首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Liu YY  Zhao HY  Zhao CL  Duan CL  Lu LL  Yang H 《生理学报》2006,58(5):421-428
帕金森病(Parkinson’s disease,PD)的发病机制涉及到遗传和环境因素。环境因素通过线粒休导致氧化应激和α-突触核蛋白(α—synuclein)聚集,但其确切的作用机制尚不明确。本文利用过表达α-突触核蛋白-增强型绿色荧光蛋白(enhanced green fluorescent protein.EGFP)的人多巴胺能神经母细胞瘤细胞株SH—SY5Y为模型,研究α-突触核蛋白对鱼藤酮诱导氧化应激的影响,从而进一步了解α-突触核蛋白和细胞存活之间的关系。(1)用荧光显微镜观察融合绿色荧光蛋白的α-突触核蛋白的表达情况;(2)用实时定量PCR检测α-突触核蛋白基因的表达;(3)用免疫细胞化学测定α-突触核蛋白的分布;(4)用不同浓度的鱼藤酮作用细胞后,以MTT法测细胞的活力、DCF法检测细胞的氧化应激状态、黄嘌呤氧化酶法检测超氧化物歧化酶的活力,并用流式细胞仪分析细胞的凋亡。实时定量PCR结果显示,α-突触核蛋白基因表达量在α-突触核蛋白过表达的细胞要高于SH—SY5Y细胞,在荧光显微镜下可见绿色荧光蛋白和α-突触核蛋白的表达。鱼藤酮可使细胞活力下降、线粒体complex Ⅰ的活性降低,诱导细胞内氧化应激,而过表达α-突触核蛋白的细胞可以部分抵抗鱼藤酮的毒性作用,表现为细胞抗氧化能力迅速增高(P〈0.05)和鱼藤酮诱导的细胞凋亡数目明显降低。本研究证明α-突触核蛋白对鱼藤酮产生的氧化应激有部分抵抗作用,而使过表达α-突触核蛋白的SH—SY5Y细胞对鱼藤酮的毒性作用表现出一定的耐受性。这种耐受性也可能是细胞对外界损害的一种代偿反应,从而促进细胞的存活。  相似文献   

2.
Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer's disease (AD). Considerable attention has been focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-SY5Y neuroblastoma cells. Decreased cell survival in SH-SY5Y cultures treated with acrolein correlated with oxidative stress, increased NADPH oxidase activity, free radical production, protein oxidation/nitration (protein carbonyl, 3-nitrotyrosine), and lipid peroxidation (4-hydroxy-2-nonenal). Pretreatment with PYC significantly attenuated acrolein-induced cytotoxicity, protein damage, lipid peroxidation, and cell death. A dose-response study suggested that PYC showed protective effects against acrolein toxicity by modulating oxidative stress and increasing GSH. These findings provide support that PYC may provide a promising approach for the treatment of oxidative stress-related neurodegenerative diseases such as AD.  相似文献   

3.
Oxidative stress contributes to several debilitating neurodegenerative diseases. To facilitate direct monitoring of the cytoplasmic oxidation state in neuronal cells, we have developed roTurbo by including several mutations: F223R, A206K, and six of the mutations for superfolder green fluorescent protein. Thus we have generated an improved redox sensor that is much brighter in cells and oxidizes more readily than roGFP2. Cytoplasmic expression of the sensor demonstrated the temporal pattern of 6-hydroxydopamine (6-OHDA) induced oxidative stress in a neuroblastoma cell line (SH-SY5Y). Two distinct oxidation responses were identified in SH-SY5Y cells but a single response observed in cells lacking monoamine transporters (HEK293). While both cell lines exhibited a rapid transient oxidation in response to 6-OHDA, a second oxidative response coincident with cell death was observed only in SH-SY5Y cells, indicating an intracellular metabolism of 6-OHDA, and or its metabolites are involved. In contrast, exogenously applied hydrogen peroxide induced a cellular oxidative response similar to the first oxidation peak, and cell loss was minimal. Glucose deprivation enhanced the oxidative stress induced by 6-OHDA, confirming the pivotal role played by glucose in maintaining a reduced cytoplasmic environment. While these studies support previous findings that catecholamine auto-oxidation products cause oxidative stress, our findings also support studies indicating 6-OHDA induces lethal oxidative stress responses unrelated to production of hydrogen peroxide. Finally, temporal imaging revealed the sporadic nature of the toxicity induced by 6-OHDA in neuroblastoma cells.  相似文献   

4.
为研究金丝桃苷对高糖诱导的人神经母细胞瘤(SH-SY5Y)细胞氧化损伤的保护作用及机制,用含100mmo L/L葡萄糖和分别为20、50、100μmo L/L金丝桃苷的培养基共同孵育SH-SY5Y细胞36 h,检测细胞活力、细胞培养液中乳酸脱氢酶(LDH)水平及半胱氨酸天冬氨酸蛋白酶-3(caspase-3)活性,细胞内活性氧(ROS)水平、丙二醛(MDA)、还原型谷胱甘肽(GSH)含量和超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性及SIRT1和NF-кB基因的mRNA水平和蛋白含量。结果显示金丝桃苷可提高高糖诱导后SH-SY5Y细胞的存活率,抑制细胞LDH释放,清除ROS,降低MDA含量与caspase-3活性,增强SOD、CAT活性和GSH含量;同时,金丝桃苷还能提高SIRT1基因的mR-NA表达及蛋白含量,降低NF-кB基因的mRNA水平和蛋白含量。结果表明金丝桃苷能通过激活SIRT1基因,抑制NF-кB基因保护高糖所致SH-SY5Y细胞的氧化损伤。  相似文献   

5.
Aluminum (Al) is thought to be a risk factor for neurodegenerative disorders, but the molecular mechanism has been not clarified yet. In this study, we examined how a transport system handled transport of Al citrate, the major Al species in brain, and effect of Al citrate treatment on expression of the transporter and on susceptibility to oxidative stress in human neuroblastoma SH-SY5Y cells. Uptake of Al citrate by the cells was temperature- and concentration-dependent, and inwardly-directed Na(+)-gradient-independent. Simultaneous application and preloading of L-cystine or L-glutamate inhibited and stimulated, respectively, the Al citrate uptake by SH-SY5Y cells, demonstrating kinetically that Na(+)-independent L-cystine/L-glutamate exchanger, system Xc(-), is involved in its uptake. When the cells were treated with Al citrate, but not citrate, for 2 weeks, but not a day, the expression of the transporter was decreased. Although the cell viability and glutathione content of the cells were not altered by the treatment with Al citrate alone, the number of dead cells among the Al citrate-treated cells increased on exposure to oxidative stress caused by a glucose deprivation/reperfusion treatment. These findings demonstrate that Al citrate is a substrate for system Xc(-), and that chronic treatment with Al citrate causes downregulation of the transporter and increases the vulnerability of the cells to oxidative stress without a direct effect on the viability or GSH content.  相似文献   

6.
Oxytocin, released in response to different physiological stimuli, could play a key role in reducing stress reaction. It was suggested that it has protective effect against inflammation and consequences of oxidative stress. Mechanisms how oxytocin effects mediated in the brain tissue are unclear. In this study, oxytocin effect on cell growth and neuronal viability was examined. Human neuroblastoma (SH-SY5Y and SK-N-SH) and glioblastoma (U87MG) cells were exposed to different concentrations of oxytocin for 12-96 h. Potential protective effect of oxytocin treatment was investigated after exposing cells to oxidative stress using hydrogen peroxide (50 mM, 2 h) or 6-hydroxydopamine (25 μM, 24 h). Cell proliferation was measured by cell counting and cell viability was examined by MTT assay. Protein expression of selected neurotrophic factors was measured as an additional parameter. Oxytocin (1 μM) significantly increased cell number in all three cell types. Viability of SH-SY5Y cells was increased in the presence of oxytocin without significant effect of dose (0.01-1 μM). Cell death induced by hydrogen peroxide was not prevented by incubation with oxytocin. Oxytocin pretreatment blunted neurotoxin 6-OHDA reduction of cell viability in SH-SY5Y cells. Oxytocin (1 μM, 12 h) elevated amount of total proteins without increasing levels of brain-derived neurotrophic factor and neurotrophic growth factor. In conclusion, oxytocin increases growth and viability of neuroblastoma and glioblastoma cells without activation of neurotrophic factors. Oxytocin does not have protective effect in oxidative stress; however, it might be important for neuroprotection to dopaminergic neurons. Its proliferative effect might be important in native cell life, euplastic processes, and tumor progression.  相似文献   

7.
Brain-derived neurotrophic factor (BDNF) has recently been shown to enhance the survival of dopamine neurons in cultures derived from the embryonic rat mesencephalon. We now extend this study by demonstrating that, in addition to the effect of sustaining survival of dopaminergic neurons, BDNF also confers protection against the neurotoxic effects of 6-hydroxydopamine (6-OHDA) and N-methyl-4-phenylpyridinium ion (MPP+). Exposure of mesencephalic cultures to either 6-OHDA or MPP+ resulted in a loss of 70-80% of dopaminergic neurons, as determined by tyrosine hydroxylase (TH) immunocytochemistry. In BDNF-treated cultures, loss of TH-positive cells after exposure to either toxin was reduced to only 30%. To facilitate biochemical measurements, we studied SH-SY5Y dopaminergic neuroblastoma cells. BDNF was found to protect these cells from the dopaminergic neurotoxins, 6-OHDA and MPP+. Indicative of oxidative stress, treatment of SH-SY5Y cells with 10 microM 6-OHDA for 24 h caused a fivefold increase in the levels of oxidized glutathione (GSSG). Pretreatment with BDNF for 24 h completely prevented the rise in GSSG. Further examination revealed that BDNF increased the activity of the protective enzyme, glutathione reductase, by 100%. In contrast, BDNF had no effect on the activity of catalase. These results add further impetus to exploring the therapeutic potential of BDNF in animal models of Parkinson's disease.  相似文献   

8.
The study investigated the effect of taurine on cell viability and neurotrophic gene expression in arsenite-treated human neuroblastoma SH-SY5Y cells. Arsenite-induced intracellular reactive oxygen species (ROS) and interrupted cell cycle in SH-SY5Y cells. In addition, arsenite reduced mitochondria membrane potential (MMP) and decreased neurotrophic gene expressions such as n-myc downstream-regulated gene 4 (NDRG-4), brain-derived neurotrophic factor (BDNF) and sirtuin-1 (SIRT-1) in SH-SY5Y cells. In parallel, taurine prevented cell cycle, restored MMP and reduced the intracellular ROS level, and taurine recovered NDRG-4, BDNF and SIRT-1 gene expressions in arsenite-treated SH-SY5Y cells while taurine alone has no effect on these parameters.  相似文献   

9.
Oxidative stress has been implicated in pesticide-induced neurotoxicity, based on its role in the cascade of biochemical changes that lead to dopaminergic neuronal cell death. We have, therefore, examined the role of oxidative stress caused by the pesticides endosulfan and zineb in human neuroblastoma cells (SH-SY5Y) in culture. Upon treatment with 50-200 microM concentrations of either of these pesticides, SH-SY5Y cells generated both superoxide anion and hydrogen peroxide in a dose-and time-dependent manner. Mixtures of the pesticides significantly enhanced the production of these reactive oxygen species compared to individual pesticide exposures. Pesticide treatment decreased superoxide dismutase, glutathione peroxidase, and catalase activities in SH-SY5Y cells. Additionally, these pesticides induced lipid peroxide (thiobarbituric acid reactive products) formation in these cells. While both pesticides individually (at 100 microM) increased caspase-3 activity, cells exposed to a mixture of the pesticides exhibited significantly low levels of this enzyme, probably due to excessive necrotic cell death. Furthermore, exposure to these pesticides increased nuclear NFkappaB activity. Taken together, these findings suggest that the cytotoxicity of endosulfan and zineb, both individually and in mixtures may, at least in part, be associated with the generation of reactive oxygen species with concomitant increased expression of NFkappaB.  相似文献   

10.
Gallic acid is one of the most important polyphenolic compounds, which is considered an excellent free radical scavenger. 6-Hydroxydopamine (6-OHDA) is a neurotoxin, which has been implicated in mainly Parkinson’s disease (PD). In this study, we investigated the molecular mechanism of the neuroprotective effects of gallic acid on 6-OHDA induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that 6-OHDA induced cytotoxicity in SH-SY5Y cells was suppressed by pre-treatment with gallic acid. The percentage of live cells (90%) was high in the pre-treatment of gallic acid when compared with 6-OHDA alone treated cell line. Moreover, gallic acid was very effective in attenuating the disruption of mitochondrial membrane potential, elevated levels of intracellular ROS and apoptotic cell death induced by 6-OHDA. Gallic acid also lowered the ratio of the pro-apoptotic Bax protein and the anti-apoptotic Bcl-2 protein in SH-SY5Y cells. 6-OHDA exposure was up-regulated caspase-3 and Keap-1 and, down-regulated Nrf2, BDNF and p-CREB, which were sufficiently reverted by gallic acid pre-treatment. These findings indicate that gallic acid is able to protect the neuronal cells against 6-OHDA induced injury and proved that gallic acid might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.  相似文献   

11.
Abstract

Exogenous hydrogen peroxide (H2O2) can easily penetrate into biological membranes and enhance the formation of other reactive oxygen species (ROS). In the present study, we have investigated the neuroprotective effects of insulin on H2O2-induced toxicity of retinoic acid (RA)-differentiated SH-SY5Y cells. To measure the changes in the cell viability of SH-SY5Y cells at different concentrations of H2O2 for 24?h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)-based assay was used and a 100?µM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 24?h of 100?µM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), nitric oxide (NO), ROS, and calcium ion (Ca2+) in neuronal cells, but insulin can effectively diminish the H2O2-induced oxidative damages to these cells. Moreover, cells treated with insulin increased H2O2-induced suppression of glutathione levels and exerted an apparent suppressive effect on oxidative products. The results of insulin treatment with SH-SY5Y cells increased the Bcl-2 levels and decreased the Akt levels. The treatment of insulin had played a protective effect on H2O2-induced oxidative stress related to the Akt/Bcl-2 pathways.  相似文献   

12.
The multifunctional, anti-Alzheimer drug, ladostigil (TV3326) [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate] combines the neuroprotective effects of the anti-Parkinson drug, rasagiline, a selective monoamine oxidase (MAO)-B inhibitor, with the cholinesterase (ChE) inhibitory activity of rivastigmine in a single molecule. Ladostigil has been shown to possess potent antiapoptotic and neuroprotective activities in various oxidative insults in vitro and in vivo, such as prevention of the fall in mitochondrial membrane potential and regulation of Bcl-2 family proteins. In the present study, we demonstrate that ladostigil (1muM) increased cell viability, associated with the increase of catalase activity and decrease of intracellular reactive oxygen species (ROS) production in human SH-SY5Y neuroblastoma cells exposed to (hydrogen peroxide) H(2)O(2). Furthermore, ladostigil significantly elevated mRNA levels of the antioxidants enzymes, catalase, NAD(P)H quinone oxidoreductase 1 (NQO1) and peroxiredoxin 1 (Prx 1) in H(2)O(2)-treated SH-SY5Y cells. Chronic treatment with ladostigil (1mg/kg gavage per day for 30 days) markedly up-regulated mRNA expression levels of various antioxidant enzymes in aged rat hippocampus (e.g. glutathione peroxidase precursor (GSHPX-P), glutathione S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PD)). These findings indicate that in addition to its multiple neuroprotective characteristics, ladostigil also possesses antioxidant properties, which might be beneficial for the treatment of oxidative stress (OS) in aging and age-associated neurodegenerative diseases.  相似文献   

13.
Increasing evidence suggests that Alzheimer’s disease is associated with mitochondrial dysfunction and oxidative damage. To develop a cellular model of Alzheimer’s disease, we investigated the effects of thioredoxin (Trx) expression in the response to mitochondrial dysfunction-enhanced oxidative stress in the SH-SY5Y human neuroblastoma cells. Treatment of SH-SY5Y cells with 15 mM of NaN3, an inhibitor of cytochrome c oxidase (complex IV), led to alteration of mitochondrial membrane potential but no significant changes in cell viability. Therefore, cells were first treated with 15 mM NaN3 to induce mitochondrial dysfunction, then, exposed to different concentrations of H2O2. Cell susceptibility was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and morphological observation. Expressions of Trx mRNA and protein were determined by RT-PCR; and Western-blot analysis, respectively. It was found that the SH-SY5Y cells with mitochondrial impairment had lower levels of Trx mRNA and protein, and were significantly more vulnerable than the normal cells after exposure to H2O2 while no significant changes of Trx mRNA and protein in SH-SY5Y cells exposed to H2O2 but without mitochondrial complex IV inhibition. These results, together with our previous study in primary cultured neurons, demonstrated that the increased susceptibility to oxidative stress is induced at least in part by the down-regulation of Trx in SH-SY5Y human neuroblastoma cells with mitochondrial impairment and also suggest the mitochondrial dysfunction-enhanced oxidative stress could be used as a cellular model to study the mechanisms of Alzheimer’s disease and agents for prevention and treatment.  相似文献   

14.
The risk of developing breast cancer increases after long term use of oestrogen and progestagen, and carcinogenesis in the breast is partly due to oxidative damage to DNA bases. Therefore, we studied the effects of 17 β-oestradiol and progesterone on the antioxidative status and the vulnerability to oxidative stress exhibited by normal human breast epithelial cells in culture. After exposure to hydrogen peroxide, cells grown with oestradiol alone or with both oestradiol and progesterone showed significantly decreased viability compared to cells grown in medium without added hormones. There was, however, no difference in hydrogen peroxide degradation rate between controls and hormone treated cultures. When desferrioxamine was added, the viability increased and the hydrogen peroxide degradation rate decreased. The levels of several antioxidants were altered in cells grown in the presence of oestradiol and progesterone: the concentrations of glutathione reductase and catalase decreased significantly while the levels of glutathione peroxidase and reduced glutathione did not change. The alterations in enzyme activity and cell vulnerability were more pronounced in cultures treated with a combination of oestradiol and progesterone.

We conclude that the redox balance in the cultured normal human breast epithelial cells was altered by treatment with oestradiol and progesterone, and that this change led to the increased death of cells subsequently exposed to hydrogen peroxide. This effect may have implications for sex hormone dependent diseases of the breast.  相似文献   

15.
BackgroundWhen redox balance is lost in the brain, oxidative stress can cause serious damage that leads to neuronal loss, in congruence with neurodegenerative diseases. Aucubin (AU) is an iridoid glycoside and that is one of the active constituents of Eucommia ulmoides, has many pharmacological effects such as anti-inflammation, anti-liver fibrosis, and anti-atherosclerosis.PurposeThe present study aimed to evaluate the inhibitory effects of AU on cell oxidative stress against hydrogen peroxide (H2O2)-induced injury in SH-SY5Y cells in vitro.MethodsSH-SY5Y cells were simultaneously treated with AU and H2O2 for 24 h. Cell viability was measured by CCK-8. Additionally, mitochondrial membrane depolarization, reactive oxygen species (ROS) generation, and cell apoptosis were measured by flow cytometry.ResultsThe results showed that AU can significantly increase the H2O2-induced cell viability and the mitochondrial membrane potential, decrease the ROS generation, malondialdehyde (MDA), and increase glutathione (GSH) contents and the superoxide dismutase (SOD) activity. We also found that H2O2 stimulated the production of nitric oxide (NO), which could be reduced by treatment with AU through inhibiting the inducible nitric oxide synthase (iNOS) protein expression. In H2O2-induced SH-SY5Y cells, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) content and cell apoptosis were significantly reduced by AU treatment through nuclear factor E2-related factor 2/hemo oxygenase-1 (Nrf2/HO-1) activation, inhibiting the expression of p-NF-κB/NF-κB and down-regulating MAPK and Bcl-2/Bax pathways.ConclusionThese results indicate that AU can reduce inflammation and oxidative stress through the NF-κB, Nrf2/HO-1, and MAPK pathways.  相似文献   

16.
Serotonin (5-hydroxytryptamine) is a putative substrate for myeloperoxidase, which may convert it into the reactive quinone tryptamine-4,5-dione (TD). In this study, we found that the viability of human SH-SY5Y neuroblastoma cells treated with 25?μM TD was increased to approximately 117%. On the other hand, the cell viability was significantly decreased by exposure to TD (150–200?μM), with an increase in intracellular reactive oxygen species (ROS). Interestingly, pre-treatment of SH-SY5Y cells with 100?μM TD prevented cell death and suppressed intracellular ROS generation evoked by the addition of hydrogen peroxide (H2O2). Expression of the phase-II antioxidant enzyme NAD(P)H: quinone oxidoreductase 1 and haem oxygenase 1 were upregulated by TD at a concentration of 50–100?μM. Nuclear factor erythroid 2-related factor 2 (Nrf2), the regulator of these enzyme, was translocated from the cytosol to the nucleus by 100?μM TD. In summary, moderate concentrations of TD may increase the self-defence capacity of neuronal cells against oxidative stress.  相似文献   

17.
Limited information is available regarding the cellular mechanisms of oxaliplatin-induced painful neuropathy during exposure of patients to this drug. We therefore determined oxidative stress in cultured cells and evaluated its occurrence in C57BL/6 mice. Using both cultured neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines and also brain tissues of oxaliplatin-treated mice, we investigated whether oxaliplatin (OXA) induces oxidative stress and apoptosis. Cultured cells were treated with 2–200 µM OXA for 24 h. The effects of pharmacological inhibitors of oxidative stress or inflammation (N-acetyl cysteine, ibuprofen, acetaminophen) were also tested. Inhibitors were added 30 min before OXA treatment and then in combination with OXA for 24 h. In SH-SY5Y cells, OXA caused a significant dose-dependent decrease in viability, a large increase in ROS and NO production, lipid peroxidation and mitochondrial impairment as assessed by a drop in mitochondrial membrane potential, which are deleterious for the cell. An increase in levels of negatively charged phospholipids such as cardiolipin but also phosphatidylserine and phosphatidylinositol, was also observed. Additionally, OXA caused concentration-dependent P2X7 receptor activation, increased chromatin condensation and caspase-3 activation associated with TNF-α and IL-6 release. The majority of these toxic effects were equally observed in Raw 264.7 which also presented high levels of PGE2. Pretreatment of SH-SY5Y cells with pharmacological inhibitors significantly reduced or blocked all the neurotoxic OXA effects. In OXA-treated mice (28 mg/kg cumulated dose) significant cold hyperalgesia and oxidative stress in the tested brain areas were shown. Our study suggests that targeting P2X7 receptor activation and mitochondrial impairment might be a potential therapeutic strategy against OXA-induced neuropathic pain.  相似文献   

18.
We have previously reported that exposure of SH-SY5Y neuroblastoma cells to unconjugated bilirubin (UCB) resulted in a marked up-regulation of the mRNA encoding for the Na(+)-independent cystine∶glutamate exchanger System X(c)(-) (SLC7A11 and SLC3A2 genes). In this study we demonstrate that SH-SY5Y cells treated with UCB showed a higher cystine uptake due to a significant and specific increase in the activity of System X(c)(-), without the contribution of the others two cystine transporters (X(AG)(-) and GGT) reported in neurons. The total intracellular glutathione content was 2 folds higher in the cells exposed to bilirubin as compared to controls, suggesting that the internalized cystine is used for gluthathione synthesis. Interestingly, these cells were significantly less sensitive to an oxidative insult induced by hydrogen peroxide. If System X(c)(-) is silenced the protection is lost. In conclusion, these results suggest that bilirubin can modulate the gluthathione levels in neuroblastoma cells through the induction of the System X(c)(-), and this renders the cell less prone to oxidative damage.  相似文献   

19.
Human SH-SY5Y neuroblastoma and mouse L929 fibroblast cells were exposed to 872 MHz radiofrequency (RF) radiation using continuous waves (CW) or a modulated signal similar to that emitted by GSM mobile phones at a specific absorption rate (SAR) of 5 W/kg in isothermal conditions. To investigate possible combined effects with other agents, menadione was used to induce reactive oxygen species, and tert-butylhydroperoxide (t-BOOH) was used to induce lipid peroxidation. After 1 or 24 h of exposure, reduced cellular glutathione levels, lipid peroxidation, proliferation, caspase 3 activity, DNA fragmentation and viability were measured. Two statistically significant differences related to RF radiation were observed: Lipid peroxidation induced by t-BOOH was increased in SH-SY5Y (but not in L929) cells, and menadione-induced caspase 3 activity was increased in L929 (but not in SH-SY5Y) cells. Both differences were statistically significant only for the GSM-modulated signal. The other end points were not significantly affected in any of the experimental conditions, and no effects were observed from exposure to RF radiation alone. The positive findings may be due to chance, but they may also reflect effects that occur only in cells sensitized by chemical stress. Further studies are required to investigate the reproducibility and dose response of the possible effects.  相似文献   

20.
In this study we investigated the effect of insulin on neuronal viability and antioxidant defense mechanisms upon ascorbate/Fe2+-induced oxidative stress, using cultured cortical neurons. Insulin (0.1 and 10 microM) prevented the decrease in neuronal viability mediated by oxidative stress, decreasing both necrotic and apoptotic cell death. Moreover, insulin inhibited ascorbate/Fe2+-mediated lipid and protein oxidation, thus decreasing neuronal oxidative stress. Increased 4-hydroxynonenal (4-HNE) adducts on GLUT3 glucose transporters upon exposure to ascorbate/Fe2+ were also prevented by insulin, suggesting that this peptide can interfere with glucose metabolism. We further analyzed the influence of insulin on antioxidant defense mechanisms in the cortical neurons. Oxidative stress-induced decreases in intracellular uric acid and GSH/GSSG levels were largely prevented upon treatment with insulin. Inhibition of phosphatidylinositol-3-kinase (PI-3K) or mitogen-induced extracellular kinase (MEK) reversed the effect of insulin on uric acid and GSH/GSSG, suggesting the activation of insulin-mediated signaling pathways. Moreover, insulin stimulated glutathione reductase (GRed) and inhibited glutathione peroxidase (GPx) activities under oxidative stress conditions, further supporting that insulin neuroprotection was related to the modulation of the glutathione redox cycle. Thus, insulin may be useful in preventing oxidative stress-mediated injury that occurs in several neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号