首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a protein-free diet and starvation on the duration of the rat ileal crypt cell cycle time was studied by Quastler's technique of labeled mitoses. Rats were fed a protein-free diet for 3, 7, or 11 wk or were starved for 7 or 10 days. Progressive protein depletion resulted in a progressive lengthening of the cycle time (GT), due primarily to a lengthening of the synthetic phase (S) of the cycle. The presynthetic gap (G1) was the same as the control value after 3 wk and lower, but not significantly so, due to the large variability, after 11 wk. The duration of the postsynthetic gap (G2) plus mitotic phase (M) was not affected by the diet. As the dietary stress became more severe, the cell cycle also became more variable. Although the GT of rats starved for as long as 10 days was only slightly different from the control, the relative duration of the components of the cycle changed significantly. S and G2 were longer in the starved animals while G1 was of shorter duration.  相似文献   

2.
Neonatal administration of guanethidine-sulfate results in an alteration of the cell proliferative pattern of the small intestinal epithelium of the young adult rat. Sympathectomy with guanethidine has previously been shown to depress mitotic, labelling, and total cellular migration indices while increasing the generation cycle time (TC) of small intestinal crypt cells as measured by a stathmokinetic method. The present study showed that the G1, S and G2 phases of the crypt cell cycle are altered by sympathectomy, G1 accounting for most of the increase in TC. In addition, the percentage of [3H]-thymidine labelled crypt cells is reduced and the duration of crypt cell transit is lengthened by guanethidine-induced sympathectomy.  相似文献   

3.
Near-ultraviolet and visible radiations increased the duration of the mitotic cycle in excised pea root meristems primarily by lengthening the duration of the pre-DNA synthetic period (G1). All radiations tested shortened the duration of the post-DNA synthetic period (G2). The most pronounced effects were exhibited by green radiation, which lengthened the duration of the cell cycle, G1, DNA synthesis (S), and mitosis (M), and shortened the duration of G2. Progression of cells arrested by starvation in G1 and G2 into DNA synthesis and mitosis was also affected by light treatments. Green radiation appeared to arrest a group of cells in DNA synthesis as well as in G1 and G2. Meristems receiving green and near-ultraviolet radiations exhibited the most rapid progression of G1 cells through S and G2.  相似文献   

4.
The action of tubulosine on the mitotic cycle was studied using continuous labelling with tritiated thymidine. This alkaloid provokes a lengthening of the G1 and S phases and a blocking of G2 is totally reversible when the treatment is followed by recovery in normal medium. At a dose of tubulosine which induces a reversible mitostasis in the shortest possible time the lengthening of the phases of the cell cycle was estimated by three different techniques: labelled mitoses for the determination of G2; labelling intensity for the determination of S; binucleate cells for the determination of T, and an original technique using labelling index of binucleate cells for the determination of G1. The limits of the technique of labelled mitosis together with the interest of the technique aiming at the direct determination of G1 in the case of a perturbed cycle are then discussed.  相似文献   

5.
Evidence is presented to show dietary iron to be a major co-factor in the colonic hyperplasia observed following fasting and refeeding. the iron component serves to remove a fasting induced colonic G1 cycle block and produce the resultant synchronous progression of cells through the cycle. Deleting iion from the refed diet results in no colonic hyperplasia and/or synchronous progression of cells. the results are discussed from the viewpoint of colonic steady state cell renewal and as a possible tool for the study of in vivo steady state cell renewal.  相似文献   

6.
CELLULAR AND NUCLEAR VOLUME DURING THE CELL CYCLE OF NHIK 3025 CELLS   总被引:7,自引:0,他引:7  
The distribution of cellular and nuclear volume in synchronous populations of NHIK 3025 cells, which derive from a cervix carcinoma, have been measured by electronic sizing during the first cell cycle after mitotic selection. Cells given an X-ray dose of 580 rad in G1, were also studied. During the entire cell cycle the volume distribution of both cells and nuclei is an approximately Gaussian peak with a relative width at half maximum of about 30%. About half of this width is due to imperfect synchrony whereas the rest is associated with various time invariant factors. During S the mean volume of the cells grows exponentially whereas the nuclear volume increases faster than for exponential kinetics. Hence, although cellular and nuclear volumes are closely correlated, their ratio does not remain constant during the cell cycle. Volume growth during the first half of G1 is negligible especially for nuclei where the growth appears to be closely associated with DNA-synthesis. For unirradiated cells the growth of cellular and nuclear volume is negligible also during G2+ M. In contrast, the X-irradiated cells continue to grow during the 6 hr mitotic delay with a rate that is constant and about half of that observed in late S. Hence, radiation induced mitotic delay does not appear merely as a lengthening of an otherwise normal G2. During G1 and S the irradiated cells were identical to unirradiated ones with respect to all the parameters measured.  相似文献   

7.
Several responses of synchronized populations of HeLa S3 cells were measured after irradiation with 220 kev x-rays at selected times during the division cycle. (1) Survival (colony-forming ability) is maximal when cells are irradiated in the early post-mitotic (G1) and the pre-mitotic (G2) phases of the cycle, and minimal in the mitotic (M) and late G1 or early DNA synthetic (S) phases. (2) Markedly different growth patterns result from irradiation in different phases: (a) Prolongation of interphase (division delay) is minimal when cells are irradiated early in G1 and rises progressively through the remainder of the cycle. (b) Cells irradiated while in mitosis are not delayed in that division, but the succeeding division is delayed. (c) Persistence of cells as metabolizing entities does not depend on the phase of the division cycle in which they are irradiated. (3) Characteristic perturbations of the normal DNA synthetic cycle occur: (a) Cells irradiated in M suffer a small delay in the onset of S, a slight prolongation of S, and a slight depression in the rate of DNA synthesis; the major delay occurs in G2. (b) Cells irradiated in G1 show no delay in the onset of S, and essentially no alteration in the duration or rate of DNA synthesis; G2 delay is minimal. (c) Cells irradiated in S suffer an appreciable S prolongation and a decreased rate of DNA synthesis; G2 delay is shorter than S delay.  相似文献   

8.
Following provision of sucrose to starved, stationary phase pea root meristems, G1 and G2 cells enter DNA synthesis and mitosis, respectively. Puromycin (450 μg/ml) and cycloheximide (5 μg/ml) completely prevent this initiation of progression through the cell cycle. Actinomycin D (10 μg/ml) has no effect on the initial entry of G1 and G2 cells into S and mitosis, although later entry is prevented. The resistance of the cells to actinomycin D is lost slowly with time in medium without sucrose, suggesting that an RNA required for the resumption of proliferative activity is being gradually lost. The effects of the inhibitors on transitional and proliferative phase meristem cells indicate that such dividing cells do indeed have sufficient of the requisite RNA for 8-12 hr progression through the cycle, but that protein synthesis is required continuously. It is suggested that this RNA is the one lost slowly during starvation, allowing starved cells to reinitiate progression through the cycle in the presence of actinomycin D.  相似文献   

9.
Steady state crypt cell kinetics have been simulated using matrix algebra. The model crypt cell population is distributed through two proliferation compartments (P1 and P2) and a quiescent state (Q). Under steady state conditions half the daughter cells produced on completion of P1 enter G1 of P2 and half enter G1 of P1. Both P2 daughter cells enter Q. Cells in Q are non-dividing but retain the potential to divide. On completion of Q, cells lose the potential to divide and move up onto the villi. The model has been developed by simultaneously simulating the following biological data: (1) the per cent labeled mitosis (PML) curve, (2) the number of labeled cells per crypt as a function of time following an injection of 3H-thymidine, and (3) the total number of cells per crypt.  相似文献   

10.
The eukaryotic cell cycle is the repeated sequence of events that enable the division of a cell into two daughter cells. It is divided into four phases: G1, S, G2, and M. Passage through the cell cycle is strictly regulated by a molecular interaction network, which involves the periodic synthesis and destruction of cyclins that bind and activate cyclin-dependent kinases that are present in nonlimiting amounts. Cyclin-dependent kinase inhibitors contribute to cell cycle control. Budding yeast is an established model organism for cell cycle studies, and several mathematical models have been proposed for its cell cycle. An area of major relevance in cell cycle control is the G1 to S transition. In any given growth condition, it is characterized by the requirement of a specific, critical cell size, PS, to enter S phase. The molecular basis of this control is still under discussion. The authors report a mathematical model of the G1 to S network that newly takes into account nucleo/cytoplasmic localization, the role of the cyclin-dependent kinase Sic1 in facilitating nuclear import of its cognate Cdk1-Clb5, Whi5 control, and carbon source regulation of Sic1 and Sic1-containing complexes. The model was implemented by a set of ordinary differential equations that describe the temporal change of the concentration of the involved proteins and protein complexes. The model was tested by simulation in several genetic and nutritional setups and was found to be neatly consistent with experimental data. To estimate PS, the authors developed a hybrid model including a probabilistic component for firing of DNA replication origins. Sensitivity analysis of PS provides a novel relevant conclusion: PS is an emergent property of the G1 to S network that strongly depends on growth rate.  相似文献   

11.
Summary. Proliferating cells of Allium cepa L. roots became adapted to hypoxia (5% oxygen) and cold (10°C) by acquiring new steady-state kinetics of growth. The cell cycle time increased from the 17.6 h in control meristems up to 29.7 and 69.0 h under hypoxia and cold conditions, respectively. Acclimation of the proliferating cells was stress specific. No acclimation took place after 24 h of heat treatment (40°C). Under cold treatment, all cycle phases enlarged uniformly. However, under hypoxia, while the G1 and S cycle phases roughly doubled in their timing, the expected checkpoint-dependent lengthening of G2 did not take place. This failure in lengthening G2 in response to hypoxia correlated with a failure in the overinduction of a single peptide with a molecular mass of about 134 kDa which is among those recognised by an HSP90 antibody. Moreover, the presence of this large peptide of the HSP90 family proved to be a marker for cell proliferation. It was always absent from the contiguous differentiated cells of the root. Lastly, the mitochondrial chaperonin recognized by an HSP60 antibody in these roots not involved in photosynthesis was always higher in the proliferating than in the nonproliferating cells.  相似文献   

12.
Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.  相似文献   

13.
The activation of muscle-specific myosin synthesis and its relationship to withdrawal from the cell cycle have been examined in cycle-synchronized myoblasts under growth-restrictive, fusion-impermissive (low Ca2+) culture conditions. Under these conditions, embryonic quail skeletal myoblasts, collected in mitosis by mechanical shake-off, complete one normal cycle and arrest in G1. The presence of skeletal muscle myosin is first detected, by indirect immunofluorescence, 8 hr into this protracted G1. Within the next 10–11 hr the percentage myosin positive (Myo+) cells increases with good synchrony, reaching approximately 95%. Refeeding with a proliferation-stimulating, low Ca2+ medium when approximately 50% of the cells are Myo+ induces reentry into S. Applying a 15-min pulse with [3H]TdR immediately preceding fixation at regular intervals following refeeding, cells can be detected which are Myo+ and whose nuclei have incorporated [3H]TdR. The numbers of such doubly labeled cells are small but consistent with the fraction of cells in S (by time-lapse analysis) at the postfeeding times sampled. These cinematographic studies also indicate that progression to mitosis following stimulation occurs slowly and asynchronously. The kinetics of progression of the stimulated cells suggest that they reenter S from a different compartment in G1 than do log-phase myoblasts. We conclude that in fusion-blocked quail myocytes irreversible withdrawal from the cell cycle is neither an obligate precondition for, nor an immediate consequence of the activation of the muscle-specific contractile gene set.  相似文献   

14.
Taste signalling molecules are found in the gastrointestinal (GI) tract suggesting that they participate to chemosensing. We tested whether fasting and refeeding affect the expression of the taste signalling molecule, α‐transducin (Gαtran), throughout the pig GI tract and the peptide content of Gαtran cells. The highest density of Gαtran‐immunoreactive (IR) cells was in the pylorus, followed by the cardiac mucosa, duodenum, rectum, descending colon, jejunum, caecum, ascending colon and ileum. Most Gαtran‐IR cells contained chromogranin A. In the stomach, many Gαtran‐IR cells contained ghrelin, whereas in the upper small intestine many were gastrin/cholecystokinin‐IR and a few somatostatin‐IR. Gαtran‐IR and Gαgust‐IR colocalized in some cells. Fasting (24 h) resulted in a significant decrease in Gαtran‐IR cells in the cardiac mucosa (29.3 ± 0.8 versus 64.8 ± 1.3, < 0.05), pylorus (98.8 ± 1.7 versus 190.8 ± 1.9, < 0.0 l), caecum (8 ± 0.01 versus 15.5 ± 0.5, < 0.01), descending colon (17.8 ± 0.3 versus 23 ± 0.6, < 0.05) and rectum (15.3 ± 0.3 versus 27.5 ± 0.7, < 0.05). Refeeding restored the control level of Gαtran‐IR cells in the cardiac mucosa. In contrast, in the duodenum and jejunum, Gαtran‐IR cells were significantly reduced after refeeding, whereas Gαtran‐IR cells density in the ileum was not changed by fasting/refeeding. These findings provide further support to the concept that taste receptors contribute to luminal chemosensing in the GI tract and suggest they are involved in modulation of food intake and GI function induced by feeding and fasting.  相似文献   

15.
The regional variation of the duration of cell cycle parameters was studied by constructing fraction of labelled mitoses curves at several levels in the jejunal crypt column of male Wistar rats. Prolonged Tc and Ts values were apparent only in the bottom eight cell positions, and these differences were shown to be significant compared with the remaining cell positions by analysing the data by the method of Gilbert (1972). Above cell position 8 the proliferating crypt cells showed effectively the same phase durations. For the whole crypt column Tc was 11.32 ± 0.14 (SE) and Ts 6.49 ± 0.10. Although variation in phase durations was confined to the basal portion of the crypt, the results essentially confirm the findings of Cairnie, Lamerton & Steel (1965a), and may be interpreted in terms of the slow cut-off model. The demonstration of prolonged Tc values in basal cell positions confirms the presence of a longer cycling subpopulation of cells at the bottom of the crypt.  相似文献   

16.
Growth deceleration of an Ehrlich ascites tumor with increasing mass is associated with a prolongation of the cell cycle and a decline in the growth fraction. These effects are reversed upon transfer of cells from an older tumor into a new host. Studies were made to locate the stages at which a cell cycle could be suspended or resumed. Transplantation caused a prompt rise in both mitotic and flash H3TdR labeling indices. When all the cells in cycle including mitoses were prelabeled with H3TdR in older tumors, the fraction of labeled mitoses did not decline for a considerable period after transplantation into new hosts. This suggests that the early rise in mitoses is not due to a flow of resting (Go) cells from a G2 store (G2-Go transition). It appears rather to be a reflection of a lag of the mitotic process relative to other stages during the initial readjustment of the cycle. A prompt rise in flash H3TdR indices in the transplants suggested cell entry into S from either a suspended GI (G1-Go transition) or a suspended S (S-Go transition). These possibilities were examined by relating micro-spectrophotometric estimates of DNA to the cell cycle stage as revealed by H3TdR autoradiography. Since Go cells had DNA values corresponding to GI, it was concluded that decycling or recycling could occur only after mitosis and before DNA synthesis.  相似文献   

17.
The question of whether lymphocytes which have once been activated and have completed one or several cell cycle(s) can return to the G0 phase and stay ready for a new activation (G0-G1 transition), rather than simply die, was investigated. To do so interleukin 2 (IL-2) was removed from cultures of continuously proliferating human T lymphocytes and the formation of resting (G0) cells was measured. Kinetic analyses in freshly prepared peripheral blood lymphocytes (PBL) revealed that the onset of detectable RNA synthesis and the appearance of structures binding the anti-Tac antibody occurred simultaneously. This allowed the expansion of the definition of G0 T lymphocytes as cells having a low RNA (and DNA) content, and no Tac antigen. When cultured human T cells proliferating continuously by means of IL-2 were characterized in terms of their distribution in the cell cycle, 7 days after the initial PHA stimulation, it could be demonstrated that very few cells were in the G0 phase, supporting the concept of direct S/G2/M-G1 transition. However, when IL-2 was removed from the cultures, the [3H]thymidine incorporation per 104 cells and correspondingly the number of cells in the S/G2/M and G1 phases were reduced drastically and during the following 72-hr period, the number of G0 cells increased markedly. Restimulation of such in vitro formed G0 cells, under conditions permitting observation of their shift from the G0 to G0 phase, demonstrated that most cells could respond normally. Based on these observations, it was concluded that IL-2 not only ensures T-lymphocyte survival and proliferation, but IL-2 starvation induces many continuously proliferating T lymphocytes to stop cycling and to return to the G0 phase of the cell cycle where they remain functional.  相似文献   

18.
Preparative polyacrylamide gel electrophoresis was used to examine histone phosphorylation in synchronized Chinese hamster cells (line CHO). Results showed that histone f1 phosphorylation, absent in G1-arrested and early G1-traversing cells, commences 2 h before entry of traversing cells into the S phase. It is concluded that f1 phosphorylation is one of the earliest biochemical events associated with conversion of nonproliferating cells to proliferating cells occurring on old f1 before synthesis of new f1 during the S phase. Results also showed that f3 and a subfraction of f1 were rapidly phosphorylated only during the time when cells were crossing the G2/M boundary and traversing prophase. Since these phosphorylation events do not occur in G1, S, or G2 and are reduced greatly in metaphase, it is concluded that these two specific phosphorylation events are involved with condensation of interphase chromatin into mitotic chromosomes. This conclusion is supported by loss of prelabeled 32PO4 from those specific histone fractions during transition of metaphase cells into interphase G1 cells. A model of the relationship of histone phosphorylation to the cell cycle is presented which suggests involvement of f1 phosphorylation in chromatin structural changes associated with a continuous interphase "chromosome cycle" which culminates at mitosis with an f3 and f1 phosphorylation-mediated chromosome condensation.  相似文献   

19.
Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the-49 lymphoma variant (cyc?) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc? cells. DNA synthesis is inhibited 42% by dmPGA1 (50 μM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the α,β unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc? cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30–50 μm) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc? cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block. The S-49 cyc? cells are known to have a G1/S boundary through M phase transition time of 14.8 h, making the location of the prostaglandin cell cycle arrest at or very near the G1/S interface. The oncogenes, c-fos and c-myc which are normally expressed during G1 in proliferating cells have a 2–3 fold enhanced expression in prostaglandin G1 arrested cells. These data using the S-49 variants demonstrate that dmPGA1 inhibits DNA synthesis and arrests the cell cycle independent of cAMP-mediated effects. The prostaglandin arrested cells maintain the gene expression of a G1 synchronous cell which suggests a unique molecular mechanism for prostaglandin action in arresting cell growth. These properties indicate that this compound may be an effective tool to study molecular mechanisms of regulation of the cell cycle.  相似文献   

20.
The mechanism of action of the alkaloid vincristine (VCR) has been investigated in vitro on HeLa cells in culture and in vivo on jejunal crypt cells of the mouse. The in vitro experiments with HeLa cells show that VCR affects not only mitotic but also interphase cells. The VCR-affected cells first continue their passage through the cell cycle undisturbed but after reaching mitosis they are arrested in metaphase. This agrees well with the results obtained by Madoc-Jones & Mauro (1968) and Madoc-Jones (1973) on synchronized cell cultures. Until now there has been no investigation of the mechanism of action of VCR in vivo. This is due to the absence of a suitable technique for synchronization in vivo. The present study is based on a method which permits the assessment of the VCR sensitivity as a function of the cell age without synchronization in the usual sense. The jejunal crypt epithelium of the normal mouse was double labelled with 3H- and 14C-thymidine (TdR) in such a way as to produce a narrow subpopulation of crypt cells with a maximum age difference of 1 hr. On autoradiographs these cells can be distinguished by their characteristic labelling from other cells. As this ‘pseudo’-synchronized subpopulation passes through the cycle the effect of VCR can be studied, i.e. one can analyse the effect in well-defined time intervals of the cycle. The results show that the effect of VCR is the same in vivo as in vitro. The crypt cells which are affected by VCR in interphase continue their passage through the cycle, but upon entering mitosis they are arrested in metaphase. VCR has, at the concentration used in the present study, no effect on the duration of the S and G2 phases. The necrotic cells seen after VCR application are formed from arrested metaphases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号