首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitochondrial fragmentation due to imbalanced fission and fusion of mitochondria is a prerequisite for mitophagy, however, the exact “coupling” of mitochondrial dynamics and mitophagy remains unclear. We have previously identified that FUNDC1 recruits MAP1LC3B/LC3B (LC3) through its LC3-interacting region (LIR) motif to initiate mitophagy in mammalian cells. Here, we show that FUNDC1 interacts with both DNM1L/DRP1 and OPA1 to coordinate mitochondrial fission or fusion and mitophagy. OPA1 interacted with FUNDC1 via its Lys70 (K70) residue, and mutation of K70 to Ala (A), but not to Arg (R), abolished the interaction and promoted mitochondrial fission and mitophagy. Mitochondrial stress such as selenite or FCCP treatment caused the disassembly of the FUNDC1-OPA1 complex while enhancing DNM1L recruitment to the mitochondria. Furthermore, we observed that dephosphorylation of FUNDC1 under stress conditions promotes the dissociation of FUNDC1 from OPA1 and association with DNM1L. Our data suggest that FUNDC1 regulates both mitochondrial fission or fusion and mitophagy and mediates the “coupling” across the double membrane for mitochondrial dynamics and quality control.  相似文献   

2.
Uncoupling protein 2 (UCP2), located in the mitochondrial inner membrane, is a predominant isoform of UCP that expressed in the heart and other tissues of human and rodent tissues. Nevertheless, its functional role during myocardial ischemia/reperfusion (I/R) is not entirely understood. Ischemic preconditioning (IPC) remarkably improved postischemic functional recovery followed by reduced lactate dehydrogenase (LDH) release with simultaneous upregulation of UCP2 in perfused myocardium. We then investigated the role of UCP2 in IPC-afforded cardioprotective effects on myocardial I/R injury with adenovirus-mediated in vivo UCP2 overexpression (AdUCP2) and knockdown (AdshUCP2). IPC-induced protective effects were mimicked by UCP2 overexpression, while which were abolished with silencing UCP2. Mechanistically, UCP2 overexpression significantly reinforced I/R-induced mitochondrial autophagy (mitophagy), as measured by biochemical hallmarks of mitochondrial autophagy. Moreover, primary cardiomyocytes infected with AdUCP2 increased simulated ischemia/reperfusion (sI/R)-induced mitophagy and therefore reversed impaired mitochondrial function. Finally, suppression of mitophagy with mdivi-1 in cultured cardiomyocytes abolished UCP2-afforded protective effect on sI/R-induced mitochondrial dysfunction and cell death. Our data identify a critical role for UCP2 against myocardial I/R injury through preventing the mitochondrial dysfunction through reinforcing mitophagy. Our findings reveal novel mechanisms of UCP2 in the cardioprotective effects during myocardial I/R.  相似文献   

3.
Rationale: Myocardial ischemia/reperfusion (I/R) injury is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction (AMI). The mitochondrial F1Fo-ATPase inhibitory factor 1 (IF1) blocks the reversal of the F1Fo-ATP synthase to prevent detrimental consumption of cellular ATP and associated demise. In the present study, we study the role and mechanism of IF1 in myocardial I/R injury.Methods: Mice were ligated the left anterior descending coronary artery to build the I/R model in vivo. Rat hearts were isolated and perfused with constant pressure according to Langendorff. Also, neonatal cardiomyocytes hypoxia-reoxygenation (H/R) model was also used. Myocardial infarction area, cardiac function, cellular function, and cell viability was conducted and compared.Results: Our data revealed that IF1 is upregulated in hearts after I/R and cardiomyocytes with hypoxia/re-oxygenation (H/R). IF1 delivered with adenovirus and adeno-associated virus serotype 9 (AAV9) ameliorated cardiac dysfunction and pathological development induced by I/R ex vivo and in vivo. Mechanistically, IF1 stimulates glucose uptake and glycolysis activity and stimulates AMPK activation during in vivo basal and I/R and in vitro OGD/R conditions, and activation of AMPK by IF1 is responsible for its cardioprotective effects against H/R-induced injury.Conclusions: These results suggest that increased IF1 in the I/R heart confer cardioprotective effects via activating AMPK signaling. Therefore, IF1 can be used as a potential therapeutic target for the treatment of pathological ischemic injury and heart failure.  相似文献   

4.
ObjectivesMitophagy is considered to be a key mechanism in the pathogenesis of intestinal ischaemic reperfusion (IR) injury. NOD‐like receptor X1 (NLRX1) is located in the mitochondria and is highly expressed in the intestine, and is known to modulate ROS production, mitochondrial damage, autophagy and apoptosis. However, the function of NLRX1 in intestinal IR injury is unclear.Materials and methodsNLRX1 in rats with IR injury or in IEC‐6 cells with hypoxia reoxygenation (HR) injury were measured by Western blotting, real‐time PCR and immunohistochemistry. The function of NLRX1‐FUNDC1‐NIPSNAP1/NIPSNAP2 axis in mitochondrial homeostasis and cell apoptosis were assessed in vitro.ResultsNLRX1 is significantly downregulated following intestinal IR injury. In vivo studies showed that rats overexpressing NLRX1 exhibited resistance against intestinal IR injury and mitochondrial dysfunction. These beneficial effects of NLRX1 overexpression were dependent on mitophagy activation. Functional studies showed that HR injury reduced NLRX1 expression, which promoted phosphorylation of FUN14 domain‐containing 1 (FUNDC1). Based on immunoprecipitation studies, it was evident that phosphorylated FUNDC1 could not interact with the mitophagy signalling proteins NIPSNAP1 and NIPSNAP2 on the outer membrane of damaged mitochondria, which failed to launch the mitophagy process, resulting in the accumulation of damaged mitochondria and epithelial apoptosis.ConclusionsNLRX1 regulates mitophagy via FUNDC1‐NIPSNAP1/NIPSNAP2 signalling pathway. Thus, this study provides a potential target for the development of a therapeutic strategy for intestinal IR injury.  相似文献   

5.
In hypoxic cells, dysfunctional mitochondria are selectively removed by a specialized autophagic process called mitophagy. The ER–mitochondrial contact site (MAM) is essential for fission of mitochondria prior to engulfment, and the outer mitochondrial membrane protein FUNDC1 interacts with LC3 to recruit autophagosomes, but the mechanisms integrating these processes are poorly understood. Here, we describe a new pathway mediating mitochondrial fission and subsequent mitophagy under hypoxic conditions. FUNDC1 accumulates at the MAM by associating with the ER membrane protein calnexin. As mitophagy proceeds, FUNDC1/calnexin association attenuates and the exposed cytosolic loop of FUNDC1 interacts with DRP1 instead. DRP1 is thereby recruited to the MAM, and mitochondrial fission then occurs. Knockdown of FUNDC1, DRP1, or calnexin prevents fission and mitophagy under hypoxic conditions. Thus, FUNDC1 integrates mitochondrial fission and mitophagy at the interface of the MAM by working in concert with DRP1 and calnexin under hypoxic conditions in mammalian cells.  相似文献   

6.
The current therapeutic strategy for the management of acute myocardial infarction (AMI) is to return blood flow into the occluded coronary artery of the heart, a process defined as reperfusion. However, reperfusion itself can increase mortality rates in AMI patients because of cardiac tissue damage and dysfunction, which is termed ‘ischaemia/reperfusion (I/R) injury’. Mitochondria play an important role in myocardial I/R injury as disturbance of mitochondrial dynamics, especially excessive mitochondrial fission, is a predominant cause of cardiac dysfunction. Therefore, pharmacological intervention and therapeutic strategies which modulate the mitochondrial dynamics balance during I/R injury could exert great beneficial effects to the I/R heart. This review comprehensively summarizes and discusses the effects of mitochondrial fission inhibitors as well as mitochondrial fusion promoters on cardiac and mitochondrial function during myocardial I/R injury. The comparison of the effects of both compounds given at different time‐points during the course of I/R injury (i.e. prior to ischaemia, during ischaemia and at the reperfusion period) are also summarized and discussed. Finally, this review also details important information which may contribute to clinical practices using these drugs to improve the quality of life in AMI patients.  相似文献   

7.
Higenamine, a plant-based alkaloid, exhibits various properties, such as antiapoptotic and antioxidative effects. Previous studies proved that higenamine possesses potential therapeutic effects for ischemia/reperfusion (I/R) injuries. However, the role of higenamine in cerebral I/R injury has not been fully evaluated. Therefore, we aimed to investigate the effect of higenamine on cerebral I/R injury and the potential mechanism. Our data showed that higenamine ameliorated oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal cells injury. Induction of reactive oxygen species and malonaldehyde production, and the inhibition of superoxide dismutase and glutathione peroxidase activity caused by OGD/R were attenuated by higenamine. In addition, higenamine inhibited the increases in caspase-3 activity and Bax expression, and inhibited the decrease in Bcl-2 expression. Furthermore, higenamine elevated the expression levels of p-Akt, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2). The inhibitor of PI3K/Akt (LY294002) abolished the protective effects of higenamine on OGD/R-induced neuronal cells. These findings indicated that higenamine protects neuronal cells against OGD/R-induced injury by regulating the Akt and Nrf2/HO-1-signaling pathways. Collectively, higenamine might be considered as new strategy for the prevention and treatment of cerebral I/R injury.  相似文献   

8.
目的:探讨葛根素(puerarin,Pue)预处理抗心肌缺血/复灌(ischemia/reperfusion,I/R)损伤是否与线粒体渗透性转换孔和/或线粒体ATP敏感性钾通道有关。方法:采用离体大鼠心脏Leangendorff灌流方法,全心停灌30min,复灌120min复制I/R模型。测定心室力学指标和复灌各时间点冠脉流出液中乳酸脱氢酶(LDH)含量。实验结束测定心肌组织formazan量的变化。结果:与单纯I/R组相比,Pue(0.24mmol/L,5min)预处理明显提高心肌细胞的formazan含量,降低复灌期间冠脉流出液中LDH含量,明显促进左室发展压、左心室内压最大上升和下降速率、心率与发展压乘积和左室舒张末压力的恢复,缓解冠脉流量的减少。线粒体渗透性转换孔开放剂苍术苷(20μmol/L。复灌前给药20min)和线粒体ATP敏感性钾通道抑制剂5-羟基癸酸(100μmol/L,缺血前给药20min)能明显减弱Pue的保护作用。结论:在大鼠离体心脏灌流模型上,Pue预处理具有抗心脏缺血/复灌损伤的作用,这种保护作用可能与其抑制线粒体渗透性转换孔的开放和促进线粒体ATP敏感性钾通道的开放有关。  相似文献   

9.
Mitochondrial dynamic disorder is involved in myocardial ischemia/reperfusion (I/R) injury. To explore the effect of mitochondrial calcium uniporter (MCU) on mitochondrial dynamic imbalance under I/R and its related signal pathways, a mouse myocardial I/R model and hypoxia/reoxygenation model of mouse cardiomyocytes were established. The expression of MCU during I/R increased and related to myocardial injury, enhancement of mitochondrial fission, inhibition of mitochondrial fusion and mitophagy. Suppressing MCU functions by Ru360 during I/R could reduce myocardial infarction area and cardiomyocyte apoptosis, alleviate mitochondrial fission and restore mitochondrial fusion and mitophagy. However, spermine administration, which could enhance MCU function, deteriorated the above‐mentioned myocardial cell injury and mitochondrial dynamic imbalanced. In addition, up‐regulation of MCU promoted the expression and activation of calpain‐1/2 and down‐regulated the expression of Optic atrophy type 1 (OPA1). Meantime, in transgenic mice (overexpression calpastatin, the endogenous inhibitor of calpain) I/R model and OPA1 knock‐down cultured cell. In I/R models of transgenic mice over‐expressing calpastatin, which is the endogenous inhibitor of calpain, and in H/R models with siOPA1 transfection, inhibition of calpains could enhance mitochondrial fusion and mitophagy, and inhibit excessive mitochondrion fission and apoptosis through OPA1. Therefore, we conclude that during I/R, MCU up‐regulation induces calpain activation, which down‐regulates OPA1, consequently leading to mitochondrial dynamic imbalance.  相似文献   

10.
Zhong N  Zhang Y  Zhu HF  Zhou ZN 《生理学报》2000,52(5):375-380
本文用离体Langendorff灌流大鼠心脏造成急性心肌缺血/再灌注损伤模型,观察间歇性低氧暴露保护心肌线粒体的作用。以聚合酶链式反应(PCR)方法和电子显微镜技术,观察线粒体DNA(mtDNA^4834)片段缺失和超微结构的变化。大鼠暴露于模拟海拔5000米低氧环境(6h/d,28d)明显降低mtDNA^4834缺失的发生率(28.57%,vs常氧对照组87.5% P〈0.05);而且能够明显减  相似文献   

11.
目的:探讨乙酰胆碱(ACh)预处理抗心肌缺血复灌(I/R)损伤作用及其与线粒体渗透性转换孔和/或线粒体ATP敏感性钾通道的关系。方法:采用离体大鼠心脏Langendorff灌流方法进行全心停灌30min,复灌120min复制I/R模型。测定心室力学指标和复灌各时间点冠脉流出液中乳酸脱氢酶(LDH)含量。实验结束测定心肌组织formazan含量的变化。结果:与单纯I/R组相比,ACh(0.1μmol/L,5min)预处理明显提高心肌细胞的formazan含量,降低复灌期间冠脉流出液中LDH含量,明显改善I/R所致的左室发展压、左心室内压最大上升和下降速率、心率与发展压乘积和左室舒张末压力的下降,缓解冠脉流量的减少。线粒体渗透性转换孔开放剂苍术苷(20μmol/L,复灌前给药20min)和线粒体ATP敏感性钾通道抑制剂5-羟基癸酸(100μmol/L,缺血前给药20min)能明显减弱ACh的保护作用。结论:在大鼠离体心脏灌流模型上,ACh预处理具有抗心脏缺血/复灌损伤的作用,这种保护作用可能与其抑制线粒体渗透性转换孔的开放和促进线粒体ATP敏感性钾通道的开放有关。  相似文献   

12.
When loaded with high (pathological) levels of Ca2+, mitochondria become swollen and uncoupled as the result of a large non-specific increase in membrane permeability. This process, known as the mitochondrial permeability transition (MPT), is exacerbated by oxidative stress and adenine nucleotide depletion. These conditions match those that a heart experiences during reperfusion following a period of ischaemia. The MPT is caused by the opening of a non-specific pore that can be prevented by sub-micromolar concentrations of cyclosporin A (CsA). A variety of conditions that increase the sensitivity of pore opening to [Ca2+], such as thiol modification, oxidative stress, increased matrix volume and chaotropic agents, all enhance the binding of matrix cyclophilin (CyP) to the inner mitochondrial membrane in a CsA-sensitive manner. In contrast, ADP, membrane potential and low pH decrease the sensitivity of pore opening to [Ca2+] without affecting CyP binding. We present a model of pore opening involving CyP binding to a membrane target protein followed by Ca2+-dependent triggering of a conformational change to induce channel opening. Using the ischaemic/reperfused rat heart we have shown that the mitochondrial pore does not open during ischaemia, but does do so during reperfusion. Recovery of heart during reperfusion is improved in the presence of 0.2 µM CsA, suggesting that the MPT may be critical in the transition from reversible to irreversible reperfusion injury. (Mol Cell Biochem 174: 167–172, 1997)  相似文献   

13.
目的:观察吸入适量一氧化碳(CO)对大鼠肢体缺血/再灌注(I/R)损伤的防治作用。方法:SD大鼠44只,随机分为假手术(S)、I/R、I/R吸入CO(RC)组;通过夹闭股动脉4h、再开放48h,复制肢体I/R损伤模型;RC组行再灌注时,使动物吸入含有CO的医用空气(CO的体积分数为0.05%),其余两组呼吸正常空气;对比观测缺血肢体大体及骨骼肌组织病理学、缺血肢体湿干重比值(W/D)的变化,流式细胞仪检测肌组织中Bax、Bcl-2的表达水平及细胞凋亡百分比,全自动生化分析仪检测血清乳酸脱氢酶(LDH)和肌酸激酶(CK)的变化。结果:与I/R组比较,RC组动物W/D、血清LDH及CK含量、肌组织中Bax表达水平及细胞凋亡百分比均显著降低,肌组织Bcl-2表达水平显著升高,缺血肢体大体观及肌组织病理学明显改善。结论:吸入适量浓度的外源性CO对肢体I/R损伤有防治作用。  相似文献   

14.
Liu HT  Zhang HF  Si R  Zhang QJ  Zhang KR  Guo WY  Wang HC  Gao F 《生理学报》2007,59(5):651-659
我们前期研究表明胰岛素可激活细胞内信号转导机制如磷脂酰肌醇3.激酶.蛋白激酶B.内皮型一氧化氮合酶.一氧化氮(P13-K-Akt-eNOS-NO)信号通路,减轻心肌缺血/再灌注(ischemia/reperfusion,I/R)损伤,改善缺血后心肌功能恢复。然而c-Jun氨基末端激酶(c-JunNH2-terminal kinase,JNK)信号通路在胰岛素保护I/R心肌中的作用尚不清楚,本研究旨在探讨JNK信号通路在胰岛素保护I/R心肌中的作用及其与P13.K/Akt信号通路间的相互关系。离体Sprague-Dawley大鼠心脏缺血30min后施行2h或4h的再灌注,缺血前用LY294002(15mmol/L)和SP600125(10mmol/L)灌注15min,分别阻断P13.K/Akt和磷酸化JNK(phosphorylated.JNK,p-JNK)活化,观测心脏功能、心肌梗死、细胞凋亡和蛋白磷酸化水平。与对照组相比,胰岛素再灌注2h后,心率、左心室发展压和左心室收缩/舒张最大速率均明显增加,梗死面积减少约16.1%[(28.9±2.0)%vs(45.0±4.0)%,n=6,P〈O.01],细胞凋亡指数从(27.6±113)%减少到(16.0±0.7)%(n=6,P〈O.01),Akt的活性增加1.7倍(n=6,P〈0.05),同时JNK活性增加1.5倍铆=6,P〈O.05)。用LY294002处理后,胰岛素对I/R心肌的保护作用消失;而用SP600125处理可增强胰岛素的保护作用,且可部分逆转LY294002的抑制作用。进一步观察发现SP600125减弱了Akt的磷酸化m=6,P〈0.05)。上述结果表明,在I/R心肌中,胰岛素可同时激活P13.K/Akt及JNK信号通路,且通过后者进一步增加Akt活化,从而减轻I/R损伤,改善心肌功能。这种P13.K/Akt与JNK信号通路交互机制对胰岛素保护I/R心肌有重要意义。  相似文献   

15.
Several studies have shown the role of microRNAs (miRNAs) in myocardial dysfunction in response to ischemia/reperfusion (I/R). In this study, we investigated the impact of high fat (HF) diet in the myocardial susceptibility to I/R injury, as well as in the expression of miRNA-29b. Isolated heart experiments using the ex vivo Langendorff perfusion model were used to induce cardiac I/R injury. HF diet-induced cardiac hypertrophy and impaired cardiac functional recovery after I/R. miRNA-29b, which targets Col1, was reduced in the heart of HF diet-fed mice, whereas the cardiac expression of Col1 was increased. In addition, hypoxia–reoxygenation (H/R) reduced the expression of miRNA-29b in cardiomyoblasts cultures. However, the overexpression of miRNA-29b in cardiomyoblasts reduced p53 mRNA levels and H/R injury, suggesting that downregulation of miRNA-29b may be involved in I/R injury. Together, our findings suggest that the reduced expression of miRNA-29b may be involved in the deteriorated cardiac functional recovery following I/R in obese mice.  相似文献   

16.
New treatments are needed to protect the myocardium against the detrimental effects of acute ischaemia/reperfusion (IR) injury following an acute myocardial infarction (AMI), in order to limit myocardial infarct (MI) size, preserve cardiac function and prevent the onset of heart failure (HF). Given the critical role of mitochondria in energy production for cardiac contractile function, prevention of mitochondrial dysfunction during acute myocardial IRI may provide novel cardioprotective strategies. In this regard, the mitochondrial fusion and fissions proteins, which regulate changes in mitochondrial morphology, are known to impact on mitochondrial quality control by modulating mitochondrial biogenesis, mitophagy and the mitochondrial unfolded protein response. In this article, we review how targeting these inter‐related processes may provide novel treatment targets and new therapeutic strategies for reducing MI size, preventing the onset of HF following AMI.  相似文献   

17.
目的 :探讨黄芪、硫酸锌对肠缺血 /再灌注 (I/R)后红细胞 (RBC)膜微粘度的影响并探讨其作用机制。方法 :复制家兔肠I/R损伤模型 ,检测给予黄芪、硫酸锌后肠I/R损伤家兔RBC膜微粘度的变化 ,同时检测RBC超氧化物歧化酶 (SOD)、RBC膜及重要器官组织丙二醛 (MDA)含量及血浆黄嘌呤氧化酶 (XO)活性 ,并与I/R组及假手术组比较。分析膜微粘度与SOD、MDA、XO之间的关系。结果 :黄芪、硫酸锌可使RBC膜微粘度、膜和器官组织MDA及血浆XO活性降低 ,且可防止SOD减少 (P <0 .0 1 )。结论 :黄芪、硫酸锌通过抗脂质过氧化能稳定RBC膜 ,改善RBC膜微粘度 ,进而改善重要器官的血流动力学 ,避免了I/R损伤的进行性加剧  相似文献   

18.
Myocardial ischemia/reperfusion (I/R) injury is recognized as the leading cause of death worldwide. However, the molecular mechanisms involved in this process are still not fully understood. We previously reported that the combined action of Notch1 and Keap1-NRF2 signaling pathway can significantly increase the activity of cardiomyocytes, inhibit the apoptosis of cardiomyocytes, reduce the formation of reactive oxygen species, and improve the antioxidant activity in neonate rat myocardial cells. However, the regulatory mechanism of Notch1 signaling pathway on the NRF2 signaling pathway and its actual role on I/R injury are still unclear. Herein, we found that Keap-NRF2 signaling is activated by Notch1 in RBP-Jκ dependent manner, thus protects the heart against I/R injury via inhibiting the mitochondrial ROS generation and improves the mitochondrial bioenergetics in vitro and in vivo. These results suggest that Keap-NRF2 signaling might become a promising therapeutic strategy for treating myocardial I/R injury.  相似文献   

19.
缺血预处理对缺血/再灌注离体心脏的保护作用   总被引:2,自引:0,他引:2  
目的:探讨连续多次短暂缺血预处理对缺血/再灌注损伤心肌的保护作用及机制。方法:采用大鼠离体心脏Lan-gendorff灌流模型,观察缺血预处理对心肌缺血/再灌注后不同时间点冠脉流出液中AST、CPK、UDH及冠脉流量,心肌组织中SOD、LPO以及再灌注性心律失常的影响。结果:缺血预处理可以减少缺血/再灌注损伤的心肌冠脉流出液中AST、CPK、LDH的含量,提高心肌SOD活性,降低LPO水平,并且抑制再灌注性心律失常的发生,提高再灌注期间的冠脉流量。结论:缺血预处理对心肌缺血/再灌注损伤具有一定保护作用。  相似文献   

20.
目的:通过观察肝素钠对肢体缺血/再灌注(LI/R)过程中肠系膜微循环的动态变化和血液流变性的影响,探讨肝素减轻LI/R损伤的可能机制,为LI/R损伤的防治提供理论依据。方法:实验采用本室常规方法复制大鼠LI/R模型,正常雄性Wistar大鼠20只,随机分为2组(n=10):肝素组(H组)和单纯缺血/再灌注组(I/R组),两组动物均于再灌注损伤后2h时动态观察肠系膜微血管管径、血流速度、白细胞黏附、白微栓及微血管壁的完整性(管周出血)等情况,同时测定各组动物血液流变学指标和血清中P-选择素和细胞间粘附分子1(ICAM-1)的值。结果:肠系膜微动、静脉管径扩张,血流速度减慢,微血管中大量白细胞贴壁、粘附,白微栓形成增多,与I/R组比较,H组大鼠肠系膜微动脉血流速度(AFV)和微静脉血流速度(VFV)显著下降(P0.01);血浆黏度(ηp)、全血低切还原黏度(Lηre)、全血高切还原黏度(Hηre)、红细胞压积(Hct)、红细胞聚集指数(EAI)、血沉方程K值(ESRK)、红细胞刚性指数(TK)均显著下降(P0.01);红细胞变形指数(EDI)显著升高(P0.01);血清中P-选择素、ICAM-1水平均显著下降(P0.01)。结论:肝素可能通过降低血清中P-选择素和ICAM-1的水平而改善肢体缺血/再灌注损伤大鼠的全身微循环状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号