首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melo F  Marti-Renom MA 《Proteins》2006,63(4):986-995
Reduced or simplified amino acid alphabets group the 20 naturally occurring amino acids into a smaller number of representative protein residues. To date, several reduced amino acid alphabets have been proposed, which have been derived and optimized by a variety of methods. The resulting reduced amino acid alphabets have been applied to pattern recognition, generation of consensus sequences from multiple alignments, protein folding, and protein structure prediction. In this work, amino acid substitution matrices and statistical potentials were derived based on several reduced amino acid alphabets and their performance assessed in a large benchmark for the tasks of sequence alignment and fold assessment of protein structure models, using as a reference frame the standard alphabet of 20 amino acids. The results showed that a large reduction in the total number of residue types does not necessarily translate into a significant loss of discriminative power for sequence alignment and fold assessment. Therefore, some definitions of a few residue types are able to encode most of the relevant sequence/structure information that is present in the 20 standard amino acids. Based on these results, we suggest that the use of reduced amino acid alphabets may allow to increasing the accuracy of current substitution matrices and statistical potentials for the prediction of protein structure of remote homologs.  相似文献   

2.
Sequence alignment is a common method for finding protein structurally conserved/similar regions. However, sequence alignment is often not accurate if sequence identities between to-be-aligned sequences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitution matrix consisting of 20 types of residues. Based on the similarity of physicochemical features, residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered. Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9.  相似文献   

3.
Similarities and differences between amino acids define the rates at which they substitute for one another within protein sequences and the patterns by which these sequences form protein structures. However, there exist many ways to measure similarity, whether one considers the molecular attributes of individual amino acids, the roles that they play within proteins, or some nuanced contribution of each. One popular approach to representing these relationships is to divide the 20 amino acids of the standard genetic code into groups, thereby forming a simplified amino acid alphabet. Here, we develop a method to compare or combine different simplified alphabets, and apply it to 34 simplified alphabets from the scientific literature. We use this method to show that while different suggestions vary and agree in non-intuitive ways, they combine to reveal a consensus view of amino acid similarity that is clearly rooted in physico-chemistry.  相似文献   

4.
Armando D. Solis 《Proteins》2015,83(12):2198-2216
To reduce complexity, understand generalized rules of protein folding, and facilitate de novo protein design, the 20‐letter amino acid alphabet is commonly reduced to a smaller alphabet by clustering amino acids based on some measure of similarity. In this work, we seek the optimal alphabet that preserves as much of the structural information found in long‐range (contact) interactions among amino acids in natively‐folded proteins. We employ the Information Maximization Device, based on information theory, to partition the amino acids into well‐defined clusters. Numbering from 2 to 19 groups, these optimal clusters of amino acids, while generated automatically, embody well‐known properties of amino acids such as hydrophobicity/polarity, charge, size, and aromaticity, and are demonstrated to maintain the discriminative power of long‐range interactions with minimal loss of mutual information. Our measurements suggest that reduced alphabets (of less than 10) are able to capture virtually all of the information residing in native contacts and may be sufficient for fold recognition, as demonstrated by extensive threading tests. In an expansive survey of the literature, we observe that alphabets derived from various approaches—including those derived from physicochemical intuition, local structure considerations, and sequence alignments of remote homologs—fare consistently well in preserving contact interaction information, highlighting a convergence in the various factors thought to be relevant to the folding code. Moreover, we find that alphabets commonly used in experimental protein design are nearly optimal and are largely coherent with observations that have arisen in this work. Proteins 2015; 83:2198–2216. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Sequence alignment is a common method for finding protein structurally conserved/similar regions. However, sequence alignment is often not accurate if sequence identities between to-be-aligned sequences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitution matrix consisting of 20 types of residues. Based on the similarity of physicochemical features, residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered. Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9. Supported by the National Natural Science Foundation of China (Grant Nos. 90403120, 10474041 and 10021001) and the Nonlinear Project (973) of the NSM  相似文献   

6.
What are the key building blocks that would have been needed to construct complex protein folds? This is an important issue for understanding protein folding mechanism and guiding de novo protein design. Twenty naturally occurring amino acids and eight secondary structures consist of a 28‐letter alphabet to determine folding kinetics and mechanism. Here we predict folding kinetic rates of proteins from many reduced alphabets. We find that a reduced alphabet of 10 letters achieves good correlation with folding rates, close to the one achieved by full 28‐letter alphabet. Many other reduced alphabets are not significantly correlated to folding rates. The finding suggests that not all amino acids and secondary structures are equally important for protein folding. The foldable sequence of a protein could be designed using at least 10 folding units, which can either promote or inhibit protein folding. Reducing alphabet cardinality without losing key folding kinetic information opens the door to potentially faster machine learning and data mining applications in protein structure prediction, sequence alignment and protein design. Proteins 2015; 83:631–639. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Screening of functional proteins from a random‐sequence library has been used to evolve novel proteins in the field of evolutionary protein engineering. However, random‐sequence proteins consisting of the 20 natural amino acids tend to aggregate, and the occurrence rate of functional proteins in a random‐sequence library is low. From the viewpoint of the origin of life, it has been proposed that primordial proteins consisted of a limited set of amino acids that could have been abundantly formed early during chemical evolution. We have previously found that members of a random‐sequence protein library constructed with five primitive amino acids show high solubility (Doi et al., Protein Eng Des Sel 2005;18:279–284). Although such a library is expected to be appropriate for finding functional proteins, the functionality may be limited, because they have no positively charged amino acid. Here, we constructed three libraries of 120‐amino acid, random‐sequence proteins using alphabets of 5, 12, and 20 amino acids by preselection using mRNA display (to eliminate sequences containing stop codons and frameshifts) and characterized and compared the structural properties of random‐sequence proteins arbitrarily chosen from these libraries. We found that random‐sequence proteins constructed with the 12‐member alphabet (including five primitive amino acids and positively charged amino acids) have higher solubility than those constructed with the 20‐member alphabet, though other biophysical properties are very similar in the two libraries. Thus, a library of moderate complexity constructed from 12 amino acids may be a more appropriate resource for functional screening than one constructed from 20 amino acids.  相似文献   

8.
What is the minimum number of letters required to fold a protein?   总被引:4,自引:0,他引:4  
Experimental studies have shown that the full sequence complexity of naturally occurring proteins is not required to generate rapidly folding and functional proteins, i.e. proteins can be designed with fewer than 20 letters. This raises the question of what is the minimum number of amino acid types required to encode complex protein folds? Here, we investigate this issue from three aspects. First, we study the minimum sequence complexity that can reserve the necessary structural information for detection of distantly related homologues. Second, we compare the ability of designing foldable model sequences over a wide range of reduced amino acid alphabets, which find the minimum number of letters that have the similar design ability as 20. Finally, we survey the lower bound of alphabet size of globular proteins in a non-redundant protein database. These different approaches give a remarkably consistent view, that the minimum number of letters required to fold a protein is around ten.  相似文献   

9.
蛋白质序列复杂性简化与非比对序列分析   总被引:1,自引:0,他引:1  
非比对序列分析是最新发展的一种序列分析方法,具有计算效率高并适用于分析低相似性的序列,已成功用于DNA的序列分析中.但是由于蛋白质序列的复杂性,非比对序列分析对于蛋白质序列分析的准确度却不高.用将20种天然氨基酸残基归类的方法,简化了蛋白质序列的复杂性,并运用到对蛋白质的非比对序列分析中,有效地提高了序列分析的准确性.  相似文献   

10.
A new computational approach optimizes searches for reduced protein folding alphabets that use fewer than 20 types of amino acids. The predicted optimal five-letter alphabet happens to be in agreement with the suggestive results of a recent experiment, but whether highly reduced alphabets are sufficient for truly protein-like properties remains an open experimental question.  相似文献   

11.
MOTIVATION: Sequence alignment techniques have been developed into extremely powerful tools for identifying the folding families and function of proteins in newly sequenced genomes. For a sufficiently low sequence identity it is necessary to incorporate additional structural information to positively detect homologous proteins. We have carried out an extensive analysis of the effectiveness of incorporating secondary structure information directly into the alignments for fold recognition and identification of distant protein homologs. A secondary structure similarity matrix based on a database of three-dimensionally aligned proteins was first constructed. An iterative application of dynamic programming was used which incorporates linear combinations of amino acid and secondary structure sequence similarity scores. Initially, only primary sequence information is used. Subsequently contributions from secondary structure are phased in and new homologous proteins are positively identified if their scores are consistent with the predetermined error rate. RESULTS: We used the SCOP40 database, where only PDB sequences that have 40% homology or less are included, to calibrate homology detection by the combined amino acid and secondary structure sequence alignments. Combining predicted secondary structure with sequence information results in a 8-15% increase in homology detection within SCOP40 relative to the pairwise alignments using only amino acid sequence data at an error rate of 0.01 errors per query; a 35% increase is observed when the actual secondary structure sequences are used. Incorporating predicted secondary structure information in the analysis of six small genomes yields an improvement in the homology detection of approximately 20% over SSEARCH pairwise alignments, but no improvement in the total number of homologs detected over PSI-BLAST, at an error rate of 0.01 errors per query. However, because the pairwise alignments based on combinations of amino acid and secondary structure similarity are different from those produced by PSI-BLAST and the error rates can be calibrated, it is possible to combine the results of both searches. An additional 25% relative improvement in the number of genes identified at an error rate of 0.01 is observed when the data is pooled in this way. Similarly for the SCOP40 dataset, PSI-BLAST detected 15% of all possible homologs, whereas the pooled results increased the total number of homologs detected to 19%. These results are compared with recent reports of homology detection using sequence profiling methods. AVAILABILITY: Secondary structure alignment homepage at http://lutece.rutgers.edu/ssas CONTACT: anders@rutchem.rutgers.edu; ronlevy@lutece.rutgers.edu Supplementary Information: Genome sequence/structure alignment results at http://lutece.rutgers.edu/ss_fold_predictions.  相似文献   

12.
In this study, n-peptide compositions are utilized for protein vectorization over a discriminative remote homology detection framework based on support vector machines (SVMs). The size of amino acid alphabet is gradually reduced for increasing values of n to make the method to conform with the memory resources in conventional workstations. A hash structure is implemented for accelerated search of n-peptides. The method is tested to see its ability to classify proteins into families on a subset of SCOP family database and compared against many of the existing homology detection methods including the most popular generative methods; SAM-98 and PSI-BLAST and the recent SVM methods; SVM-Fisher, SVM-BLAST and SVM-Pairwise. The results have demonstrated that the new method significantly outperforms SVM-Fisher, SVM-BLAST, SAM-98 and PSI-BLAST, while achieving a comparable accuracy with SVM-Pairwise. In terms of efficiency, it performs much better than SVM-Pairwise. It is shown that the information of n-peptide compositions with reduced amino acid alphabets provides an accurate and efficient means of protein vectorization for SVM-based sequence classification.  相似文献   

13.
Chen YL  Li QZ  Zhang LQ 《Amino acids》2012,42(4):1309-1316
Due to the complexity of Plasmodium falciparum (PF) genome, predicting mitochondrial proteins of PF is more difficult than other species. In this study, using the n-peptide composition of reduced amino acid alphabet (RAAA) obtained from structural alphabet named Protein Blocks as feature parameter, the increment of diversity (ID) is firstly developed to predict mitochondrial proteins. By choosing the 1-peptide compositions on the N-terminal regions with 20 residues as the only input vector, the prediction performance achieves 86.86% accuracy with 0.69 Mathew’s correlation coefficient (MCC) by the jackknife test. Moreover, by combining with the hydropathy distribution along protein sequence and several reduced amino acid alphabets, we achieved maximum MCC 0.82 with accuracy 92% in the jackknife test by using the developed ID model. When evaluating on an independent dataset our method performs better than existing methods. The results indicate that the ID is a simple and efficient prediction method for mitochondrial proteins of malaria parasite.  相似文献   

14.
15.
Dokholyan NV 《Proteins》2004,54(4):622-628
Selecting a protein sequence that corresponds to a specific three-dimensional protein structure is known as the protein design problem. One principal bottleneck in solving this problem is our lack of knowledge of precise atomic interactions. Using a simple model of amino acid interactions, we determine three crucial factors that are important for solving the protein design problem. Among these factors is the protein alphabet-a set of sequence elements that encodes protein structure. Our model predicts that alphabet size is independent of protein length, suggesting the possibility of designing a protein of arbitrary length with the natural protein alphabet. We also find that protein alphabet size is governed by protein structural properties and the energetic properties of the protein alphabet units. We discover that the usage of average types of amino acid in proteins is less than expected if amino acids were chosen randomly with naturally occurring frequencies. We propose three possible scenarios that account for amino acid underusage in proteins. These scenarios suggest the possibility that amino acids themselves might not constitute the alphabet of natural proteins.  相似文献   

16.
Reduced amino acid alphabets are useful to understand molecular evolution as they reveal basal, shared properties of amino acids, which the structures and functions of proteins rely on. Several previous studies derived such reduced alphabets and linked them to the origin of life and biotechnological applications. However, all this previous work presupposes that only direct contacts of amino acids in native protein structures are relevant. We show in this work, using information–theoretical measures, that an appropriate alphabet reduction scheme is in fact a function of the maximum distance amino acids interact at. Although for small distances our results agree with previous ones, we show how long‐range interactions change the overall picture and prompt for a revised understanding of the protein design process. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Finding structural similarities between proteins often helps reveal shared functionality, which otherwise might not be detected by native sequence information alone. Such similarity is usually detected and quantified by protein structure alignment. Determining the optimal alignment between two protein structures, however, remains a hard problem. An alternative approach is to approximate each three-dimensional protein structure using a sequence of motifs derived from a structural alphabet. Using this approach, structure comparison is performed by comparing the corresponding motif sequences or structural sequences. In this article, we measure the performance of such alphabets in the context of the protein structure classification problem. We consider both local and global structural sequences. Each letter of a local structural sequence corresponds to the best matching fragment to the corresponding local segment of the protein structure. The global structural sequence is designed to generate the best possible complete chain that matches the full protein structure. We use an alphabet of 20 letters, corresponding to a library of 20 motifs or protein fragments having four residues. We show that the global structural sequences approximate well the native structures of proteins, with an average coordinate root mean square of 0.69 Å over 2225 test proteins. The approximation is best for all α-proteins, while relatively poorer for all β-proteins. We then test the performance of four different sequence representations of proteins (their native sequence, the sequence of their secondary-structure elements, and the local and global structural sequences based on our fragment library) with different classifiers in their ability to classify proteins that belong to five distinct folds of CATH. Without surprise, the primary sequence alone performs poorly as a structure classifier. We show that addition of either secondary-structure information or local information from the structural sequence considerably improves the classification accuracy. The two fragment-based sequences perform better than the secondary-structure sequence but not well enough at this stage to be a viable alternative to more computationally intensive methods based on protein structure alignment.  相似文献   

18.
Remote homology detection refers to the detection of structure homology in evolutionarily related proteins with low sequence similarity. Supervised learning algorithms such as support vector machine (SVM) are currently the most accurate methods. In most of these SVM-based methods, efforts have been dedicated to developing new kernels to better use the pairwise alignment scores or sequence profiles. Moreover, amino acids’ physicochemical properties are not generally used in the feature representation of protein sequences. In this article, we present a remote homology detection method that incorporates two novel features: (1) a protein's primary sequence is represented using amino acid's physicochemical properties and (2) the similarity between two proteins is measured using recurrence quantification analysis (RQA). An optimization scheme was developed to select different amino acid indices (up to 10 for a protein family) that are best to characterize the given protein family. The selected amino acid indices may enable us to draw better biological explanation of the protein family classification problem than using other alignment-based methods. An SVM-based classifier will then work on the space described by the RQA metrics. The classification scheme is named as SVM-RQA. Experiments at the superfamily level of the SCOP1.53 dataset show that, without using alignment or sequence profile information, the features generated from amino acid indices are able to produce results that are comparable to those obtained by the published state-of-the-art SVM kernels. In the future, better prediction accuracies can be expected by combining the alignment-based features with our amino acids property-based features. Supplementary information including the raw dataset, the best-performing amino acid indices for each protein family and the computed RQA metrics for all protein sequences can be downloaded from http://ym151113.ym.edu.tw/svm-rqa.  相似文献   

19.
Tanaka J  Yanagawa H  Doi N 《PloS one》2011,6(3):e18034
Although modern proteins consist of 20 different amino acids, it has been proposed that primordial proteins consisted of a small set of amino acids, and additional amino acids have gradually been recruited into the genetic code. This hypothesis has recently been supported by comparative genome sequence analysis, but no direct experimental approach has been reported. Here, we utilized a novel experimental approach to test a hypothesis that native-like globular proteins might be easily simplified by a set of putative primitive amino acids with retention of its structure and function than by a set of putative new amino acids. We performed in vitro selection of a functional SH3 domain as a model from partially randomized libraries with different sets of amino acids using mRNA display. Consequently, a library rich in putative primitive amino acids included a larger number of functional SH3 sequences than a library rich in putative new amino acids. Further, the functional SH3 sequences were enriched from the primitive library slightly earlier than from a randomized library with the full set of amino acids, while the function and structure of the selected SH3 proteins with the primitive alphabet were comparable with those from the 20 amino acid alphabet. Application of this approach to various combinations of codons in protein sequences may be useful not only for clarifying the precise order of the amino acid expansion in the early stages of protein evolution but also for efficiently creating novel functional proteins in the laboratory.  相似文献   

20.
To learn more about the evolutionary origins of Escherichia coli genes, we surveyed systematically for extended sequence similarities among the 1,264 amino acid sequences encoded by chromosomal genes of E. coli K-12 in SwissProt release 26 by using the FASTA program and imposing the following criteria: (i) alignment of segments at least 100 amino acids long and (ii) at least 20% amino acid identity. Altogether, 624 extended alignments meeting the two criteria were identified, corresponding to 577 protein sequences (45.6% of the 1,264 E. coli protein sequences) that had an extended alignment with at least one other E. coli protein sequence. To exclude alignments of questionable biological significance, we imposed a high threshold on the number of gaps allowed in each of the 624 extended alignments, giving us a subset of 464 proteins. The population of 464 alignments has the following characteristics expressed as median values of the group: 254 amino acids in the alignment, representing 86% of the length of the protein, 33% of the amino acids in the alignment being identical, and 1.1 gaps introduced per 100 amino acids of alignment. Where functions are known, nearly all pairs consist of functionally related proteins. This implies that the sequence similarity we detected has biological meaning and did not arise by chance. That a major fraction of E. coli proteins form extended alignments strongly suggests the predominance of duplication and divergence of ancestral genes in the evolution of E. coli genes. The range of degrees of similarity shows that some genes originated more recently than others. There is no evidence of genome doubling in the past, since map distances between genes of sequence-related proteins show no coherent pattern of favored separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号