs, seven-transmembrane receptors, signal transduction, stress signaling  相似文献   

13.
Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins.  相似文献   

14.
Programmed cell death signaling is a critical feature of development, cellular turnover, oncogenesis, and neurodegeneration, among other processes. Such signaling may be transduced via specific receptors, either following ligand binding-to death receptors-or following the withdrawal of trophic ligands-from dependence receptors. Although dependence receptors display functional similarities, no common structural domains have been identified. Therefore, we employed the Multiple Expectation Maximization for Motif Elicitation and the Motif Alignment and Search Tool software programs to identify a novel transmembrane motif, dubbed dependence-associated receptor transmembrane (DART) motif, that is common to all described dependence receptors. Of 3,465 human transmembrane proteins, 25 (0.7%) display the DART motif. The predicted secondary structure features an alpha helical structure, with an unusually high percentage of valine residues. At least four of the proteins undergo regulated intramembrane proteolysis. To date, we have not identified a function for this putative domain. We speculate that the DART motif may be involved in protein processing, interaction with other proteins or lipids, or homomultimerization.  相似文献   

15.
Cells depend on specific stimuli, such as trophic factors, for survival and in the absence of such stimuli, undergo apoptosis. How do cells initiate apoptosis in response to the withdrawal of trophic factors or other dependent stimuli? Recent studies of apoptosis induction by neurotrophin withdrawal argue for a novel form of pro-apoptotic signal transduction - 'negative signal transduction' - in which the absence of ligand-receptor interaction induces cell death. We have found that the prototype for this form of signaling - the common neurotrophin receptor, p75NTR - creates a state of cellular dependence (or addiction) on neurotrophins, and that this effect requires an 'addiction/dependence domain' (ADD) in the intracytoplasmic region of p75NTR. We have recently found other receptors that include dependence domains, arguing that dependence receptors, and their associated dependence domains, may be involved in a rather general mechanism to create cellular states of dependence on trophic factors, cytokines, adhesion, electrical activity and other dependent stimuli.  相似文献   

16.
Targeted cancer therapy concepts often aim at the induction of adjuvant antitumor immunity or stimulation of tumor cell apoptosis. There is further evidence that combined application of immune stimulating and tumor apoptosis-inducing compounds elicits a synergistic antitumor effect. Here, we describe the development and characterization of bifunctional fusion proteins consisting of a single-chain variable fragment (scFv) domain derived from the CD40-specific monoclonal antibody G28-5 that is fused to the N-terminus of stabilized trimeric soluble variants of the death ligand TNF-related apoptosis-inducing ligand (TRAIL). As shown before by us and others for other cell surface antigen-targeted scFv-TRAIL fusion proteins, scFv:G28-TRAIL displayed an enhanced capacity to induce apoptosis upon CD40 binding. Studies with scFv:G28 fusion proteins of TRAIL mutants that discriminate between the two TRAIL death receptors, TRAILR1 and TRAILR2, further revealed that the CD40 binding-dependent mode of apoptosis induction of scFv:G28-TRAIL is operable with each of the two TRAIL death receptors. Binding of scFv:G28-TRAIL fusion proteins to CD40 not only result in enhanced TRAIL death receptor signaling but also in activation of the targeted CD40 molecule. In accordance with the latter, the scFv:G28-TRAIL fusion proteins triggered strong CD40-mediated maturation of dendritic cells. The CD40-targeted TRAIL fusion proteins described in this study therefore represent a novel type of bifunctional fusion proteins that couple stimulation of antigen presenting cells and apoptosis induction.  相似文献   

17.
Cytokines are important regulators of hemopoiesis which exert their actions by binding to specific, high affinity, cell surface receptors. In the past several years, molecular cloning of these receptors has revealed a new superfamily referred to as the hemopoietic growth factor receptors. Members of this family are defined by a 200 amino acid conserved domain; however, it has become increasingly apparent that another characteristic of these receptors is the shared usage of a common signalling subunit among subgroups in this family. The shared signalling component explains the functional redundancy of many cytokines; however, the mechanism by which these receptors transduce a signal across the membrane is not yet clear. Studies into cytokine action have shown that many of the events that occur in response to ligand stimulation are similar to those observed for the better characterized intrinsic tyrosine kinase receptors. Thus, although the cytokine receptors do not possess intrinsic tyrosine kinase activity, these observations have led to a model of cytokine signal transduction adapted from the signalling mechanisms described for the tyrosine kinase receptors.  相似文献   

18.
Bone morphogenetic proteins (BMPs) act as growth regulators and inducers of differentiation. They transduce their signal via three different type I receptors, termed activin receptor-like kinase 2 (Alk2), Alk3, or bone morphogenetic protein receptor Ia (BMPRIa) and Alk6 or BMPRIb. Little is known about functional differences between the three type I receptors. Here, we have investigated consequences of constitutively active (ca) and dominant negative (dn) type I receptor overexpression in adult-derived hippocampal progenitor cells (AHPs). The dn receptors have a nonfunctional intracellular but functional extracellular domain. They thus trap BMPs that are endogenously produced by AHPs. We found that effects obtained by overexpression of dnAlk2 and dnAlk6 were similar, suggesting similar ligand binding patterns for these receptors. Thus, cell survival was decreased, glial fibrillary acidic protein (GFAP) expression was reduced, whereas the number of oligodendrocytes increased. No effect on neuronal differentiation was seen. Whereas the expression of Alk2 and Alk3 mRNA remained unchanged, the Alk6 mRNA was induced after impaired BMP signaling. After dnAlk3 overexpression, cell survival and astroglial differentiation increased in parallel to augmented Alk6 receptor signaling. We conclude that endogenous BMPs mediate cell survival, astroglial differentiation and the suppression of oligodendrocytic cell fate mainly via the Alk6 receptor in AHP culture.  相似文献   

19.
Prostate cancer starts as androgen-dependent malignancy and responds initially to androgen ablative therapy. Beneficial effects of androgen ablation, however, are often temporary and the cancer reappears as androgen-independent tumor, suggesting the existence of additional factors responsible for progression of the disease. Attention has focused on receptor tyrosine kinases as the growth mediators of androgen-independent prostate cancer; overexpression of epidermal growth factor receptors or their ligand heparin-bound epidermal growth factor, for example, promotes transition to androgen independence. Emerging data demonstrate involvement of another class of cell membrane-anchored receptors, the heterotrimeric guanine-binding (G) protein-coupled receptors (GPCRs) in prostate cancer. In vitro, stimulation of many endogenous GPCRs induces mitogenic signaling and growth of prostate cancer cells. The GPCRs transduce mitogenic signals via activated G proteins in the form of Galpha-GTP and Gbetagamma subunits. Here, we show that expression of a Gbetagamma inhibitor peptide derived from carboxy terminus of G protein-coupled receptor kinase 2 obliterates serum-regulated prostate cancer cell growth in vitro and prevents prostate tumor formation in vivo. We also demonstrate that inhibition of Gbetagamma signaling retards growth of existing prostate tumors by inducing cell death. These data establish a central role for heterotrimeric G proteins in prostate cancer and suggest targeted inhibition of Gbetagamma signaling may serve as specific molecular therapy tool to limit pathologic growth of advanced prostate cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号