首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinal degeneration diseases (RDDs) are common and devastating eye diseases characterized by the degeneration of photoreceptors, which are highly associated with oxidative stress. Previous studies reported that mitochondrial dysfunction is associated with various neurodegenerative diseases. However, the role of mitochondrial proteostasis mainly regulated by mitophagy and mitochondrial unfolded protein response (mtUPR) in RDDs is unclear. We hypothesized that the mitochondrial proteostasis is neuroprotective against oxidative injury in RDDs. In this study, the data from our hydrogen peroxide (H2O2)-treated mouse retinal cone cell line (661w) model of RDDs showed that nicotinamide riboside (NR)-activated mitophagy increased the expression of LC3B II and PINK1, and promoted the co-localization of LC3 and mitochondria, as well as PINK1 and Parkin in the H2O2-treated 661w cells. However, the NR-induced mitophagy was remarkably reversed by chloroquine (CQ) and cyclosporine A (CsA), mitophagic inhibitors. In addition, doxycycline (DOX), an inducer of mtUPR, up-regulated the expression of HSP60 and CHOP, the key proteins of mtUPR. Activation of both mitophagy and mtUPR increased the cell viability and reduced the level of apoptosis and oxidative damage in the H2O2-treated 661w cells. Furthermore, both mitophagy and mtUPR played a protective effect on mitochondria by increasing mitochondrial membrane potential and maintaining mitochondrial mass. By contrast, the inhibition of mitophagy by CQ or CsA reversed the beneficial effect of mitophagy in the H2O2-treated 661w cells. Together, our study suggests that the mitophagy and mtUPR pathways may serve as new therapeutic targets to delay the progression of RDDs through enhancing mitochondrial proteostasis.Subject terms: Cell death, Diseases  相似文献   

2.
Currently, there is limited understanding about hormonal regulation of mitochondrial turnover. Thyroid hormone (T3) increases oxidative phosphorylation (OXPHOS), which generates reactive oxygen species (ROS) that damage mitochondria. However, the mechanism for maintenance of mitochondrial activity and quality control by this hormone is not known. Here, we used both in vitro and in vivo hepatic cell models to demonstrate that induction of mitophagy by T3 is coupled to oxidative phosphorylation and ROS production. We show that T3 induction of ROS activates CAMKK2 (calcium/calmodulin-dependent protein kinase kinase 2, β) mediated phosphorylation of PRKAA1/AMPK (5′ AMP-activated protein kinase), which in turn phosphorylates ULK1 (unc-51 like autophagy activating kinase 1) leading to its mitochondrial recruitment and initiation of mitophagy. Furthermore, loss of ULK1 in T3-treated cells impairs both mitophagy as well as OXPHOS without affecting T3 induced general autophagy/lipophagy. These findings demonstrate a novel ROS-AMPK-ULK1 mechanism that couples T3-induced mitochondrial turnover with activity, wherein mitophagy is necessary not only for removing damaged mitochondria but also for sustaining efficient OXPHOS.  相似文献   

3.
Autophagy-mediated mitochondrial degradation plays pivotal roles in both the acquisition and maintenance of pluripotency, but the molecular mechanisms that link autophagy-mediated mitochondrial homeostasis to pluripotency regulation are unclear. Here, we identified that the mitophagy receptor BNIP3 regulates pluripotency. In mouse ESCs, depletion of BNIP3 caused accumulation of aberrant mitochondria accompanied by decreased mitochondrial membrane potential, increased production of reactive oxygen species (ROS), and reduced ATP generation, which led to compromised self-renewal and differentiation. Impairment of mitophagy by knockdown of BNIP3 inhibited mitochondrial clearance during pluripotency induction, resulting in decreased reprogramming efficiency. These defects were rescued by reacquisition of wild-type but not LIR-deficient BNIP3 expression. Taken together, our findings highlight a critical role of BNIP3-mediated mitophagy in the induction and maintenance of pluripotency.Subject terms: Embryonic stem cells, Mitophagy  相似文献   

4.
Zinc plays a role in autophagy and protects cardiac cells from ischemia/reperfusion injury. This study aimed to test if zinc can induce mitophagy leading to attenuation of mitochondrial superoxide generation in the setting of hypoxia/reoxygenation (H/R) in cardiac cells. H9c2 cells were subjected to 4?h hypoxia followed by 2?h reoxygenation. Under normoxic conditions, treatments of cells with ZnCl2 increased both the LC3-II/LC3-I ratio and GFP-LC3 puncta, implying that zinc induces autophagy. Further experiments showed that endogenous zinc is required for the autophagy induced by starvation and rapamycin. Zinc down-regulated TOM20, TIM23, and COX4 both in normoxic cells and the cells subjected to H/R, indicating that zinc can trigger mitophagy. Zinc increased ERK activity and Beclin1 expression, and zinc-induced mitophagy was inhibited by PD98059 and Beclin1 siRNA during reoxygenation. Zinc-induced Beclin1 expression was reversed by PD98059, implying that zinc promotes Beclin1 expression via ERK. In addition, zinc failed to induce mitophagy in cells transfected with PINK1 siRNA and stabilized PINK1 in mitochondria. Moreover, zinc-induced PINK1 stabilization was inhibited by PD98059. Finally, zinc prevented mitochondrial superoxide generation and dissipation of mitochondrial membrane potential (ΔΨm) at reoxygenation, which was blocked by both the Beclin1 and PINK1 siRNAs, suggesting that zinc prevents mitochondrial oxidative stress through mitophagy. In summary, zinc induces mitophagy through PINK1 and Beclin1 via ERK leading to the prevention of mitochondrial superoxide generation in the setting of H/R. Clearance of damaged mitochondria may account for the cardioprotective effect of zinc on H/R injury.  相似文献   

5.
《Autophagy》2013,9(2):376-378
Mitophagy, or the selective clearance of mitochondria by autophagy, plays a key role in mitochondrial quality control. Due to their postmitotic nature and metabolic dependence on mitochondria, either insufficient or unchecked mitophagy is detrimental to neurons. To better understand signals that regulate this process, we treated primary rat cortical neurons with the electron transport chain complex I inhibitor rotenone to elicit mitophagy. The lipidomic profiles of mitochondria from control or injured neurons were analyzed by mass spectrometry, revealing a significant redistribution of cardiolipin (CL) from the inner mitochondrial membrane to the outer mitochondrial surface. Direct liposome-binding studies, computational modeling, and site-directed mutagenesis indicate that microtubule-associated protein 1 light chain 3 (MAP1LC3/LC3), a defining protein of autophagic membranes, binds to CL. Preventing this interaction inhibits rotenone-induced mitochondrial delivery to autophagosomes and lysosomes and attenuates mitochondrial loss as assessed by western blot. The CL-LC3 interaction is also important for mitophagy induced by other stimuli including 6-hydroxydopamine, another chemical model of Parkinson disease. Given that a conserved LC3 phosphorylation site is adjacent to key residues involved in CL binding, signaling pathways could potentially modulate this interaction to fine-tune the mitochondrial recycling response.  相似文献   

6.
Gian-Luca McLelland 《Autophagy》2018,14(9):1658-1660
Mitochondrial damage triggers mitochondrial quality control pathways, which act to ensure the health of the mitochondrial network. The turnover of damaged mitochondria by mitophagy is initiated by the Parkinson disease-linked genes PRKN and PINK1, and we recently investigated the role that interorganellar contact sites between the endoplasmic reticulum (ER) and the outer mitochondrial membrane (OMM) play in this pathway. In this punctum, we summarize our findings that show that the ER-OMM tether MFN2 acts as a suppressor of mitophagy through its ability to link the OMM to the ER, potentially limiting the accessibility of other ubiquitination substrates to PINK1 and PRKN. PINK1, PRKN and the AAA-ATPase VCP disrupt contact between mitochondria and the ER via MFN2 ubiquitination, retrotranslocation and turnover from the mitochondrial membrane. Our study provides insight into the role of OMM remodeling in mitophagy.  相似文献   

7.
线粒体质量控制对于线粒体网络的稳态和线粒体功能的正常发挥具有重要意义。三磷酸腺苷酶家族蛋白3A(ATAD3A)是同时参与调节线粒体结构功能、线粒体动力学和线粒体自噬等重要生物学过程的线粒体膜蛋白之一。近期研究表明,ATAD3A既可与Mic60/Mitofilin和线粒体转录因子A (TFAM)等因子相互作用以维持线粒体嵴的形态和氧化磷酸化功能,又能与发动蛋白相关蛋白1 (Drp1)结合而正性/负性调节线粒体分裂,还可作为线粒体外膜转位酶(TOM)复合物和线粒体内膜转位酶(TIM)复合物之间的桥接因子而介导PTEN诱导激酶(PINK1)输入线粒体进行加工,显示出促自噬或抗自噬活性。本文对ATAD3A在调控线粒体质量控制中的作用及其机制进行了综述。  相似文献   

8.
Mitophagy, or the selective clearance of mitochondria by autophagy, plays a key role in mitochondrial quality control. Due to their postmitotic nature and metabolic dependence on mitochondria, either insufficient or unchecked mitophagy is detrimental to neurons. To better understand signals that regulate this process, we treated primary rat cortical neurons with the electron transport chain complex I inhibitor rotenone to elicit mitophagy. The lipidomic profiles of mitochondria from control or injured neurons were analyzed by mass spectrometry, revealing a significant redistribution of cardiolipin (CL) from the inner mitochondrial membrane to the outer mitochondrial surface. Direct liposome-binding studies, computational modeling, and site-directed mutagenesis indicate that microtubule-associated protein 1 light chain 3 (MAP1LC3/LC3), a defining protein of autophagic membranes, binds to CL. Preventing this interaction inhibits rotenone-induced mitochondrial delivery to autophagosomes and lysosomes and attenuates mitochondrial loss as assessed by western blot. The CL-LC3 interaction is also important for mitophagy induced by other stimuli including 6-hydroxydopamine, another chemical model of Parkinson disease. Given that a conserved LC3 phosphorylation site is adjacent to key residues involved in CL binding, signaling pathways could potentially modulate this interaction to fine-tune the mitochondrial recycling response.  相似文献   

9.
Degradation of mitochondria via a selective form of autophagy, named mitophagy, is a fundamental mechanism conserved from yeast to humans that regulates mitochondrial quality and quantity control. Mitophagy is promoted via specific mitochondrial outer membrane receptors, or ubiquitin molecules conjugated to proteins on the mitochondrial surface leading to the formation of autophagosomes surrounding mitochondria. Mitophagy‐mediated elimination of mitochondria plays an important role in many processes including early embryonic development, cell differentiation, inflammation, and apoptosis. Recent advances in analyzing mitophagy in vivo also reveal high rates of steady‐state mitochondrial turnover in diverse cell types, highlighting the intracellular housekeeping role of mitophagy. Defects in mitophagy are associated with various pathological conditions such as neurodegeneration, heart failure, cancer, and aging, further underscoring the biological relevance. Here, we review our current molecular understanding of mitophagy, and its physiological implications, and discuss how multiple mitophagy pathways coordinately modulate mitochondrial fitness and populations.  相似文献   

10.
《Autophagy》2013,9(3):275-277
The degradation and recycling of mitochondria is an important household chore in eukaryotic cells. It is thought that mitochondrial autophagy, or mitophagy, is the major route by which mitochondria are degraded. In this view, the cell would selectively induce mitophagy to expunge malfunctioning mitochondria, thus ridding the cell of troublesome sources of reactive oxygen species, apoptosis-inducing factors, or unnecessary metabolic burden. This standard view of mitophagy, in addition to some experimental reports, points to a pro-survival role of mitophagy. However, there is also a significant amount of evidence that suggests a pro-death role of this process, some of it coming from studies in yeast. Aup1 is a protein phosphatase homolog that shows a genetic interaction with the Atg1 protein kinase, localizes to mitochondria, and is required for mitophagy under stationary phase conditions in lactate medium. In contrast with previous yeast studies on mitophagy, deletion of AUP1 results in decreased viability under mitophagy-inducing conditions, suggesting a pro-survival role under physiologically relevant conditions. Thus, the Janus-faced nature of mitophagy is conserved between yeast and mammalian systems.

Addendum to:

Aup1p, a Yeast Mitochondrial Protein Phosphatase Homolog, is Required for Efficient Stationary Phase Mitophagy and Cell Survival

R. Tal, G. Winter, N. Ecker, D.J. Klionsky and H. Abeliovich

J Biol Chem 2006; 282: 5617-24  相似文献   

11.
Sepsis, a severe response to infection, leads to excessive inflammation and is the major cause of mortality in intensive care units. Mitochondria have been shown to influence the outcome of septic injury. We have previously shown that MAP kinase kinase 3 (MKK3)−/− mice are resistant to septic injury and MKK3−/− macrophages have improved mitochondrial function. In this study we examined processes that lead to improved mitochondrial quality in MKK3−/− mouse embryonic fibroblasts (MEFs) and specifically the role of mitophagy in mitochondrial health. MKK3−/− MEFs had lower inflammatory cytokine release and oxidant production after lipopolysaccharide (LPS) stimulation, confirming our earlier observations. MKK3−/− MEFs had better mitochondrial function as measured by mitochondrial membrane potential (MMP) and ATP, even after LPS treatment. We observed higher mitophagy in MKK3−/− MEFs compared to wild type (WT). Transmission electron microscopy studies showed longer and larger mitochondria in MKK3−/− MEFs, indicative of healthier mitochondria. We performed a SILAC (stable isotope labeling by/with amino acids in cell culture) study to assess differences in mitochondrial proteome between WT and MKK3−/− MEFs and observed increased expression of tricarboxylic acid (TCA) cycle enzymes and respiratory complex subunits. Further, inhibition of mitophagy by Mdivi1 led to loss in MMP and increased cytokine secretion after LPS treatment in MKK3−/− MEFs. In conclusion, this study demonstrates that MKK3 influences mitochondrial quality by affecting the expression of mitochondrial proteins, including TCA cycle enzymes, and mitophagy, which consequently regulates the inflammatory response. Based on our results, MKK3 could be a potential therapeutic target for inflammatory diseases like sepsis.  相似文献   

12.
Mitophagy, the selective removal of damaged or excess mitochondria by autophagy, is an important process in cellular homeostasis. The outer mitochondrial membrane (OMM) proteins NIX, BNIP3, FUNDC1, and Bcl2‐L13 recruit ATG8 proteins (LC3/GABARAP) to mitochondria during mitophagy. FKBP8 (also known as FKBP38), a unique member of the FK506‐binding protein (FKBP) family, is similarly anchored in the OMM and acts as a multifunctional adaptor with anti‐apoptotic activity. In a yeast two‐hybrid screen, we identified FKBP8 as an ATG8‐interacting protein. Here, we map an N‐terminal LC3‐interacting region (LIR) motif in FKBP8 that binds strongly to LC3A both in vitro and in vivo. FKBP8 efficiently recruits lipidated LC3A to damaged mitochondria in a LIR‐dependent manner. The mitophagy receptors BNIP3 and NIX in contrast are unable to mediate an efficient recruitment of LC3A even after mitochondrial damage. Co‐expression of FKBP8 with LC3A profoundly induces Parkin‐independent mitophagy. Strikingly, even when acting as a mitophagy receptor, FKBP8 avoids degradation by escaping from mitochondria. In summary, this study identifies novel roles for FKBP8 and LC3A, which act together to induce mitophagy.  相似文献   

13.
Mitophagy is a process that selectively degrades mitochondria. When mitophagy is induced in yeast, the mitochondrial outer membrane protein Atg32 is phosphorylated, interacts with the adaptor protein Atg11 and is recruited into the vacuole with mitochondria. We screened kinase‐deleted yeast strains and found that CK2 is essential for Atg32 phosphorylation, Atg32–Atg11 interaction and mitophagy. Inhibition of CK2 specifically blocks mitophagy, but not macroautophagy, pexophagy or the Cvt pathway. In vitro, CK2 phosphorylates Atg32 at serine 114 and serine 119. We conclude that CK2 regulates mitophagy by directly phosphorylating Atg32.  相似文献   

14.
Mitochondrial diseases are considered rare genetic disorders characterized by defects in oxidative phosphorylation (OXPHOS). They can be provoked by mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). MERRF (Myoclonic Epilepsy with Ragged-Red Fibers) syndrome is one of the most frequent mitochondrial diseases, principally caused by the m.8344A>G mutation in mtDNA, which affects the translation of all mtDNA-encoded proteins and therefore impairs mitochondrial function.In the present work, we evaluated autophagy and mitophagy flux in transmitochondrial cybrids and fibroblasts derived from a MERRF patient, reporting that Parkin-mediated mitophagy is increased in MERRF cell cultures. Our results suggest that supplementation with coenzyme Q10 (CoQ), a component of the electron transport chain (ETC) and lipid antioxidant, prevents Parkin translocation to the mitochondria. In addition, CoQ acts as an enhancer of autophagy and mitophagy flux, which partially improves cell pathophysiology. The significance of Parkin-mediated mitophagy in cell survival was evaluated by silencing the expression of Parkin in MERRF cybrids. Our results show that mitophagy acts as a cell survival mechanism in mutant cells.To confirm these results in one of the main affected cell types in MERRF syndrome, mutant induced neurons (iNs) were generated by direct reprogramming of patients-derived skin fibroblasts. The treatment of MERRF iNs with Guttaquinon CoQ10 (GuttaQ), a water-soluble derivative of CoQ, revealed a significant improvement in cell bioenergetics. These results indicate that iNs, along with fibroblasts and cybrids, can be utilized as reliable cellular models to shed light on disease pathomechanisms as well as for drug screening.  相似文献   

15.
[Cu(ttpy-tpp)Br2]Br (abbreviated as CTB) is a novel mitochondrion-targeting copper(II) complex synthesized by our research group, which contains tri-phenyl-phosphonium (TPP) groups as its lipophilic property. In this study, we explored how CTB affects mitochondrial functions and exerts its anti-tumour activity. Multiple functional and molecular analyses including Seahorse XF Bioanalyzer Platform, Western blot, immunofluorescence analysis, co-immunoprecipitation and transmission electron microscopy were used to elucidate the underlying mechanisms. Human hepatoma cells were subcutaneously injected into right armpit of male nude mice for evaluating the effects of CTB in vivo. We discovered that CTB inhibited aerobic glycolysis and cell acidification by impairing the activity of HK2 in hepatoma cells, accompanied by dissociation of HK2 from mitochondria. The modification of HK2 not only led to the complete dissipation of mitochondrial membrane potential (MMP) but also promoted the opening of mitochondrial permeability transition pore (mPTP), contributing to the activation of mitophagy. In addition, CTB co-ordinately promoted dynamin-related protein 1 (Drp1) recruitment in mitochondria to induce mitochondrial fission. Our findings established a previously unrecognized role for copper complex in aerobic glycolysis of tumour cells, revealing the interaction between mitochondrial HK2-mediated mitophagy and Drp1-regulated mitochondrial fission.  相似文献   

16.
Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN‐independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1‐dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.  相似文献   

17.
Mitophagy, the autophagic removal of mitochondria, occurs through a highly selective mechanism. In the yeast Saccharomyces cerevisiae, the mitochondrial outer membrane protein Atg32 confers selectivity for mitochondria sequestration as a cargo by the autophagic machinery through its interaction with Atg11, a scaffold protein for selective types of autophagy. The activity of mitophagy in vivo must be tightly regulated considering that mitochondria are essential organelles that produce most of the cellular energy, but also generate reactive oxygen species that can be harmful to cell physiology. We found that Atg32 was proteolytically processed at its C terminus upon mitophagy induction. Adding an epitope tag to the C terminus of Atg32 interfered with its processing and caused a mitophagy defect, suggesting the processing is required for efficient mitophagy. Furthermore, we determined that the mitochondrial i-AAA protease Yme1 mediated Atg32 processing and was required for mitophagy. Finally, we found that the interaction between Atg32 and Atg11 was significantly weakened in yme1∆ cells. We propose that the processing of Atg32 by Yme1 acts as an important regulatory mechanism of cellular mitophagy activity.  相似文献   

18.
Mitochondria are cellular organelles that are involved in various metabolic processes, and damage to mitochondria can affect cell health and even lead to disease. Mitophagy is a mechanism by which cells selectively wrap and degrade damaged mitochondria to maintain cell homeostasis. However, studies have not focused on whether mitophagy is involved in the occurrence of Staphylococcus aureus (S. aureus)-induced mastitis in dairy cows. Here, we found that S. aureus infection of bovine macrophages leads to oxidative damage and mitochondria damage. The expression of LC3, PINK1 and Parkin was significantly increased after intracellular infection. We observed changes in the morphology of mitochondria and the emergence of mitochondrial autolysosomes in bovine macrophages by transmission electron microscopy and found that enhanced mitophagy promoted bacterial proliferation in the cell. In conclusion, this study demonstrates that S. aureus infection of bovine macrophages induces mitophagy through the PINK1/Parkin pathway, and this mechanism is used by the bacteria to avoid macrophage-induced death. These findings provide new ideas and references for the prevention and treatment of S. aureus infection.  相似文献   

19.
Macroautophagy/autophagy is the process by which cellular components are degraded and recycled within the lysosome. These components include mitochondria, the selective degradation of which is known as mitophagy. Mitochondria are dynamic organelles that constantly adapt their morphology, function, and number to accommodate the metabolic needs of the cell. Extensive metabolic reconfiguration occurs during cell differentiation, when mitochondrial activity increases in most cell types. However, our data demonstrate that during physiologic retinal ganglion cell (RGC) development, mitophagy-dependent metabolic reprogramming toward glycolysis regulates numbers of RGCs, which are the first neurons to differentiate in the retina and whose axons form the optic nerve. We show that during retinal development tissue hypoxia triggers HIF1A/HIF-1 stabilization, resulting in increased expression of the mitophagy receptor BNIP3L/NIX. BNIP3L-dependent mitophagy results in a metabolic shift toward glycolysis essential for RGC neurogenesis. Moreover, we demonstrate that BNIP3L-dependent mitophagy also regulates the polarization of proinflammatory/M1 macrophages, which undergo glycolysis-dependent differentiation during the inflammatory response. Our results uncover a new link between hypoxia, mitophagy, and metabolic reprogramming in the differentiation of several cell types in vivo. These findings may have important implications for neurodegenerative, metabolic and other diseases in which mitochondrial dysfunction and metabolic alterations play a prominent role.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号