首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Red pepper (Capsicum annuum L.) is one of the most commonly cultivated vegetable in the Mediterranean region. This study evaluated the effects of biochar derived from corncob and poultry litter on growth of red pepper (Capsicum annuum L.) and some chemical properties of a silty clay soil. The experiment consisted of two factors, i.e., biochar doses (0, 0.5, 1.0 and 2%) and poultry litter doses (0, 0.5, 1.0 and 2%). The number of days to 50% flowering, plant height, stem diameter, total number of leaves per plant, the number of main branches per plant, fresh root weight, root length, dry shoot weight, macro (P and K) and micro (Fe, Zn, Cu and Mn) nutrient concentrations of leaves were determined to compare the efficiency biochar and poultry litter. Moreover, post-harvest soil analysis was conducted to measure pH, organic matter, and macro and micronutrient contents. Biochar had varying impact on plant growth parameters, whereas poultry litter alone or in combination with biochar increased macro and micronutrient concentrations of soil and improved most of the growth parameters of red pepper. In contrast, sole biochar application had no significant impact on most of the growth parameters. Wider C/N ratio (107.7) of corncob derived biochar restricted the nitrogen supply for plant growth. The combination of 0.5% biochar and 2% poultry litter resulted in the highest plant height (36.7 cm) and stem diameter (0.69 cm). The results revealed that application of single biochar derived from corncob is insufficient to supply adequate nutrients for optimal plant growth. The application of biochar alone enhances carbon sequestration in soils, however most biochars like cornconb biochar do not contain sufficient available plant nutrients. Therefore, biochars should be applied along with mineral fertilizers or organic materials such as poultry manure which is rich in available plant nutrients.  相似文献   

2.
不同还田方式对砂质潮土理化性质及微生物的影响   总被引:8,自引:0,他引:8  
李培培  汪强  文倩  李慧  吴传发  熊伟东  韩燕来 《生态学报》2017,37(11):3665-3672
为探索不同物料还田方式对中低产田砂质潮土的改良效果,在黄淮海平原麦玉轮作区典型砂质潮土上进行了连续6季的田间小区试验,设置全量秸秆翻耕还田(TS),秸秆等碳量的生物炭(TB)及半量秸秆半量生物炭配合翻耕还田(TSB),全量秸秆免耕覆盖还田(NTS)和半量秸秆半量生物炭配合免耕覆盖还田(NTSB),共5种还田方式。结果表明,与常规秸秆翻耕还田(TS)相比,生物炭翻耕还田(TB)显著降低土壤容重,增加玉米各个生育期土壤水分和p H值,有机质含量提升了16.4%,但TB处理的土壤大团聚体降低了21.2%和微生物数量降低了16.1%;翻耕秸秆配合生物炭还田(TSB)除了显著降低了大团聚体数量,对其余理化及微生物指标的影响均不显著;免耕模式下的秸秆还田(NTS)和秸秆生物炭配施(NTSB)分别在玉米生长的喇叭口期和收获期显著增加了土壤水分含量、耕层土壤的微生物数量和有效降低砂质潮土分形维数,对容重和有机质含量有一定的改善,其中NTSB有机质含量提升了14.9%和微生物数量增加了53.7%,对砂质潮土改良效果更好。总体来说,短期内用等碳量的生物炭替代秸秆翻耕还田更多的表现为物理的掺混效应,虽能有效提升土壤有机质含量,但不能有效改善砂质潮土的物理结构及生物性质,一半秸秆用生物炭替代还田对该类土壤的理化及微生物指标的改良效果也不显著,而免耕条件下秸秆配合生物碳还田效果最佳,可为砂质潮土的改良提供新的途径和理论依据。  相似文献   

3.
Arenosols (sandy soils) in the Cerrado region of Mato Grosso, Brazil, are increasingly used for maize production, the second most important crop in the region after soybean. Yet, these soils are typically nutrient poor with low soil water retention, requiring high fertilizer inputs that are often lost in surface runoff or leached. The addition of biochar, a more recalcitrant organic amendment, may therefore be beneficial in Cerrado Arenosols, contributing to sustainable crop production in the region. To examine biochar contribution to soil nutrient levels and maize growth in a Cerrado Arenosol, we conducted a greenhouse experiment using biochars made from local agricultural waste feedstocks. These were cotton husks, swine manure, eucalyptus sawmill residue, and sugarcane filtercake, pyrolyzed at 400 °C, and applied to soil at five rates: 0%, 1%, 2%, 3%, and 4% by weight. Maize plants were grown under unstressed conditions (e.g., no nutrient or water limitations) to highlight any possible negative effects of the biochars. After 42 days, soils were analyzed for nutrient levels, and plant physical and physiological measurements were taken. Filtercake biochar had the highest plant biomass and physiological properties (e.g., photosynthesis, respiration, nitrogen use efficiency), while cotton biochar had the lowest. Importantly, maize biomass decreased with increasing application rates of cotton and swine manure biochars, while biomass did not vary in response to biochar application rate for filtercake and eucalyptus biochars. In this study, we found that while each biochar exhibited potential for improving chemical and physical properties of Cerrado Arenosols, filtercake biochar stood out as most promising. Biochar application rate was identified a key factor in ensuring crop productivity. Transforming these agricultural residues readily available in the region into more stable biochar can thus contribute to sustainable crop management and soil conservation, providing an alternative form of waste disposal for these residual materials.  相似文献   

4.
Organic amendments, such as compost and biochar, mitigate the environmental burdens associated with wasting organic resources and close nutrient loops by capturing, transforming, and resupplying nutrients to soils. While compost or biochar application to soil can enhance an agroecosystem's capacity to store carbon and produce food, there have been few field studies investigating the agroecological impacts of amending soil with biochar co-compost, produced through the composting of nitrogen-rich organic material, such as manure, with carbon-rich biochar. Here, we examine the impact of biochar co-compost on soil properties and processes by conducting a field study in which we compare the environmental and agronomic impacts associated with the amendment of either dairy manure co-composted with biochar, dairy manure compost, or biochar to soils in a winter wheat cropping system. Organic amendments were applied at equivalent C rates (8 Mg C ha−1). We found that all three treatments significantly increased soil water holding capacity and total plant biomass relative to the no-amendment control. Soils amended with biochar or biochar co-compost resulted in significantly less greenhouse gas emissions than the compost or control soils. Biochar co-compost also resulted in a significant reduction in nutrient leaching relative to the application of biochar alone or compost alone. Our results suggest that biochar co-composting could optimize organic resource recycling for climate change mitigation and agricultural productivity while minimizing nutrient losses from agroecosystems.  相似文献   

5.
Soil extracellular enzymes mediate organic matter turnover and nutrient cycling yet remain little studied in one of Earth’s most rapidly changing, productive biomes: tropical forests. Using a long-term leaf litter and throughfall manipulation, we explored relationships between organic matter (OM) inputs, soil chemical properties and enzyme activities in a lowland tropical forest. We assayed six hydrolytic soil enzymes responsible for liberating carbon (C), nitrogen (N) and phosphorus (P), calculated enzyme activities and ratios in control plots versus treatments, and related these to soil biogeochemical variables. While leaf litter addition and removal tended to increase and decrease enzyme activities per gram soil, respectively, shifts in enzyme allocation patterns implied changes in relative nutrient constraints with altered OM inputs. Enzyme activity ratios in control plots suggested strong belowground P constraints; this was exacerbated when litter inputs were curtailed. Conversely, with double litter inputs, increased enzymatic investment in N acquisition indicated elevated N demand. Across all treatments, total soil C correlated more strongly with enzyme activities than soluble C fluxes, and enzyme ratios were sensitive to resource stoichiometry (soil C:N) and N availability (net N mineralization). Despite high annual precipitation in this site (MAP ~5 m), soil moisture positively correlated with five of six enzymes. Our results suggest resource availability regulates tropical soil enzyme activities, soil moisture plays an additional role even in very wet forests, and relative investment in C, N and P degrading enzymes in tropical soils will often be distinct from higher latitude ecosystems yet is sensitive to OM inputs.  相似文献   

6.
Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.  相似文献   

7.
Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July 1997 following a 7‐year continuous fertilization. We found that although there was no significant difference in total SOC in the top 0–10 cm of the soils between the fertilization plots (5.42±0.18 kg m?2) and the control plots (5.27±0.22 kg m?2), the proportion of the heavy‐fraction organic C in the total SOC was significantly higher in the fertilized plots (59%) than in the control plots (46%) (P<0.05). The annual decomposition rate of fertilized leaf litter was 13% higher than that of the control leaf litter. We also found that fertilization significantly increased microbial biomass (fungi+bacteria) with 952±48 mg kg?1soil in the fertilized plots and 755±37 mg kg?1soil in the control plots. Our results suggest that fertilization in tropical forests may enhance long‐term C sequestration in the soils of tropical wet forests.  相似文献   

8.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C‐rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (?22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.  相似文献   

9.
Biochars vary widely in pH, surface area, nutrient concentration, porosity, and metal binding capacity due to the assortment of feedstock materials and thermal conversion conditions under which it is formed. The wide variety of chemical and physical characteristics have resulted in biochar being used as an amendment to rebuild soil health, improve crop yields, increase soil water storage, and restore soils/spoils impacted by mining. Meta-analysis of the biochar literature has shown mixed results when using biochar as a soil amendment to improve crop productivity. For example, in one meta-analysis, biochar increased crop yield by approximately 10 %, while in another, approximately 50 % of the studies reported minimal to no crop yield increases. In spite of the mixed crop yield reports, biochars have properties that can improve soil health characteristics, by increasing carbon (C) sequestration and nutrient and water retention. Biochars also have the ability to bind enteric microbes and enhance metal binding in soils impacted by mining. In this review, we present examples of both effective and ineffective uses of biochar to improve soil health for agricultural functions and reclamation of degraded mine spoils. Biochars are expensive to manufacture and cannot be purged from soil after application, so for efficient use, they should be targeted for specific uses in agricultural and environmental sectors. Thus, we introduce the designer biochar concept as an alternate paradigm stating that biochars should be designed with properties that are tailored to specific soil deficiencies or problems. We then demonstrate how careful selection of biochars can increase their effectiveness as a soil amendment.  相似文献   

10.
畜禽粪便施用对稻麦轮作土壤质量的影响   总被引:9,自引:0,他引:9  
李江涛  钟晓兰  赵其国 《生态学报》2011,31(10):2837-2845
通过采集试验区长期施用鸡粪 (PL)、猪粪 (LM) 和化肥 (CF) 的稻麦轮作耕层和犁底层土壤,分析了不同施肥处理土壤有机碳和养分含量、土壤物理结构特征、土壤生物学性质的差异,探讨了长期施用畜禽粪便对土壤质量的影响。研究结果显示,长期施用畜禽粪便耕层和犁底层土壤有机碳含量显著高于施用化肥处理(P<0.05);与CF处理比较,PL和LM处理土壤氮、磷、钾全量和有效养分含量均明显增加,其中耕层土壤Olsen-P 含量为施用化肥处理的7-8倍,速效钾含量比施用化肥土壤高89.2%-102.9%。施用畜禽粪便明显改善了土壤物理结构,其耕层土壤大孔隙体积、中孔隙体积和总孔隙度分别为CF处理土壤的1.48-1.70倍,1.35-1.75倍和1.07-1.11倍;土壤团聚体水稳定性显著增强,而土壤抗张强度显著降低。施用畜禽粪便土壤微生物和生化性质也明显高于施用化肥土壤,其中LM处理耕层土壤MBC和MBN最大,分别是CF处理土壤的2.1倍和1.5倍;施用畜禽粪便土壤脲酶和转化酶活性也分别为施用化肥土壤的3.5-6.7倍和1.6-2.1倍。相关分析显示,土壤有机碳含量与各肥力指标间均表现出极显著相关(P<0.01)。研究结果说明,长期施用畜禽粪便土壤质量显著高于仅施化肥土壤。  相似文献   

11.
Nutrient availability is widely considered to constrain primary productivity in lowland tropical forests, yet there is little comparable information for the soil microbial biomass. We assessed microbial nutrient limitation by quantifying soil microbial biomass and hydrolytic enzyme activities in a long-term nutrient addition experiment in lowland tropical rain forest in central Panama. Multiple measurements were made over an annual cycle in plots that had received a decade of nitrogen, phosphorus, potassium, and micronutrient addition. Phosphorus addition increased soil microbial carbon (13 %), nitrogen (21 %), and phosphorus (49 %), decreased phosphatase activity by ~65 % and N-acetyl β-glucosaminidase activity by 24 %, but did not affect β-glucosidase activity. In contrast, addition of nitrogen, potassium, or micronutrients did not significantly affect microbial biomass or the activity of any enzyme. Microbial nutrients and hydrolytic enzyme activities all declined markedly in the dry season, with the change in microbial biomass equivalent to or greater than the annual nutrient flux in fine litter fall. Although multiple nutrients limit tree productivity at this site, we conclude that phosphorus limits microbial biomass in this strongly-weathered lowland tropical forest soil. This finding indicates that efforts to include enzymes in biogeochemical models must account for the disproportionate microbial investment in phosphorus acquisition in strongly-weathered soils.  相似文献   

12.
生物炭对不同土壤化学性质、小麦和糜子产量的影响   总被引:37,自引:0,他引:37  
陈心想  何绪生  耿增超  张雯  高海英 《生态学报》2013,33(20):6534-6542
以小麦和糜子为供试作物,利用室外盆栽试验,研究了不同添加量生物炭与矿质肥配施对两种不同土壤化学性质及小麦和糜子产量的影响。生物炭当季用量设5个水平:B0 (0 t/hm2)、B5 (5 t/hm2)、B10 (10 t/hm2)、B15 (15 t/hm2)和B20 (20 t/hm2),氮磷钾肥均作基肥施用。结果表明:1.与对照相比,施用生物炭可以显著增加新积土糜子季土壤pH值,其他处理随生物炭用量的增加虽有增加趋势但差异不显著;显著增加新积土土壤阳离子交换量,增幅为1.5 %—58.2 %;显著增加两种土壤有机碳含量,增幅为31.1 %—272.2 %;2.两种土壤的矿质态氮含量、新积土土壤有效磷和速效钾含量随生物炭用量的增加而显著提高,氮磷钾增幅分别为6.0 %—112.8 %、3.8 %—38.5 %和6.1 %—47.2 %;3.生物炭可显著提高塿土上作物氮吸收量,而作物磷、钾吸收量虽有增加,但差异不显著。生物炭对小麦和糜子的增产效应尚不稳定,在试验最高用量时甚至产生轻微抑制作用。总之,施用生物炭在一定程度上可以改善土壤化学性质,提高土壤有效养分含量,但生物炭对土壤和作物的影响与土壤、作物类型及土壤肥力密切相关。  相似文献   

13.
Y. L. Hu  S. L. Wang  D. H. Zeng 《Plant and Soil》2006,282(1-2):379-386
The quality of leaf litter can control decomposition processes and affect the nutrient availability for plant uptake. In this study, we investigated the effect of single leaf litter (Chinese fir – Cunninghamia lamcealata (Lamb.) Hook) and mixed leaf litters (C. lamcealata, Liquidamba formosana Hance and Alnus cremastogyne Burk) on soil chemical properties, soil microbial properties and soil enzyme activities during 2 years decomposition. The results showed that soil microbial biomass C, the ratio of soil microbial biomass C to total soil organic C (soil microbial quotient, Cmic/Corg) and soil enzymes (urease, invertase, dehydrogenase) activities increased significantly in mixed leaf litters treatments whereas soil chemical properties remained unchanged. However, soil microbial metabolic quotient (qCO2) values and soil polyphenol oxidase activity were higher in the single Chinese fir leaf litter treatment that had a higher C:N (carbon:nitrogen) ratio (79.53) compared with the mixed leaf litter (C:N ratios of 76.32, 56.90, 61.20, respectively). Our results demonstrated that the mixed leaf litter can improve forest soil quality, and that soil microbial properties and soil enzyme activities are more sensitive in response to litter quality change than soil chemical properties.  相似文献   

14.
Biochar additions can improve soil fertility and sequester carbon, but biochar effects have been investigated primarily in agricultural systems. Biochar from spruce and maple sawdust feedstocks (with and without inorganic phosphorus in a factorial design) were added to plots in a commercially managed temperate hardwood forest stand in central Ontario, Canada; treatments were applied as a top‐dressing immediately prior to fall leaf abscission in September 2011. Forests in this region have acidic, sandy soils, and due to nitrogen deposition may exhibit phosphorus, calcium, and magnesium limitation. To investigate short‐term impacts of biochar application on soil nutrient supply and greenhouse gas fluxes as compared to phosphorus fertilization, data were collected over the first year after treatment application; linear mixed models were used to analyze data. Two to six weeks after treatment application, there were higher concentrations of potassium in spruce and maple biochar plots, and phosphorus in spruce biochar plots, as compared to the control treatment. There were higher concentrations of calcium, magnesium, and phosphorus in the phosphorus plots. In the following spring and summer (9–12 months after treatment application), there were higher soil calcium concentrations in maple biochar plots, and phosphorus plots still had higher soil phosphorus concentrations than control plots. No treatment effects on fluxes of carbon dioxide, methane, or nitrous oxide were detected in the field; however, laboratory incubations after 12 months showed higher microbial respiration in soils from maple biochar plots as compared to spruce biochar, despite no effect on microbial biomass. The results suggest that the most important short‐term impact of biochar additions in this system is the increased supply of the limiting plant nutrients phosphorus and calcium. We expect that larger changes in mineral soil physical and chemical properties will occur when the surface‐applied biochar becomes incorporated into the soil after a few years.  相似文献   

15.
We conducted a field experiment in two alpine meadows to investigate the short-term effects of nitrogen enrichment and plant litter biomass on plant species richness, the percent cover of functional groups, soil microbial biomass, and enzyme activity in two alpine meadow communities. The addition of nitrogen fertilizer to experimental plots over two growing seasons increased plant production, as indicated by increases in both the living plant biomass and litter biomass in the Kobresia humilis meadow community. In contrast, fertilization had no significant effect on the amounts of living biomass and litter biomass in the K. tibetica meadow. The litter treatment results indicate that litter removal significantly increased the living biomass and decreased the litter biomass in the K. humilis meadow; however, litter-removal and litter-intact treatments had no impact on the amounts of living biomass and litter biomass in the K. tibetica meadow. Litter production depended on the degree of grass cover and was also influenced by nitrogen enrichment. The increase in plant biomass reflects a strong positive effect of nitrogen enrichment and litter removal on grasses in the K. humilis meadow. Neither fertilization nor litter removal had any impact on the grass biomass in the K. tibetica meadow. Sedge biomass was not significantly affected by either nutrient enrichment or litter removal in either alpine meadow community. The plant species richness decreased in the K. humilis meadow following nitrogen addition. In the K. humilis meadow, microbial biomass C increased significantly in response to the nitrogen enrichment and litter removal treatments. Enzyme activities differed depending on the enzyme and the different alpine meadow communities; in general, enzyme activities were higher in the upper soil layers (0–10 cm and 10–20 cm) than in the lower soil layers (20–40 cm). The amounts of living plant biomass and plant litter biomass in response to the different treatments of the two alpine meadow communities affected the soil microbial biomass C, soil organic C, and soil fertility. These results suggest that the original soil conditions, plant community composition, and community productivity are very important in regulating plant community productivity and microbial biomass and activity.  相似文献   

16.
Four biochar types, produced by slow pyrolysis of poultry litter (PL) and pine chips (P) at 400 or 500 °C, were added to two adjacent soils with contrasting soil organic matter (SOM) content (8.9 vs. 16.1 g C kg?1). The N mineralization rate was determined during 14‐week incubations and assessments were made of the microbial biomass C, dehydrogenase activity, and the microbial community structure (PLFA‐extraction). The addition of PL biochars increased the net N mineralization (i.e., compared to the control treatment) in both soils, while for treatments with P biochars net N immobilization was observed in both soils. Increasing the pyrolysis temperature of both feedstock types led to a decrease in net N mineralization. The ratio of Bacterial to Fungal PLFA biomarkers also increased with addition of biochars, and particularly in the case of the 500 °C biochars. Next to feedstock type and pyrolysis temperature, SOM content clearly affected the assessed soil biological parameters, viz. net N mineralization or immobilization, MBC and dehydrogenase activity were all greater in the H soil. This might be explained by an increased chance of physical contact between the microbial community activated by SOM mineralization upon incubation and discrete biochar particles. However, when considering the H soil's double C and N content, these responses were disproportionally small, which may be partly due to the L soil's, somewhat more labile SOM. Nonetheless, increasing SOM content and microbial biomass and activity generally appears to result in greater mineralization of biochar. Additionally, higher N mineralization after PL addition to the H soil with lower pH than the L soil can be due to the liming effect of the PL biochars.  相似文献   

17.
Biochar is a pyrolysed biomass and largely consists of pyrogenic carbon (C), which takes much longer to decompose compared to the biomass it is made from. When applied to soil, it could increase agricultural productivity through nutrient retention and changing soil properties. The biochar‐mediated nutrient retention capacity depends on the biochar properties, which change with time, and on soil properties. Here, we examined the effects of a wood biochar (20 t ha?1), that has aged (21 months) in a grassland field, on gross nitrogen (N) mineralization (GNM) and 15N recovery using a 15N tracer. A field experiment was conducted in two soil types, that is a Tenosol and a Dermosol, and also included a phosphorus (P) addition treatment (1 kg ha?1). Compared to the control, biochar with P addition significantly increased GNM in the Tenosol. Possibly, biochar and P addition enhanced nutrient availability in this nutrient‐limited soil, thereby stimulating microbial activity. In contrast, biochar addition reduced GNM in the Dermosol, possibly by protecting soil organic matter (SOM) from decomposition through sorption onto biochar surfaces and enhanced formation of organo‐mineral complexes in this soil that had a higher clay content (29% vs. 8% in the Tenosol). Compared to the control, biochar significantly increased total 15N recovery in the Tenosol (on average by 12%) and reduced leaching to subsurface soil layers (on average by 52%). Overall, 15N recovery was greater in the Dermosol (83%) than the Tenosol (63%), but was not affected by biochar or P. The increased N recovery with biochar addition in the sandy Tenosol may be due to retention at exchange sites on aged biochar, while such beneficial effects may not be visible in soils with higher clay content. Our results suggest that aged biochar may increase N use efficiency through reduced leaching or gaseous losses in sandy soils.  相似文献   

18.
In the highlands of Western Kenya, we investigated the reversibility of soil productivity decline with increasing length of continuous maize cultivation over 100 years (corresponding to decreasing soil organic carbon (SOC) and nutrient contents) using organic matter additions of differing quality and stability as a function of soil texture and inorganic nitrogen (N) additions. The ability of additions of labile organic matter (green and animal manure) to improve productivity primarily by enhanced nutrient availability was contrasted with the ability of stable organic matter (biochar and sawdust) to improve productivity by enhancing SOC. Maize productivity declined by 66% during the first 35 years of continuous cropping after forest clearing. Productivity remained at a low level of 3.0 t grain ha-1 across the chronosequence stretching up to 105 years of continuous cultivation despite full N–phosphorus (P)–potassium (K) fertilization (120–100–100 kg ha−1). Application of organic resources reversed the productivity decline by increasing yields by 57–167%, whereby responses to nutrient-rich green manure were 110% greater than those from nutrient-poor sawdust. Productivity at the most degraded sites (80–105 years since forest clearing) increased in response to green manure to a greater extent than the yields at the least degraded sites (5 years since forest clearing), both with full N–P–K fertilization. Biochar additions at the most degraded sites doubled maize yield (equaling responses to green manure additions in some instances) that were not fully explained by nutrient availability, suggesting improvement of factors other than plant nutrition. There was no detectable influence of texture (soils with either 11–14 or 45–49% clay) when low quality organic matter was applied (sawdust, biochar), whereas productivity was 8, 15, and 39% greater (P < 0.05) on sandier than heavier textured soils with high quality organic matter (green and animal manure) or only inorganic nutrient additions, respectively. Across the entire degradation range, organic matter additions decreased the need for additional inorganic fertilizer N irrespective of the quality of the organic matter. For low quality organic resources (biochar and sawdust), crop yields were increasingly responsive to inorganic N fertilization with increasing soil degradation. On the other hand, fertilizer N additions did not improve soil productivity when high quality organic inputs were applied. Even with the tested full N–P–K fertilization, adding organic matter to soil was required for restoring soil productivity and most effective in the most degraded sites through both nutrient delivery (with green manure) and improvement of SOC (with biochar).  相似文献   

19.
Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high‐arctic tundra heath sites in NE‐Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above‐ and belowground tundra carbon turnover, possibly governed by microbial resource availability.  相似文献   

20.
Abstract Phospholipid fatty acid (PLFA) profiles were measured in soils from organic, low-input, and conventional farming systems that are part of the long term Sustainable Agriculture Farming Systems (SAFS) Project. The farming systems differ in whether their source of fertilizer is mineral or organic, and in whether a winter cover crop is grown. Sustained increases in microbial biomass resulting from high organic matter inputs have been observed in the organic and low-input systems. PLFA profiles were compared to ascertain whether previously observed changes in biomass were accompanied by a change in the composition of the microbial community. In addition, the relative importance of environmental variables on PLFA profiles was determined. Redundancy analysis ordination showed that PLFA profiles from organic and conventional systems were significantly different from April to July. On ordination plots, PLFA profiles from the low-input system fell between organic and conventional systems on most sample dates. A group of fatty acids (i14:0, a15:0, 16:1ω7c, 16:1ω5c, 14:0, and 18:2ω6c) was enriched in the organic plots throughout the sampling period, and another group (10Me16:0, 2OH 16:1 and 10Me17:0) was consistently lower in relative abundance in the organic system. In addition, another group (15:0, a17:0, i16:0, 17:0, and 10Me18:0) was enriched over the short term in the organic plots after compost incorporation. The relative importance of various environmental variables in governing the composition of microbial communities could be ranked in the order: soil type > time > specific farming operation (e.g., cover crop incorporation or sidedressing with mineral fertilizer) > management system > spatial variation in the field. Measures of the microbial community and soil properties (including microbial biomass carbon and nitrogen, substrate induced respiration, basal respiration, potentially mineralizable nitrogen, soil nitrate and ammonium, and soil moisture) were seldom associated with the variation in the PLFA profiles. Received: 3 February 1997; Accepted: 7 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号