首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A screen for nonsliding mutants of Mycobacterium smegmatis yielded 20 mutants with transposon insertions in the mps gene, which is involved in glycopeptidolipid biosynthesis. One mutant had an insertion in a gene predicted to encode a membrane transport protein. All mutants lacked glycopeptidolipids and were unable to form biofilms on polyvinyl chloride.  相似文献   

2.
The opportunistic pathogen Mycobacterium avium is a significant inhabitant of biofilms in drinking water distribution systems. M. avium expresses on its cell surface serovar-specific glycopeptidolipids (ssGPLs). Studies have implicated the core GPL in biofilm formation by M. avium and by other Mycobacterium species. In order to test this hypothesis in a directed fashion, three model systems were used to examine biofilm formation by mutants of M. avium with transposon insertions into pstAB (also known as nrp and mps). pstAB encodes the nonribosomal peptide synthetase that catalyzes the synthesis of the core GPL. The mutants did not adhere to polyvinyl chloride plates; however, they adhered well to plastic and glass chamber slide surfaces, albeit with different morphologies from the parent strain. In a model that quantified surface adherence under recirculating water, wild-type and pstAB mutant cells accumulated on stainless steel surfaces in equal numbers. Unexpectedly, pstAB mutant cells were >10-fold less abundant in the recirculating-water phase than parent strain cells. These observations show that GPLs are directly or indirectly required for colonization of some, but by no means all, surfaces. Under some conditions, GPLs may play an entirely different role by facilitating the survival or dispersal of nonadherent M. avium cells in circulating water. Such a function could contribute to waterborne M. avium infection.  相似文献   

3.
Bacteria within the Mycobacterium avium complex are prominent in the environment and are a source of serious disseminated infections in patients with AIDS. Serovars of the M. avium complex are distinguished from all other mycobacteria and from one another by the presence of highly antigenic glycolipids, the glycopeptidolipids, on their surfaces. A genomic library of DNA from serovar 2 of the M. avium complex was constructed in the Escherichia coli-Mycobacterium shuttle cosmid, pYUB18, and used to clone and express in Mycobacterium smegmatis the genes responsible for the biosynthesis of the oligosaccharide segment of the M. avium serovar 2-specific glycopeptidolipid. The responsible gene cluster was mapped to a 22- to 27-kb functional region of the M. avium genome. The recombinant glycolipid was also isolated by high-pressure liquid chromatography and chemically characterized, by gas chromatography-mass spectrometry and fast atom bombardment-mass spectrometry, to demonstrate that the lipopeptide core originated in M. smegmatis, whereas the oligosaccharide segment arose from the cloned M. avium genes. This first-time demonstration of the cloning and expression, in a nonpathogenic mycobacterium, of the genes encoding complex cell wall glycoconjugates from a pathogenic mycobacterium presents a new approach for studying the role of such products in disease processes.  相似文献   

4.
Ubiquitin-derived peptides are bactericidal in vitro and contribute to the mycobactericidal activity of the lysosome. To further define interactions of ubiquitin-derived peptides with mycobacteria, we screened for mutants with increased resistance to the bactericidal activity of the synthetic ubiquitin-derived peptide Ub2. The four Ub2-resistant Mycobacterium smegmatis mutants were also resistant to the bactericidal action of other antimicrobial peptides and macrophages. Two mutants were in the mspA gene encoding the main M. smegmatis porin. Using a translocation-deficient MspA point mutant, we showed that susceptibility of M. smegmatis to Ub2 was independent of MspA channel activity. Instead, the M. smegmatis Ub2-resistant mutants shared a common phenotype of decreased cell wall permeability compared with wild-type bacteria. Expression of mspA rendered Mycobacterium tuberculosis CDC1551 more susceptible both to ubiquitin-derived peptides in vitro and to lysosomal killing in macrophages. Finally, biochemical assays designed to assess membrane integrity indicated that Ub2 treatment impairs membrane function of M. smegmatis and M. tuberculosis cells . The M. smegmatis Ub2-resistant mutants were more resistant than wild-type M. smegmatis to this damage. We conclude that Ub2 targets mycobacterial membranes and that reduced membrane permeability provides mycobacteria intrinsic resistance against antimicrobial compounds including bactericidal ubiquitin-derived peptides.  相似文献   

5.
Cloning, sequencing, and characterization of the iturin A operon   总被引:23,自引:0,他引:23       下载免费PDF全文
Bacillus subtilis RB14 is a producer of the antifungal lipopeptide iturin A. Using a transposon, we identified and cloned the iturin A synthetase operon of RB14, and the sequence of this operon was also determined. The iturin A operon spans a region that is more than 38 kb long and is composed of four open reading frames, ituD, ituA, ituB, and ituC. The ituD gene encodes a putative malonyl coenzyme A transacylase, whose disruption results in a specific deficiency in iturin A production. The second gene, ituA, encodes a 449-kDa protein that has three functional modules homologous to fatty acid synthetase, amino acid transferase, and peptide synthetase. The third gene, ituB, and the fourth gene, ituC, encode 609- and 297-kDa peptide synthetases that harbor four and two amino acid modules, respectively. Mycosubtilin, which is produced by B. subtilis ATCC 6633, has almost the same structure as iturin A, but the amino acids at positions 6 and 7 in the mycosubtilin sequence are D-Ser-->L-Asn, while in iturin A these amino acids are inverted (i.e., D-Asn-->L-Ser). Comparison of the amino acid sequences encoded by the iturin A operon and the mycosubtilin operon revealed that ituD, ituA, and ituB have high levels of homology to the counterpart genes fenF (79%), mycA (79%), and mycB (79%), respectively. Although the overall level of homology of the amino acid sequences encoded by ituC and mycC, the counterpart of ituC, is relatively low (64%), which indicates that there is a difference in the amino acid sequences of the two lipopeptides, the levels of homology between the putative serine adenylation domains and between the asparagine adenylation domains in the two synthetases are high (79 and 80%, respectively), implying that there is an intragenic domain change in the synthetases. The fact that the flanking sequence of the iturin A synthetase coding region was highly homologous to the flanking sequence that of xynD of B. subtilis 168 and the fact that the promoter of the iturin A operon which we identified was also conserved in an upstream sequence of xynD imply that horizontal transfer of this operon occurred. When the promoter was replaced by the repU promoter of the plasmid pUB110 replication protein, production of iturin A increased threefold.  相似文献   

6.
The absence of glycopeptidolipids (GPLs) abolishes the ability of mycobacteria both to slide over the surface of motility plates and to form biofilms on polyvinyl chloride. In a screen for biofilm-defective mutants of Mycobacterium smegmatis mc(2)155, a new mutant was obtained that resulted in partial inhibition of both processes and also showed an intermediate rough colony morphology. The mariner transposon insertion mapped to a GPL biosynthesis gene (atf1) which encodes a putative acetyltranferase involved in the transfer of acetyl groups to the glycopeptide core. Physical characterization of the GPLs from the atf1 mutant demonstrated that they were not acetylated.  相似文献   

7.
The cyclic decapeptide antibiotic tyrocidine is produced by Bacillus brevis ATCC 8185 on an enzyme complex comprising three peptide synthetases, TycA, TycB, and TycC (tyrocidine synthetases 1, 2, and 3), via the nonribosomal pathway. However, previous molecular characterization of the tyrocidine synthetase-encoding operon was restricted to tycA, the gene that encodes the first one-module-bearing peptide synthetase. Here, we report the cloning and sequencing of the entire tyrocidine biosynthesis operon (39.5 kb) containing the tycA, tycB, and tycC genes. As deduced from the sequence data, TycB (404,562 Da) consists of three modules, including an epimerization domain, whereas TycC (723,577 Da) is composed of six modules and harbors a putative thioesterase domain at its C-terminal end. Each module incorporates one amino acid into the peptide product and can be further subdivided into domains responsible for substrate adenylation, thiolation, condensation, and epimerization (optional). We defined, cloned, and expressed in Escherichia coli five internal adenylation domains of TycB and TycC. Soluble His6-tagged proteins, ranging from 536 to 559 amino acids, were affinity purified and found to be active by amino acid-dependent ATP-PPi exchange assay. The detected amino acid specificities of the investigated domains manifested the colinear arrangement of the peptide product with the respective module in the corresponding peptide synthetases and explain the production of the four known naturally occurring tyrocidine variants. The Km values of the investigated adenylation domains for their amino acid substrates were found to be comparable to those published for undissected wild-type enzymes. These findings strongly support the functional integrities of single domains within multifunctional peptide synthetases. Directly downstream of the 3' end of the tycC gene, and probably transcribed in the tyrocidine operon, two tandem ABC transporters, which may be involved in conferring resistance against tyrocidine, and a putative thioesterase were found.  相似文献   

8.
The combinatorial reorganization of distinct modules of multimodular peptide synthetases is of increasing interest for the generation of new peptides with optimized bioactive properties. Each module is at least composed of enzymatic domains responsible for the adenylation, thioester formation, and condensation of an amino acid residue of the final peptide product. We analyzed various possible fusion sites for the recombination of peptide synthetases and evaluated the impact of different recombination strategies on the amino acid adenylation and acyl-thioester formation activities of peptide synthetase modules. Hybrid bimodular peptide synthetases were generated by recombination of the corresponding reading frames encoding for L-glutamic acid- and L-leucine-specific modules of surfactin synthetase SrfA-A at presumed inner- and intradomainic regions. We demonstrate that fusions at a previously postulated hinge region, dividing the amino acid adenylating domains of peptide synthetase modules into two subdomains, and at the highly conserved 4'-phosphopantetheine binding motif in acyl-thioester forming domains resulted in enzymatically active hybrid domains. By contrast, most manipulations in condensation domains like deletions, the complete exchange or the construction of chimeric domains considerably reduced or completely abolished the amino acid adenylation and thioester formation activity of the hybrid module.  相似文献   

9.
Motility in mycobacteria was described for the first time in 1999. It was reported that Mycobacterium smegmatis and Mycobacterium avium could spread on the surface of solid growth medium by a sliding mechanism and that the presence of cell wall glycopeptidolipids was essential for motility. We recently reported that Mycobacterium vaccae can also spread on growth medium surfaces; however, only smooth colonies presented this property. Smooth colonies of M. vaccae do not produce glycopeptidolipids but contain a saturated polyester that is absent in rough colonies. Here, we demonstrate that Mycobacterium chubuense, Mycobacterium gilvum, Mycobacterium obuense, and Mycobacterium parafortuitum, which are phylogenetically related to M. vaccae, are also motile. Such motility is restricted to smooth colonies, since natural rough mutants are nonmotile. Thin-layer chromatography analysis of the content of cell wall lipids confirmed the absence of glycopeptidolipids. However, compounds like the above-mentioned M. vaccae polyester were detected in all the strains but only in smooth colonies. Scanning electron microscopy showed great differences in the arrangement of the cells between smooth and rough colonies. The data obtained suggest that motility is a common property of environmental mycobacteria, and this capacity correlates with the smooth colonial morphotype. The species studied in this work do not contain glycopeptidolipids, so cell wall compounds or extracellular materials other than glycopeptidolipids are implicated in mycobacterial motility. Furthermore, both smooth motile and rough nonmotile variants formed biofilms on glass and polystyrene surfaces.  相似文献   

10.
The opportunistic pathogen Mycobacterium avium is a significant inhabitant of biofilms in drinking water distribution systems. M. avium expresses on its cell surface serovar-specific glycopeptidolipids (ssGPLs). Studies have implicated the core GPL in biofilm formation by M. avium and by other Mycobacterium species. In order to test this hypothesis in a directed fashion, three model systems were used to examine biofilm formation by mutants of M. avium with transposon insertions into pstAB (also known as nrp and mps). pstAB encodes the nonribosomal peptide synthetase that catalyzes the synthesis of the core GPL. The mutants did not adhere to polyvinyl chloride plates; however, they adhered well to plastic and glass chamber slide surfaces, albeit with different morphologies from the parent strain. In a model that quantified surface adherence under recirculating water, wild-type and pstAB mutant cells accumulated on stainless steel surfaces in equal numbers. Unexpectedly, pstAB mutant cells were >10-fold less abundant in the recirculating-water phase than parent strain cells. These observations show that GPLs are directly or indirectly required for colonization of some, but by no means all, surfaces. Under some conditions, GPLs may play an entirely different role by facilitating the survival or dispersal of nonadherent M. avium cells in circulating water. Such a function could contribute to waterborne M. avium infection.  相似文献   

11.
ABSTRACT: BACKGROUND: Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a beta-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. RESULTS: A potential pelgipeptin synthetase gene cluster (plp) was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPS), with one, seven, and one module(s), respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1) provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. CONCLUSIONS: In this study, a gene cluster (plp) responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.  相似文献   

12.
Anabaena strain 90 produces three hepatotoxic heptapeptides (microcystins), two seven-residue depsipeptides called anabaenopeptilide 90A and 90B, and three six-residue peptides called anabaenopeptins. The anabaenopeptilides belong to a group of cyanobacterial depsipeptides that share the structure of a six-amino-acid ring with a side-chain. Despite their similarity to known cyclic peptide toxins, no function has been assigned to the anabaenopeptilides. Degenerate oligonucleotide primers based on the conserved amino acid sequences of other peptide synthetases were used to amplify DNA from Anabaena 90, and the resulting polymerase chain reaction (PCR) products were used to identify a peptide synthetase gene cluster. Four genes encoding putative anabaenopeptilide synthetase domains were characterized. Three genes, apdA, apdB and apdD, contain two, four and one module, respectively, encoding a total of seven modules for activation and peptide bond formation of seven L-amino acids. Modules five and six also carry methyltransferase-like domains. Before the first module, there is a region similar in amino acid sequence to formyltransferases. A fourth gene (apdC), between modules six and seven, is similar in sequence to halogenase genes. Thus, the order of domains is co-linear with the positions of amino acid residues in the finished peptide. A mutant of Anabaena 90 was made by inserting a chloramphenicol resistance gene into the apdA gene. DNA amplification by PCR confirmed the insertion. Mass spectrometry analysis showed that anabaenopeptilides are not made in the mutant strain, but other peptides, such as microcystins and anabaenopeptins, are still produced by the mutant.  相似文献   

13.
Mycobacterium smegmatis is known to form biofilms and many cell surface molecules like core glycopeptidolipids and short-chain mycolates appear to play important role in the process. However, the involvement of the cell surface molecules in mycobacteria towards complete maturation of biofilms is still not clear. This work demonstrates the importance of the glycopeptidolipid species with hydroxylated alkyl chain and the epoxylated mycolic acids, during the process of biofilm development. In our previous study, we reported the impairment of biofilm formation in rpoZ-deleted M. smegmatis, where rpoZ codes for the omega subunit of RNA polymerase (R. Mathew, R. Mukherjee, R. Balachandar, D. Chatterji, Microbiology 152 (2006) 1741). Here we report the occurrence of planktonic growth in a mc(2)155 strain which is devoid of rpoZ gene. This strain is deficient in selective incorporation of the hydroxylated glycopeptidolipids and the epoxy mycolates to their respective locations in the cell wall. Hence it forms a mutant biofilm defective in maturation, wherein the cells undertake various alternative metabolic pathways to survive in an environment where oxygen, the terminal electron acceptor, is limiting.  相似文献   

14.
Colonies of Mycobacterium smegmatis LR222 on iron-limiting (0.1 micro M Fe) minimal medium agar fluoresce under UV light due to the accumulation in the cells of the deferri form of the siderophore mycobactin. Two mutants with little or no fluorescence, designated LUN8 and LUN9, were isolated by screening colonies of transposon (Tn611)-mutagenized M. smegmatis. Ferrimycobactin prepared from iron-restricted cells of the wild type had an R(f) of 0.62 on high-performance thin-layer chromatography (HPTLC) and a characteristic visible absorption spectrum with a peak near 450 nm. Similar extracts from LUN8 cells contained a small amount of ferrimycobactin with an R(f) of 0.58 on HPTLC and an absorption spectrum with the peak shifted to a wavelength lower than that of the wild-type ferrimycobactin. Nuclear magnetic resonance spectroscopy studies suggested that the LUN8 mycobactin may have an altered fatty acid side chain. Mutant strain LUN9 produced no detectable mycobactin. Neither mutant strain produced measurable amounts of excreted mycobactin, although both excreted exochelin (the mycobacterial peptido-hydroxamate siderophore), and both mutants were more sensitive than the wild-type strain to growth inhibition by the iron chelator ethylenediamine-di(o-hydroxyphenylacetic acid). The transposon insertion sites were identified, and sequence analyses of the cloned flanking chromosome regions showed that the mutated gene in LUN9 was an orthologue of the Mycobacterium tuberculosis mycobactin biosynthetic gene mbtE. The mutated gene in LUN8 had homology with M. tuberculosis fadD33 (Rv1345), a gene that may encode an acyl-coenzyme A synthase and which previously was not known to participate in synthesis of mycobactin.  相似文献   

15.
Several species of mycobacteria express abundant glycopeptidolipids (GPLs) on the surfaces of their cells. The GPLs are glycolipids that contain modified sugars including acetylated 6-deoxy-talose and methylated rhamnose. Four methyltransferases have been implicated in the synthesis of the GPLs of Mycobacterium smegmatis and Mycobacterium avium. A rhamnosyl 3-O-methytransferase and a fatty acid methyltransferase of M. smegmatis have been previously characterized. In this paper, we characterize the methyltransferases that are responsible for modifying the hydroxyl groups at positions 2 and 4 of rhamnose and propose the biosynthetic sequence of GPL trimethylrhamnose formation. The analysis of M. avium genes through the creation of specific mutants is technically difficult; therefore, an alternative approach to determine the function of putative methyltransferases of M. avium was undertaken. Complementation of M. smegmatis methyltransferase mutants with M. avium genes revealed that MtfC and MtfB of the latter species have 4-O-methyltransferase activity and that MtfD is a 3-O-methyltransferase which can modify rhamnose of GPLs in M. smegmatis.  相似文献   

16.
Mycobacterial species are characterized by the presence of lipid-rich, hydrophobic cell envelopes. These cell envelopes contribute to properties such as roughness of colonies, aggregation of cells in liquid culture without detergent, and biofilm formation. We describe here a mutant strain of Mycobacterium smegmatis, called DL1215, which demonstrates marked deviations from the above-mentioned phenotypes. DL1215 arose spontaneously from a strain deficient for the stringent response (M. smegmatis Delta rel(Msm) strain) and is not a reversion to a wild-type phenotype. The nature of the spontaneous mutation was a single base-pair deletion in the lsr2 gene, leading to the formation of a truncated protein product. The DL1215 strain was complicated by having both inactivated rel(Msm) and lsr2 genes, and so a single lsr2 mutant was created to analyze the gene's function. The lsr2 gene was inactivated in the wild-type M. smegmatis mc(2)155 strain by allelic replacement to create strain DL2008. Strain DL2008 shows characteristics unique from those of both the wild-type and Delta rel(Msm) strains, some of which include a greatly enhanced ability to slide over agar surfaces (referred to here as "hypermotility"), greater resistance to phage infection and to the antibiotic kanamycin, and an inability to form biofilms. Complementation of the DL2008 mutant with a plasmid containing lsr2 (pLSR2) reverts the strain to the mc(2)155 phenotype. Although these phenotypic differences allude to changes in cell surface lipids, no difference is observed in glycopeptidolipids, polar lipids, apolar lipids, or mycolic acids of the cell wall.  相似文献   

17.
Serrawettin W1 produced by Serratia marcescens is a surface active exolipid having various functions supporting behaviors of bacteria on surface environments. Through the genetic analyses of serrawettin-less mutants of S. marcescens 274, the swrW gene encoding putative serrawettin W1 synthetase was identified. Homology analysis of the putative SwrW demonstrated the presence of condensation, adenylation, thiolation, and thioesterase domains which are characteristic for nonribosomal peptide synthetase (NRPS). NRPSs have been known as multi-modular enzymes. Linear alignment of these modules specifying respective amino acids will enable peptide bond formation resulting in a specific amino acid sequence. Putative SwrW was uni-modular NRPS specifying only L-serine. Possible steps in this simple unimodular NRPS for biosynthesis of serrawettin W1 [ cyclo-(D-3-hydroxydecanoyl-L-seryl) (2) ] were predicted by referring to the ingenious enzymatic activity of gramicidin S synthetase (multi-modular NRPS) of Brevibacillus brevis.  相似文献   

18.
Syringopeptin is a necrosis-inducing phytotoxin, composed of 22 amino acids attached to a 3-hydroxy fatty acid tail. Syringopeptin, produced by Pseudomonas syringae pv. syringae, functions as a virulence determinant in the plant-pathogen interaction. A 73,800-bp DNA region was sequenced, and analysis identified three large open reading frames, sypA, sypB, and sypC, that are 16.1, 16.3, and 40.6 kb in size. Sequence analysis of the putative SypA, SypB, and SypC sequences determined that they are homologous to peptide synthetases, containing five, five, and twelve amino acid activation modules, respectively. Each module exhibited characteristic domains for condensation, aminoacyl adenylation, and thiolation. Within the aminoacyl adenylation domain is a region responsible for substrate specificity. Phylogenetic analysis of the substrate-binding pockets resulted in clustering of the 22 syringopeptin modules into nine groups. This clustering reflects the substrate amino acids predicted to be recognized by each of the respective modules based on placement of the syringopeptin NRPS (nonribosomal peptide synthetase) system in the linear (type A) group. Finally, SypC contains two C-terminal thioesterase domains predicted to catalyze the release of syringopeptin from the synthetase and peptide cyclization to form the lactone ring. The syringopeptin synthetases, which carry 22 NRPS modules, represent the largest linear NRPS system described for a prokaryote.  相似文献   

19.
Lysergyl peptide synthetase 1 catalyzes the assembly of toxic ergopeptines from activated D-lysergic acid and three amino acids. The gene encoding this enzyme in the endophytic fungus Neotyphodium lolii was analyzed and compared to a homologous gene from the ergot fungus Claviceps purpurea. Each gene contained two introns, which were found in the same relative position within two modules of the gene. The 5' ends of the two genes were unusually divergent. Signature sequences determining substrate specificity were similar in adenylation domains that recognized identical amino acids but differed within the adenylation domain for the amino acid that varies between the major ergopeptines of the two fungi. Homologues were detected in several related endophytic fungi; the tall fescue endophyte Neotyphodium coenophialum contained a divergent, second copy of the gene. Our results provide new information on the structure and distribution of this important peptide synthetase involved in ergot alkaloid biosynthesis.  相似文献   

20.
Many strains of mycobacteria produce two ferric chelating substances that are termed exochelin (an excreted product) and mycobactin (a cell-associated product). These agents may function as iron acquisition siderophores. To examine the genetics of the iron acquisition system in mycobacteria, ultraviolet (UV) and transposon (Tn611 ) mutagenesis techniques were used to generate exochelin-deficient mutants of Mycobacterium smegmatis strains ATCC 607 and LR222 respectively. Mutants were identified on CAS siderophore detection agar plates. Comparisons of the amounts of CAS-reactive material excreted by the possible mutant strains with that of the wild-type strains verified that seven UV mutant strains and two confirmed transposition mutant strains were deficient in exochelin production. Cell-associated mycobactin production in the mutants appeared to be normal. From the two transposon mutants, the mutated gene regions were cloned and identified by colony hybridization with an IS6100 probe, and the DNA regions flanking the transposon insertion sites were then used as probes to clone the wild-type loci from M. smegmatis LR222 genomic DNA. Complementation assays showed that an 8 kb Pst I fragment and a 4.8 kb Pst I/SacI subclone of this fragment complemented one transposon mutant (LUN2) and one UV mutant (R92). A 10.1 kb SacI fragment restored exochelin production to the other transposon mutant (LUN1). The nucleotide sequence of the 15.3 kb DNA region that spanned the two transposon insertion sites overlapped the 5′ region of the previously reported exochelin biosynthetic gene fxbA and contained three open reading frames that were transcribed in the opposite orientation to fxbA. The corresponding genes were designated exiT, fxbB and fxbC. The deduced amino acid sequence of ExiT suggested that it was a member of the ABC transporter superfamily, while FxbB and FxbC displayed significant homology with many enzymes (including pristinamycin I synthetase) that catalyse non-ribosomal peptide synthesis. We propose that the peptide backbone of the siderophore exochelin is synthesized in part by enzymes resembling non-ribosomal peptide synthetases and that the ABC transporter ExiT is responsible for exochelin excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号