首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In diabetic cardiomyopathy (DCM), a major diabetic complication, the myocardium is structurally and functionally altered without evidence of coronary artery disease, hypertension or valvular disease. Although numerous anti-diabetic drugs have been applied clinically, specific medicines to prevent DCM progression are unavailable, so the prognosis of DCM remains poor. Mitochondrial ATP production maintains the energetic requirements of cardiomyocytes, whereas mitochondrial dysfunction can induce or aggravate DCM by promoting oxidative stress, dysregulated calcium homeostasis, metabolic reprogramming, abnormal intracellular signaling and mitochondrial apoptosis in cardiomyocytes. In response to mitochondrial dysfunction, the mitochondrial quality control (MQC) system (including mitochondrial fission, fusion, and mitophagy) is activated to repair damaged mitochondria. Physiological mitochondrial fission fragments the network to isolate damaged mitochondria. Mitophagy then allows dysfunctional mitochondria to be engulfed by autophagosomes and degraded in lysosomes. However, abnormal MQC results in excessive mitochondrial fission, impaired mitochondrial fusion and delayed mitophagy, causing fragmented mitochondria to accumulate in cardiomyocytes. In this review, we summarize the molecular mechanisms of MQC and discuss how pathological MQC contributes to DCM development. We then present promising therapeutic approaches to improve MQC and prevent DCM progression.  相似文献   

2.
Mitophagy is thought to be a critical mitochondrial quality control mechanism in neurons and has been extensively studied in neurological disorders such as Parkinson's disease. However, little is known about how mitochondria are maintained in the lengthy neuronal axons in the context of physiological aging. Here, we utilized the unique Drosophila wing nerve model and in vivo imaging to rigorously profile changes in axonal mitochondria during aging. We revealed that mitochondria became fragmented and accumulated in aged axons. However, lack of Pink1 or Parkin did not lead to the accumulation of axonal mitochondria or axonal degeneration. Further, unlike in in vitro cultured neurons, we found that mitophagy rarely occurred in intact axons in vivo, even in aged animals. Furthermore, blocking overall mitophagy by knockdown of the core autophagy genes Atg12 or Atg17 had little effect on the turnover of axonal mitochondria or axonal integrity, suggesting that mitophagy is not required for axonal maintenance; this is regardless of whether the mitophagy is PINK1‐Parkin dependent or independent. In contrast, downregulation of mitochondrial fission–fusion genes caused age‐dependent axonal degeneration. Moreover, Opa1 expression in the fly head was significantly decreased with age, which may underlie the accumulation of fragmented mitochondria in aged axons. Finally, we showed that adult‐onset, neuronal downregulation of the fission–fusion, but not mitophagy genes, dramatically accelerated features of aging. We propose that axonal mitochondria are maintained independently of mitophagy and that mitophagy‐independent mechanisms such as fission–fusion may be central to the maintenance of axonal mitochondria and neural integrity during normal aging.  相似文献   

3.
Cai Q  Zakaria HM  Sheng ZH 《Autophagy》2012,8(6):976-978
Proper degradation of aged and damaged mitochondria through mitophagy is essential to ensure mitochondrial integrity and function. Translocation of PARK2/Parkin onto damaged mitochondria induces mitophagy in many non-neuronal cell types. However, direct evidence showing PARK2-mediated mitophagy in mature neurons is controversial, leaving unanswered questions as to how, where, and by what time course PARK2-mediated mitophagy occurs in neurons following mitochondrial depolarization. We applied long time-lapse imaging in live mature cortical neurons to monitor the slow but dynamic and spatial PARK2 translocation onto damaged mitochondria and subsequent degradation through the autophagy-lysosomal pathway. In comparison with non-neuronal cells, our study reveals unique features of PARK2-mediated mitophagy in mature neurons, which will advance our understanding of pathogenesis of several major neurodegenerative diseases characterized by damaged mitochondria or a dysfunctional autophagy-lysosomal system.  相似文献   

4.
《Autophagy》2013,9(6):976-978
Proper degradation of aged and damaged mitochondria through mitophagy is essential to ensure mitochondrial integrity and function. Translocation of PARK2/Parkin onto damaged mitochondria induces mitophagy in many non-neuronal cell types. However, direct evidence showing PARK2-mediated mitophagy in mature neurons is controversial, leaving unanswered questions as to how, where, and by what time course PARK2-mediated mitophagy occurs in neurons following mitochondrial depolarization. We applied long time-lapse imaging in live mature cortical neurons to monitor the slow but dynamic and spatial PARK2 translocation onto damaged mitochondria and subsequent degradation through the autophagy-lysosomal pathway. In comparison with non-neuronal cells, our study reveals unique features of PARK2-mediated mitophagy in mature neurons, which will advance our understanding of pathogenesis of several major neurodegenerative diseases characterized by damaged mitochondria or a dysfunctional autophagy-lysosomal system.  相似文献   

5.
Mitophagy is an essential process for mitochondrial quality control and turnover. It is activated by two distinct pathways, one dependent on ubiquitin and the other dependent on receptors including FUNDC1. It is not clear whether these pathways coordinate to mediate mitophagy in response to stresses, or how mitophagy receptors sense stress signals to activate mitophagy. We find that the mitochondrial E3 ligase MARCH5, but not Parkin, plays a role in regulating hypoxia‐induced mitophagy by ubiquitylating and degrading FUNDC1. MARCH5 directly interacts with FUNDC1 to mediate its ubiquitylation at lysine 119 for subsequent degradation. Degradation of FUNDC1 by MARCH5 expression desensitizes mitochondria to hypoxia‐induced mitophagy, whereas knockdown of endogenous MARCH5 significantly inhibits FUNDC1 degradation and enhances mitochondrial sensitivity toward mitophagy‐inducing stresses. Our findings reveal a feedback regulatory mechanism to control the protein levels of a mitochondrial receptor to fine‐tune mitochondrial quality.  相似文献   

6.
The dynamic network of mitochondria fragments under stress allowing the segregation of damaged mitochondria and, in case of persistent damage, their selective removal by mitophagy. Mitochondrial fragmentation upon depolarisation of mitochondria is brought about by the degradation of central components of the mitochondrial fusion machinery. The OMA1 peptidase mediates the degradation of long isoforms of the dynamin‐like GTPase OPA1 in the inner membrane. Here, we demonstrate that OMA1‐mediated degradation of OPA1 is a general cellular stress response. OMA1 is constitutively active but displays strongly enhanced activity in response to various stress insults. We identify an amino terminal stress‐sensor domain of OMA1, which is only present in homologues of higher eukaryotes and which modulates OMA1 proteolysis and activation. OMA1 activation is associated with its autocatalyic degradation, which initiates from both termini of OMA1 and results in complete OMA1 turnover. Autocatalytic proteolysis of OMA1 ensures the reversibility of the response and allows OPA1‐mediated mitochondrial fusion to resume upon alleviation of stress. This differentiated stress response maintains the functional integrity of mitochondria and contributes to cell survival.  相似文献   

7.
Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named “MitoQuant”. This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.  相似文献   

8.
Cardiomyocyte function and viability are highly modulated by mammalian Ste20-like kinase 1 (Mst1)-Hippo pathway and mitochondria. Mitophagy, a kind of mitochondrial autophagy, is a protective program to attenuate mitochondrial damage. However, the relationship between Mst1 and mitophagy in septic cardiomyopathy has not been explored. In the present study, Mst1 knockout mice were used in a lipopolysaccharide (LPS)-induced septic cardiomyopathy model. Mitophagy activity was measured via immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay. Pathway blocker and small interfering RNA were used to perform the loss-of-function assay. The results demonstrated that Mst1 was rapidly increased in response to LPS stress. Knockout of Mst1 attenuated LPS-mediated inflammation damage, reduced cardiomyocyte death, and improved cardiac function. At the molecular levels, LPS treatment activated mitochondrial damage, such as mitochondrial respiratory dysfunction, mitochondrial potential reduction, mitochondrial ATP depletion, and caspase family activation. Interestingly, in response to mitochondrial damage, Mst1 deletion activated mitophagy which attenuated LPS-mediated mitochondrial damage. However, inhibition of mitophagy via inhibiting parkin mitophagy abolished the protective influences of Mst1 deletion on mitochondrial homeostasis and cardiomyocyte viability. Overall, our results demonstrated that septic cardiomyopathy is linked to Mst1 upregulation which is followed by a drop in the protective mitophagy.  相似文献   

9.
Proteins and pathways that control cell fate are placed under intense scrutiny. The same tight regulation applies to essential organelles that can both sustain cell survival or promote self‐degradation programs. Mitochondria are perhaps the prime example of cellular machineries with split functions (personalities). As a main source of ATP, mitochondria represent the main powerhouse of eukaryotic cells. However, mitochondrial respiration has the hidden complication of the production of potentially harmful reactive oxygen species (ROS). Moreover, mitochondria holds an armamentarium of stress‐response factors, which depending on the context, may lead to pro‐inflammatory signals, and to various forms of cell death, ranging from apoptosis to necrosis. A main clearance mechanism to eliminate superfluous, damaged or hyperactive mitochondria is selective mitophagy. Mitophagy, in fact, is emerging as a key quality‐control mechanism in cancer cells. Specifically, malignant transformation has been found to induce marked changes in mitochondrial dynamics and structure. Moreover, a key hallmark of tumor progression is metabolic reprogramming, which further deregulates ROS content and renders cells more susceptible to mitochondrial perturbations. Despite its increasing relevance in cancer biology, the field of mitophagy remains virtually unexplored in melanoma. However, given unique antioxidant mechanisms in melanocytic cells (e.g., linked to melanin) and the idiosyncratic interplay between ROS and hypoxia (both mitophagy inducers) in melanoma, this tumor type represents an ideal scenario for physiological studies of mitochondrial turnover. This perspective summarizes proof of concept for in‐depth basic and translational studies of mitophagy in melanoma. Particular emphasis is dedicated to new opportunities for gene discovery and drug design in this still aggressive disease.  相似文献   

10.
Mitochondria are essential for neuronal survival and function. Proper degradation of aged and damaged mitochondria through mitophagy is a key cellular pathway for mitochondrial quality control. Recent studies have indicated that PINK1/Parkin-mediated pathways ensure mitochondrial integrity and function. Translocation of Parkin to damaged mitochondria induces mitophagy in many nonneuronal cell types. However, evidence showing Parkin translocation in primary neurons is controversial, leaving unanswered questions as to how and where Parkin-mediated mitophagy occurs in neurons. Here, we report the unique process of dissipating mitochondrial Δψ(m)-induced and Parkin-mediated mitophagy in mature cortical neurons. Compared with nonneuronal cells, neuronal mitophagy is a much slower and compartmentally restricted process, coupled with reduced anterograde mitochondrial transport. Parkin-targeted mitochondria are accumulated in the somatodendritic regions where mature lysosomes are predominantly located. Time-lapse imaging shows dynamic formation and elimination of Parkin- and LC3-ring-like structures surrounding depolarized mitochondria through the autophagy-lysosomal pathway in the soma. Knocking down Parkin in neurons impairs the elimination of dysfunctional mitochondria. Thus, our study provides neuronal evidence for dynamic and spatial Parkin-mediated mitophagy, which will help us understand whether altered mitophagy contributes to pathogenesis of several major neurodegenerative diseases characterized by mitochondrial dysfunction and impaired transport.  相似文献   

11.
Proper regulation of mitophagy for mitochondrial homeostasis is important in various inflammatory diseases. However, the precise mechanisms by which mitophagy is activated to regulate inflammatory responses remain largely unknown. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome serves as a platform that triggers the activation of CASP1 (caspase 1) and secretion of proinflammatory cytokines. Here, we demonstrate that SESN2 (sestrin 2), known as stress-inducible protein, suppresses prolonged NLRP3 inflammasome activation by clearance of damaged mitochondria through inducing mitophagy in macrophages. SESN2 plays a dual role in inducing mitophagy in response to inflammasome activation. First, SESN2 induces “mitochondrial priming” by marking mitochondria for recognition by the autophagic machinery. For mitochondrial preparing, SESN2 facilitates the perinuclear-clustering of mitochondria by mediating aggregation of SQSTM1 (sequestosome 1) and its binding to lysine 63 (Lys63)-linked ubiquitins on the mitochondrial surface. Second, SESN2 activates the specific autophagic machinery for degradation of primed mitochondria via an increase of ULK1 (unc-51 like kinase 1) protein levels. Moreover, increased SESN2 expression by extended LPS (lipopolysaccharide) stimulation is mediated by NOS2 (nitric oxide synthase 2, inducible)-mediated NO (nitric oxide) in macrophages. Thus, Sesn2-deficient mice displayed defective mitophagy, which resulted in hyperactivation of inflammasomes and increased mortality in 2 different sepsis models. Our findings define a unique regulatory mechanism of mitophagy activation for immunological homeostasis that protects the host from sepsis.  相似文献   

12.
The metabolic consequences of mitophagy alterations due to age-related stress in healthy aging brains versus neurodegeneration remain unknown. Here, we demonstrate that ceramide synthase 1 (CerS1) is transported to the outer mitochondrial membrane by the p17/PERMIT transporter that recognizes mislocalized mitochondrial ribosomes (mitoribosomes) via 39-FLRN-42 residues, inducing ceramide-mediated mitophagy. P17/PERMIT-CerS1-mediated mitophagy attenuated the argininosuccinate/fumarate/malate axis and induced d -glucose and fructose accumulation in neurons in culture and brain tissues (primarily in the cerebellum) of wild-type mice in vivo. These metabolic changes in response to sodium-selenite were nullified in the cerebellum of CerS1to/to (catalytically inactive for C18-ceramide production CerS1 mutant), PARKIN−/− or p17/PERMIT−/− mice that have dysfunctional mitophagy. Whereas sodium selenite induced mitophagy in the cerebellum and improved motor-neuron deficits in aged wild-type mice, exogenous fumarate or malate prevented mitophagy. Attenuating ceramide-mediated mitophagy enhanced damaged mitochondria accumulation and age-dependent sensorimotor abnormalities in p17/PERMIT−/− mice. Reinstituting mitophagy using a ceramide analog drug with selenium conjugate, LCL768, restored mitophagy and reduced malate/fumarate metabolism, improving sensorimotor deficits in old p17/PERMIT−/− mice. Thus, these data describe the metabolic consequences of alterations to p17/PERMIT/ceramide-mediated mitophagy associated with the loss of mitochondrial quality control in neurons and provide therapeutic options to overcome age-dependent sensorimotor deficits and related disorders like amyotrophic lateral sclerosis (ALS).  相似文献   

13.
Mutations in PARKIN (PARK2), an ubiquitin ligase, cause early onset Parkinson disease. Parkin was shown to bind, ubiquitinate, and target depolarized mitochondria for destruction by autophagy. This process, mitophagy, is considered crucial for maintaining mitochondrial integrity and suppressing Parkinsonism. Here, we report that under moderate mitochondrial stress, parkin does not translocate to mitochondria to induce mitophagy; rather, it stimulates mitochondrial connectivity. Mitochondrial stress-induced fusion requires PINK1 (PARK6), mitofusins, and parkin ubiquitin ligase activity. Upon exposure to mitochondrial toxins, parkin binds α-synuclein (PARK1), and in conjunction with the ubiquitin-conjugating enzyme Ubc13, stimulates K63-linked ubiquitination. Importantly, α-synuclein inactivation phenocopies parkin overexpression and suppresses stress-induced mitochondria fission, whereas Ubc13 inactivation abrogates parkin-dependent mitochondrial fusion. The convergence of parkin, PINK1, and α-synuclein on mitochondrial dynamics uncovers a common function of these PARK genes in the mitochondrial stress response and provides a potential physiological basis for the prevalence of α-synuclein pathology in Parkinson disease.  相似文献   

14.
Mitochondrial fragmentation due to imbalanced fission and fusion of mitochondria is a prerequisite for mitophagy, however, the exact “coupling” of mitochondrial dynamics and mitophagy remains unclear. We have previously identified that FUNDC1 recruits MAP1LC3B/LC3B (LC3) through its LC3-interacting region (LIR) motif to initiate mitophagy in mammalian cells. Here, we show that FUNDC1 interacts with both DNM1L/DRP1 and OPA1 to coordinate mitochondrial fission or fusion and mitophagy. OPA1 interacted with FUNDC1 via its Lys70 (K70) residue, and mutation of K70 to Ala (A), but not to Arg (R), abolished the interaction and promoted mitochondrial fission and mitophagy. Mitochondrial stress such as selenite or FCCP treatment caused the disassembly of the FUNDC1-OPA1 complex while enhancing DNM1L recruitment to the mitochondria. Furthermore, we observed that dephosphorylation of FUNDC1 under stress conditions promotes the dissociation of FUNDC1 from OPA1 and association with DNM1L. Our data suggest that FUNDC1 regulates both mitochondrial fission or fusion and mitophagy and mediates the “coupling” across the double membrane for mitochondrial dynamics and quality control.  相似文献   

15.
Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease.  相似文献   

16.
A healthy population of mitochondria, maintained by proper fission, fusion, and degradation, is critical for the long-term survival and function of neurons. Here, our discovery of mitophagy intermediates in fission-impaired Drosophila neurons brings new perspective into the relationship between mitochondrial fission and mitophagy. Neurons lacking either the ataxia disease gene Vps13D or the dynamin related protein Drp1 contain enlarged mitochondria that are engaged with autophagy machinery and also lack matrix components. Reporter assays combined with genetic studies imply that mitophagy both initiates and is completed in Drp1 impaired neurons, but fails to complete in Vps13D impaired neurons, which accumulate compromised mitochondria within stalled mito-phagophores. Our findings imply that in fission-defective neurons, mitophagy becomes induced, and that the lipid channel containing protein Vps13D has separable functions in mitochondrial fission and phagophore elongation.  相似文献   

17.
Previous studies demonstrated that mitochondrial fission arguments the stemness of bone marrow-derived mesenchymal stem cells (BMSCs). Because mitophagy is critical in removing damaged or surplus mitochondrial fragments and maintaining mitochondrial integrity, the present study was undertaken to test the hypothesis that mitophagy is involved in mitochondrial fission-enhanced stemness of BMSCs. Primary cultures of rat BMSCs were treated with tyrphostin A9 (TA9, a potent inducer of mitochondrial fission) to increase mitochondrial fission, which was accompanied by enhanced mitophagy as defined by increased co-staining of MitoTracker Green for mitochondria and LysoTracker Deep Red for lysosomes, as well as the increased co-localization of autophagy markers (LC3B, P62) and mitochondrial marker (Tom20). A mitochondrial uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) was used to promote mitophagy, which was confirmed by an increased co-localization of mitochondrial and lysosome biomarkers. The argumentation of mitophagy was associated with enhanced stemness of BMSCs as defined by increased expression of stemness markers Oct4 and Sox2, and enhanced induction of BMSCs to adipocytes or osteocytes. Conversely, transfection of BMSCs with siRNA targeting mitophagy-essential genes Pink1/Prkn led to diminished stemness of the stem cells, as defined by depressed stemness markers. Importantly, concomitant promotion of mitochondrial fission and inhibition of mitophagy suppressed the stemness of BMSCs. These results thus demonstrate that mitophagy is critically involved in mitochondrial fission promotion of the stemness of BMSCs.  相似文献   

18.
Mutations in the PINK1 and PARK2/PARKIN genes are associated with hereditary early onset Parkinson disease (PD), and in cell lines the corresponding gene products play a critical role in mitophagic clearance of damaged mitochondria. In neurons, however, where the extraordinary cellular shapes pose particular challenges for maintaining healthy mitochondria, the pathways of mitophagy are less well understood. Both the location at which mitophagy occurs and the involvement of PINK1 and PARK2 have been controversial. Here we review our recent study where we found that selective damage to a subset of axonal mitochondria causes them to be engulfed within autophagosomes and cleared locally within the axon without the need for transport back to the soma. We also found this process to be completely dependent on neuronal PINK1 and PARK2.  相似文献   

19.
Parkinson''s disease (PD) is characterized by degeneration of neurons, particularly dopaminergic neurons in the substantia nigra. PD brains show accumulation of α‐synuclein in Lewy bodies and accumulation of dysfunctional mitochondria. However, the mechanisms leading to mitochondrial pathology in sporadic PD are poorly understood. PINK1 is a key for mitophagy activation and recycling of unfit mitochondria. The activation of mitophagy depends on the accumulation of uncleaved PINK1 at the outer mitochondrial membrane and activation of a cascade of protein ubiquitination at the surface of the organelle. We have now found that SIAH3, a member of the SIAH proteins but lacking ubiquitin‐ligase activity, is increased in PD brains and cerebrospinal fluid and in neurons treated with α‐synuclein preformed fibrils (α‐SynPFF). We also observed that SIAH3 is aggregated together with PINK1 in the mitochondria of PD brains. SIAH3 directly interacts with PINK1, leading to their intra‐mitochondrial aggregation in cells and neurons and triggering a cascade of toxicity with PINK1 inactivation along with mitochondrial depolarization and neuronal death. We also found that SIAH1 interacts with PINK1 and promotes ubiquitination and proteasomal degradation of PINK1. Similar to the dimerization of SIAH1/SIAH2, SIAH3 interacts with SIAH1, promoting its translocation to mitochondria and preventing its ubiquitin‐ligase activity toward PINK1. Our results support the notion that the increase in SIAH3 and intra‐mitochondrial aggregation of SIAH3‐PINK1 may mediate α‐synuclein pathology by promoting proteotoxicity and preventing the elimination of dysfunctional mitochondria. We consider it possible that PINK1 activity is decreased in sporadic PD, which impedes proper mitochondrial renewal in the disease.  相似文献   

20.
Mitophagy plays pivotal roles in the selective disposal of unwanted mitochondria, and accumulation of damaged mitochondria has been linked to aging-related diseases. However, definitive proof that mitophagy regulates mitochondrial quality in vivo is lacking. It is also largely unclear whether damaged mitochondria are the cause or just the consequence of these diseases. We previously showed that FUNDC1 is a mitophagy receptor that interacts with LC3 to mediate mitophagy in response to hypoxia in cultured cells. We established Fundc1 knockout mouse models and used genetic and biochemical approaches, including a synthetic peptide that blocks the FUNDC1-LC3 interaction, to demonstrate that mitophagy regulates both mitochondrial quantity and quality in vivo in response to hypoxia or hypoxic conditions caused by ischemia-reperfusion (I/R) heart injury. We found that hypoxic mitophagy regulates platelet activities. Furthermore, we found that hypoxic preconditioning induces FUNDC1-dependent mitophagy in platelets and reduces I/R-induced heart injury, suggesting a new strategy to protect cardiac function and fight cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号