首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MARCH5 is a crucial regulator of mitochondrial fission. However, the expression and function of MARCH5 in ovarian cancer have not been determined. This study investigated the expression and function of MARCH5 in ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as its usefulness as an early diagnostic marker. We found that the expression of MARCH5 was substantially upregulated in ovarian cancer tissue in comparison with the normal control. Silencing MARCH5 in SKOV3 cells decreased TGFB1-induced cell macroautophagy/autophagy, migration, and invasion in vitro and in vivo, whereas the ectopic expression of MARCH5 in A2780 cells had the opposite effect. Mechanistic investigations revealed that MARCH5 RNA may function as a competing endogenous RNA (ceRNA) to regulate the expression of SMAD2 and ATG5 by competing for MIR30A. Knocking down SMAD2 or ATG5 can block the effect of MARCH5 in A2780 cells. Also, silencing the expression of MARCH5 in SKOV3 cells can inhibit the TGFB1-SMAD2/3 pathway. In contrast, the ectopic expression of MARCH5 in A2780 cells can activate the TGFB1-SMAD2/3 pathway. In turn, the TGFB1-SMAD2/3 pathway can regulate MARCH5 and ATG5 through MIR30A. Overall, the results of this study identified MARCH5 as a candidate oncogene in ovarian cancer and a potential target for ovarian cancer therapy.  相似文献   

2.
BackgroundMetastasis is the most common lethal cause of breast cancer-related death. Recent studies have implied that autophagy is closely implicated in cancer metastasis. Therefore, it is of great significance to explore autophagy-related molecular targets involved in breast cancer metastasis and to develop therapeutic drugs.PurposeThis study was designed to investigate the anti-metastatic effects and autophagy regulatory mechanisms of Aiduqing (ADQ) formula on breast cancer.Study Design/MethodsMultiple cellular and molecular experiments were conducted to investigate the inhibitory effects of ADQ formula on autophagy and metastasis of breast cancer cells in vitro. Meanwhile, autophagic activator/inhibitor as well as CXCL1 overexpression or interference plasmids were used to investigate the underlying mechanisms of ADQ formula in modulating autophagy-mediated metastasis. Furthermore, the zebrafish xenotransplantation model and mouse xenografts were applied to validate the inhibitory effect of ADQ formula on autophagy-mediated metastasis in breast cancer in vivo.ResultsADQ formula significantly inhibited the proliferation, migration, invasion and autophagy but induced apoptosis of high-metastatic breast cancer cells in vitro. Similar results were also observed in starvation-induced breast cancer cells which exhibited elevated metastatic ability and autophagy activity. Mechanism investigations further approved that either CXCL1 overexpression or autophagic activator rapamycin can significantly abrogated the anti-metastatic effects of ADQ formula, suggesting that CXCL1-mediated autophagy may be the crucial pathway of ADQ formula in suppressing breast cancer metastasis. More importantly, ADQ formula suppressed breast cancer growth, autophagy, and metastasis in both the zebrafish xenotransplantation model and the mouse xenografts.ConclusionOur study not only revealed the novel function of CXCL1 in mediating autophagy-mediated metastasis but also suggested ADQ formula as a candidate drug for the treatment of metastatic breast cancer.  相似文献   

3.
4.
Macroautophagy (autophagy herein) is a cellular catabolic mechanism activated in response to stress conditions including starvation, hypoxia and misfolded protein accumulation. Abnormalities in autophagy were associated with pathologies including cancer and neurodegenerative diseases. Hence, elucidation of the signaling pathways controlling autophagy is of utmost importance. Recently we and others described microRNAs (miRNAs) as novel and potent modulators of the autophagic activity. Here, we describe MIR181A (hsa-miR-181a-1) as a new autophagy-regulating miRNA. We showed that overexpression of MIR181A resulted in the attenuation of starvation- and rapamycin-induced autophagy in MCF-7, Huh-7 and K562 cells. Moreover, antagomir-mediated inactivation of endogenous miRNA activity stimulated autophagy. We identified ATG5 as an MIR181A target. Indeed, ATG5 cellular levels were decreased in cells upon MIR181A overexpression and increased following the introduction of antagomirs. More importantly, overexpression of ATG5 from a miRNA-insensitive cDNA construct rescued autophagic activity in the presence of MIR181A. We also showed that the ATG5 3′ UTR contained functional MIR181A responsive sequences sensitive to point mutations. Therefore, MIR181A is a novel and important regulator of autophagy and ATG5 is a rate-limiting miRNA target in this effect.  相似文献   

5.
《Autophagy》2013,9(3):468-479
Multiple genetic studies have implicated the autophagy-related gene, ATG16L1, in the pathogenesis of Crohn disease (CD). While CD-related research on ATG16L1 has focused on the functional significance of ATG16L1 genetic variations, the mechanisms underlying the regulation of ATG16L1 expression are unclear. Our laboratory has described that microRNAs (miRNAs), key regulators of gene expression, are dysregulated in CD. Here, we report miRNA-mediated regulation of ATG16L1 in colonic epithelial cells as well as Jurkat T cells. Dual luciferase reporter assays following the transfection of vectors containing the ATG16L1 3′-untranslated region (3′UTR) or truncated 3′UTR fragments suggest that the first half of ATG16L1 3′UTR in the 5′ end is more functional for miRNA targeting. Of 5 tested miRNAs with putative binding sites within the region, MIR142-3p, upon transient overexpression in the cells, resulted in decreased ATG16L1 mRNA and protein levels. Further observation demonstrated that the luciferase reporter vector with a mutant MIR142-3p binding sequence in the 3′UTR was unresponsive to the inhibitory effect of MIR142-3p, suggesting ATG16L1 is a gene target of MIR142-3p. Moreover, the regulation of ATG16L1 expression by a MIR142-3p mimic blunted starvation- and L18-MDP-induced autophagic activity in HCT116 cells. Additionally, we found that a MIR142-3p inhibitor enhanced starvation-induced autophagy in Jurkat T cells. Our study reveals MIR142-3p as a new autophagy-regulating small molecule by targeting ATG16L1, implying a role of this miRNA in intestinal inflammation and CD.  相似文献   

6.
7.
《Autophagy》2013,9(12):2171-2172
The therapeutic outcome of pancreatic cancer is generally poor due to the inherent or acquired resistance of cancer cells to treatment. Pancreatic cancer cells have higher basal autophagy levels than other cancer cell types, which may correlate with their nonresponsiveness to the available cancer therapy. Therefore, understanding the mechanisms behind autophagy activation in pancreatic cancer cells may ultimately improve therapeutic outcomes. Here we demonstrated that MIR23B is a potent inhibitor of autophagy. MIR23B targets the 3′UTR of the autophagy-related gene ATG12, thereby decreasing autophagic activity and ultimately promoting radiation-induced pancreatic cancer cell death. Thus, our study clarified some of the underlying molecular mechanisms of activated autophagy in response to cancer therapy in pancreatic cancer.  相似文献   

8.
9.
10.
《Autophagy》2013,9(8):1454-1465
Autophagy is reported to suppress tumor proliferation, whereas deficiency of autophagy is associated with tumorigenesis. ATG4B is a deubiquitin-like protease that plays dual roles in the core machinery of autophagy; however, little is known about the role of ATG4B on autophagy and proliferation in tumor cells. In this study, we found that ATG4B knockdown induced autophagic flux and reduced CCND1 expression to inhibit G1/S phase transition of cell cycle in colorectal cancer cell lines, indicating functional dominance of ATG4B on autophagy inhibition and tumor proliferation in cancer cells. Interestingly, based on the genetic and pharmacological ablation of autophagy, the growth arrest induced by silencing ATG4B was independent of autophagic flux. Moreover, dephosphorylation of MTOR was involved in reduced CCND1 expression and G1/S phase transition in both cells and xenograft tumors with depletion of ATG4B. Furthermore, ATG4B expression was significantly increased in tumor cells of colorectal cancer patients compared with adjacent normal cells. The elevated expression of ATG4B was highly correlated with CCND1 expression, consistently supporting the notion that ATG4B might contribute to MTOR-CCND1 signaling for G1/S phase transition in colorectal cancer cells. Thus, we report that ATG4B independently plays a role as a positive regulator on tumor proliferation and a negative regulator on autophagy in colorectal cancer cells. These results suggest that ATG4B is a potential biomarker and drug target for cancer therapy.  相似文献   

11.
《Autophagy》2013,9(1):70-79
Hypoxia activates autophagy, an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been implicated in an increasing number of human diseases, including cancer. Hypoxia induces upregulation of a specific set of microRNAs (miRNAs) in a variety of cell types. Here, we describe hypoxia-induced MIR155 as a potent inducer of autophagy. Enforced expression of MIR155 increases autophagic activity in human nasopharyngeal cancer and cervical cancer cells. Knocking down endogenous MIR155 inhibits hypoxia-induced autophagy. We demonstrated that MIR155 targets multiple players in MTOR signaling, including RHEB, RICTOR, and RPS6KB2. MIR155 suppresses target-gene expression by directly interacting with their 3′ untranslated regions (UTRs), mutations of the binding sites abolish their MIR155 responsiveness. Furthermore, by downregulating MTOR signaling, MIR155 also attenuates cell proliferation and induces G1/S cell cycle arrest. Collectively, these data present a new role for MIR155 as a key regulator of autophagy via dysregulation of MTOR pathway.  相似文献   

12.
13.
The process of metastasis consists of a series of sequential, selective steps that few cells can complete. The outcome of cancer metastasis depends on multiple interactions between metastatic cells and homeostatic mechanisms that are unique to one or another organ microenvironment. The specific organ microenvironment determines the extent of cancer cell proliferation, angiogenesis, invasion and survival. Many lung cancer, breast cancer, and melanoma patients develop fatal brain metastases that do not respond to therapy. The blood-brain barrier is intact in and around brain metastases that are smaller than 0.25 mm in diameter. Although the blood-brain barrier is leaky in larger metastases, the lesions are resistant to many chemotherapeutic drugs. Activated astrocytes surround and infiltrate brain metastases. The physiological role of astrocytes is to protect against neurotoxicity. Our current data demonstrate that activated astrocytes also protect tumor cells against chemotherapeutic drugs.  相似文献   

14.
Non-small cell lung cancer (NSCLC) often metastasizes to the brain, but identifying which patients will develop brain metastases (BM) is difficult. Macroautophagy/autophagy is critical for cancer initiation and progression. We hypothesized that genetic variants of autophagy-related genes may affect brain metastases (BM) in NSCLC patients. We genotyped 16 single nucleotide polymorphisms (SNPs) in 7 autophagy-related (ATG) genes (ATG3, ATG5, ATG7, ATG10, ATG12, ATG16L1, and MAP1LC3/LC3) by using DNA from blood samples of 323 NSCLC patients. Further, we evaluated the potential associations of these genes with subsequent BM development. Lung cancer cell lines stably transfected with ATG16L1: rs2241880 (T300A) were established. Mouse models of brain metastasis were developed using cells transfected with ATG16L1–300T or ATG16L1–300A. ATG10: rs10036653 and ATG16L1: rs2241880 were significantly associated with a decreased risk of BM (respective hazard ratios [HRs]=0.596, 95% confidence interval [CI] 0.398–0.894, P = 0.012; and HR = 0. 655, 95% CI 0.438–0.978, P = 0.039, respectively). ATG12: rs26532 was significantly associated with an increased risk of BM (HR=1.644, 95% CI 1.049–2.576, P = 0.030). Invasion and migration assays indicated that transfection with ATG16L1–300T (vs. 300A) stimulated the migration of A549 cells. An in vivo metastasis assay revealed that transfection with ATG16L1–300T (vs. 300A) significantly increased brain metastasis. Our results indicate that genetic variations in autophagy-related genes can predict BM and that genome analysis would facilitate stratification of patients for BM prevention trials.  相似文献   

15.
The Eph and Ephrin proteins, which constitute the largest family of receptor tyrosine kinases, are involved in normal tissue development and cancer progression. Here, we examined the expression and role of the B-type Eph receptor EphB2 in breast cancers. By immunohistochemistry using a progression tissue microarray of human clinical samples, we found EphB2 to be expressed in benign tissues, but strongly increased in cancers particularly in invasive and metastatic carcinomas. Subsequently, we found evidence that EphB2, whose expression varies in established cell breast lines, possesses multiple functions. First, the use of a DOX-inducible system to restore EphB2 function to low expressers resulted in decreased tumor growth in vitro and in vivo, while its siRNA-mediated silencing in high expressers increased growth. This function involves the onset of apoptotic death paralleled by caspases 3 and 9 activation. Second, EphB2 was also found to induce autophagy, as assessed by immunofluorescence and/or immunoblotting examination of the LC3, ATG5 and ATG12 markers. Third, EphB2 also has a pro-invasive function in breast cancer cells that involves the regulation of MMP2 and MMP9 metalloproteases and can be blocked by treatment with respective neutralizing antibodies. Furthermore, EphB2-induced invasion is kinase-dependent and is impeded in cells expressing a kinase-dead mutant EphB2. In summary, we identified a mechanism involving a triple role for EphB2 in breast cancer progression, whereby it regulates apoptosis, autophagy, and invasion.  相似文献   

16.
《Autophagy》2013,9(5):669-679
Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy induced apoptosis. In this study, we investigated the role of Bcl-2 in autophagy in breast cancer cells. Silencing of Bcl-2 by siRNA in MCF-7 breast cancer cells downregulated Bcl-2 protein levels (>85%) and led to inhibition of cell growth (71%) colony formation (79%), and cell death (up to 55%) by autophagy but not apoptosis. Induction of autophagy was demonstrated by acridine orange staining, electron microscopy and an accumulation of GFP-LC3-II in preautopghagosomal and autophagosomal membranes in MCF-7 cells transfected with GFP-LC-3(GFP-ATG8). Silencing of Bcl-2 by siRNA also led to induction of LC-3-II, a hallmark of autophagy, ATG5 and Beclin-1 autophagy promoting proteins. Knockdown of ATG5 significantly inhibited Bcl-2 siRNA-induced LC3-II expression and the number of GFP-LC3-II-labeled autophagosome (punctuated pattern) positive cells and autophagic cell death (p  相似文献   

17.
18.
19.
Autophagy is reported to suppress tumor proliferation, whereas deficiency of autophagy is associated with tumorigenesis. ATG4B is a deubiquitin-like protease that plays dual roles in the core machinery of autophagy; however, little is known about the role of ATG4B on autophagy and proliferation in tumor cells. In this study, we found that ATG4B knockdown induced autophagic flux and reduced CCND1 expression to inhibit G1/S phase transition of cell cycle in colorectal cancer cell lines, indicating functional dominance of ATG4B on autophagy inhibition and tumor proliferation in cancer cells. Interestingly, based on the genetic and pharmacological ablation of autophagy, the growth arrest induced by silencing ATG4B was independent of autophagic flux. Moreover, dephosphorylation of MTOR was involved in reduced CCND1 expression and G1/S phase transition in both cells and xenograft tumors with depletion of ATG4B. Furthermore, ATG4B expression was significantly increased in tumor cells of colorectal cancer patients compared with adjacent normal cells. The elevated expression of ATG4B was highly correlated with CCND1 expression, consistently supporting the notion that ATG4B might contribute to MTOR-CCND1 signaling for G1/S phase transition in colorectal cancer cells. Thus, we report that ATG4B independently plays a role as a positive regulator on tumor proliferation and a negative regulator on autophagy in colorectal cancer cells. These results suggest that ATG4B is a potential biomarker and drug target for cancer therapy.  相似文献   

20.
BackgroundBreast cancer is the most common malignancy in women and metastasis is the leading cause of breast cancer-related deaths. Our previous studies have shown that XIAOPI formula, a newly approved drug by the State Food and Drug Administration of China (SFDA), can dramatically inhibit breast cancer metastasis by modulating the tumor-associated macrophages/C-X-C motif chemokine ligand 1 (TAMs/CXCL1) pathway. However, the bioactive compound accounting for the anti-metastatic effect of XIAOPI formula remains unclear.PurposeThis study was designed to separate the anti-metastatic bioactive compound from XIAOPI formula and to elucidate its action mechanisms.Study Design/MethodsTAMs/CXCL1 promoter activity-guided fractionation and multiple chemical structure identification approaches were conducted to screen the bioactive compound from XIAOPI formula. Breast cancer cells and TAMs were co-cultured in vitro or co-injected in vivo to simulate their coexistence. Multiple molecular biology experiments, zebrafish breast cancer xenotransplantation model and mouse breast cancer xenografts were applied to validate the anti-metastatic activity of the screened compound.ResultsBioactivity-guided fractionation identified baohuoside I (BHS) as the key bioactive compound of XIAOPI formula in inhibiting TAMs/CXCL1 promoter activity. Functional studies revealed that BHS could significantly inhibit the migration and invasion as well as the expression of metastasis-related proteins in both human and mouse breast cancer cells, along with decreasing the proportion of breast cancer stem cells (CSCs). Furthermore, BHS could suppress the M2 phenotype polarization of TAMs and therefore attenuate their CXCL1 expression and secretion. Notably, mechanistic investigations validated TAMs/CXCL1 as the crucial target of BHS in suppressing breast cancer metastasis as exogenous addition of CXCL1 significantly abrogated the anti-metastatic effect of BHS on breast cancer cells. Moreover, BHS was highly safe in vivo as it exhibited no observable embryotoxicity or teratogenic effect on zebrafish embryos. More importantly, BHS remarkably suppressed breast cancer metastasis and TAMs/CXCL1 activity in both zebrafish breast cancer xenotransplantation model and mouse breast cancer xenografts.ConclusionThis study not only provides novel insights into TAMs/CXCL1 as a reliable screening target for anti-metastatic drug discovery, but also suggests BHS as a promising candidate drug for metastatic breast cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号