首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cdc14 protein phosphatase is critical for late mitosis progression in budding yeast, although its orthologs in other organisms, including mammalian cells, function as stress-responsive phosphatases. We found herein unexpected roles of Cdc14 in autophagy induction after nutrient starvation and target of rapamycin complex 1 (TORC1) kinase inactivation. TORC1 kinase phosphorylates Atg13 to repress autophagy under nutrient-rich conditions, but if TORC1 becomes inactive upon nutrient starvation or rapamycin treatment, Atg13 is rapidly dephosphorylated and autophagy is induced. Cdc14 phosphatase was required for optimal Atg13 dephosphorylation, pre-autophagosomal structure formation, and autophagy induction after TORC1 inactivation. In addition, Cdc14 was required for sufficient induction of ATG8 and ATG13 expression. Moreover, Cdc14 activation provoked autophagy even under normal conditions. This study identified a novel role of Cdc14 as the stress-responsive phosphatase for autophagy induction in budding yeast.  相似文献   

3.
《Autophagy》2013,9(8):854-862
It has been reported in various model organisms that autophagy and the target of rapamycin complex 1 (TORC1) signaling are strongly involved in eukaryotic cell aging and decreasing TORC1 activity extends longevity by an autophagy-dependent mechanism. Thus, to expand our knowledge of the regulation of eukaryotic cell aging, it is important to understand the relationship between TORC1 signaling and autophagy. Many researchers have shown that TORC1 represses autophagy under normal growth conditions, and TORC1 inactivation contributes to the upregulation of autophagy. However, it is poorly understood how autophagy is regulated or terminated when starvation is prolonged. Here, we report that bidirectional regulation between autophagy and TORC1 exists in the yeast Saccharomyces cerevisiae. We show that mutant cells with weak TORC1 activity maintain autophagy longer than wild-type cells, and TORC1 is partially reactivated under ongoing nitrogen starvation by an autophagy-dependent mechanism. In addition, we found that Atg13 is gradually rephosphorylated during prolonged nitrogen starvation, and the kinase activity of Atg1 is required for Atg13 rephosphorylation. Our data suggest that TORC1 can be substantially, if not fully, reactivated in an autophagy-dependent manner under ongoing starvation, and that partially reactivated TORC1 eventually plays a role in the attenuation of autophagy.  相似文献   

4.
5.
Shin CS  Huh WK 《Autophagy》2011,7(8):854-862
It has been reported in various model organisms that autophagy and the target of rapamycin complex 1 (TORC1) signaling are strongly involved in eukaryotic cell aging and decreasing TORC1 activity extends longevity by an autophagy-dependent mechanism. Thus, to expand our knowledge of the regulation of eukaryotic cell aging, it is important to understand the relationship between TORC1 signaling and autophagy. Many researchers have shown that TORC1 represses autophagy under normal growth conditions, and TORC1 inactivation contributes to the upregulation of autophagy. However, it is poorly understood how autophagy is regulated or terminated when starvation is prolonged. Here, we report that bidirectional regulation between autophagy and TORC1 exists in the yeast Saccharomyces cerevisiae. We show that mutant cells with weak TORC1 activity maintain autophagy longer than wild-type cells, and TORC1 is partially reactivated under ongoing nitrogen starvation by an autophagy-dependent mechanism. In addition, we found that Atg13 is gradually rephosphorylated during prolonged nitrogen starvation, and the kinase activity of Atg1 is required for Atg13 rephosphorylation. Our data suggest that TORC1 can be substantially, if not fully, reactivated in an autophagy-dependent manner under ongoing starvation, and that partially reactivated TORC1 eventually plays a role in the attenuation of autophagy.  相似文献   

6.
《Autophagy》2013,9(7):879-890
A number of signaling mechanisms have been implicated in the regulation of autophagic trafficking. Tor kinase activity, cAMP levels, and the GAAC pathway have all been suggested to be involved. Here, we closely analyzed the stimuli that underlie induction of autophagic trafficking in Saccharomyces cerevisiae. We find evidence for the existence of a novel aspect of the autophagic pathway that is regulated by intracellular amino acids, uncoupled from extracellular nutrient levels, and is absolutely dependent on Gcn2 and Gcn4. This requirement for Gcn2 and Gcn4 distinguishes amino-acid starvation induced autophagy from classic macroautophagy: Macroautophagic flux in response to nitrogen starvation is only partly diminished in gcn2Δ and gcn4Δ cells. However this maintenance of autophagic flux in gcn mutants during nitrogen starvation reflects the formation of larger numbers of smaller autophagosomes. We report that gcn2Δ and gcn4Δ cells are defective in the induction of Atg8 and Atg4 upon starvation, and this defect results, during total nitrogen starvation, in the formation of abnormally small autophagosomes, although overall autophagic flux remains close to normal due to a compensatory increase in the overall number of autophagosomes.  相似文献   

7.
《Autophagy》2013,9(5):622-633
Autophagy has an important function in degrading cytoplasmic components to maintain cellular homeostasis, but is also required during development. The formation of the autophagic vesicles requires the recruitment of the Atg8 ubiquitin-like proteins to the membrane of the nascent autophagosomes. Atg8 is a highly conserved gene which has been duplicated during metazoan evolution. In this report we have investigated, in the nematode C. elegans, the functions and localizations of the two Atg8p homologues LGG-2 and LGG-1. Phylogenetic analyses suggest that LGG-2 is more closely related to the human protein LC3 than LGG-1. LGG-1 but not LGG-2 is able to functionally complement the atg8 mutant yeast. The C-terminal glycine residue of LGG-2 is essential for post-translational modification and localization to the autophagosomes. During C. elegans development the two proteins share a similar expression pattern and localization but LGG-2 is more abundant in the neurons. Using genetic tools to either reduce or increase the autophagic flux we show that both LGG-2 and LGG-1 are addressed to the autophagosomal/lysosomal degradative system. We also demonstrate that the localization of both proteins is modified in several physiological processes when autophagy is induced, namely during diapause “dauer” larval formation, starvation and aging. Finally, we demonstrate that both LGG-2 and LGG-1 act synergistically and are involved in dauer formation and longevity of the worm.  相似文献   

8.
9.
PtdIns3P signaling is critical for dynamic membrane remodeling during autophagosome formation. Proteins in the Atg18/WIPI family are PtdIns3P-binding effectors which can form complexes with proteins in the Atg2 family, and both families are essential for macroautophagy/autophagy. However, little is known about the biophysical properties and biological functions of the Atg2-Atg18/WIPI complex as a whole. Here, we demonstrate that an ortholog of yeast Atg18, mammalian WDR45/WIPI4 has a stronger binding capacity for mammalian ATG2A or ATG2B than the other 3 WIPIs. We purified the full-length Rattus norvegicus ATG2B and found that it could bind to liposomes independently of PtdIns3P or WDR45. We also purified the ATG2B-WDR45 complex and then performed 3-dimensional reconstruction of the complex by single-particle electron microscopy, which revealed a club-shaped heterodimer with an approximate length of 22 nm. Furthermore, we performed cross-linking mass spectrometry and identified a set of highly cross-linked intermolecular and intramolecular lysine pairs. Finally, based on the cross-linking data followed by bioinformatics and mutagenesis analysis, we determined the conserved aromatic H/YF motif in the C terminus of ATG2A and ATG2B that is crucial for complex formation.  相似文献   

10.
Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein–protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.  相似文献   

11.
ABSTRACT

CASP9 (caspase 9) is a well-known initiator caspase which triggers intrinsic apoptosis. Recent studies also suggest various non-apoptotic roles of CASP9, including macroautophagy/autophagy regulation. However, the involvement of CASP9 in autophagy and its molecular mechanisms are not well understood. Here we report the non-apoptotic function of CASP9 in positive regulation of autophagy through maintenance of mitochondrial homeostasis. Growth factor or amino acid deprivation-induced autophagy activated CASP9, but without apoptotic features. Pharmacological inhibition or genetic ablation of CASP9 decreased autophagy flux, while ectopic expression of CASP9 rescued autophagy defects. In CASP9 knockout (KO) cells, initiation and elongation of phagophore membranes were normal, but sealing of the membranes and autophagosome maturation were impaired, and the lifetime of autophagosomes was prolonged. Ablation of CASP9 caused an accumulation of inactive ATG3 and decreased lipidation of the Atg8-family members, most severely that of GABARAPL1. Moreover, it resulted in abnormal mitochondrial morphology with depolarization of the membrane potential, reduced reactive oxygen species production, and aberrant accumulation of mitochondrial fusion-fission proteins. CASP9 expression or exogenously added H2O2 in the CASP9 KO cells corrected the ATG3 level and lipidation status of Atg8-family members, and restored autophagy flux. Of note, only CASP9 expression but not H2O2 rescued mitochondrial defects, revealing regulation of mitochondrial homeostasis by CASP9. Our findings suggest a new regulatory link between mitochondria and autophagy through CASP9 activity, especially for the proper operation of the Atg8-family conjugation system and autophagosome closure and maturation.  相似文献   

12.
The target of rapamycin (TOR) kinase is a conserved regulator of cell growth and functions within 2 different protein complexes, TORC1 and TORC2, where TORC2 positively controls macroautophagy/autophagy during amino acid starvation. Under these conditions, TORC2 signaling inhibits the activity of the calcium-regulated phosphatase calcineurin and promotes the general amino acid control (GAAC) response and autophagy. Here we demonstrate that TORC2 regulates calcineurin by controlling the respiratory activity of mitochondria. In particular, we find that mitochondrial oxidative stress affects the calcium channel regulatory protein Mid1, which we show is an essential upstream activator of calcineurin. Thus, these findings describe a novel regulation for autophagy that involves TORC2 signaling, mitochondrial respiration, and calcium homeostasis.  相似文献   

13.
Plasmodium falciparum has a limited repertoire of autophagy-related genes (ATGs), and the functions of various proteins of the autophagy-like pathway are not fully established in this protozoan parasite. Studies suggest that some of the autophagy proteins are crucial for parasite growth. PfATG18, for example, is essential for parasite replication and has a noncanonical role in apicoplast biogenesis. In this study, we demonstrate the conserved functions of PfATG18 in food vacuole (FV) dynamics and autophagy. Intriguingly, the P. falciparum FV is found to undergo fission and fusion and PfATG18 gets enriched at the interfaces of the newly generated multilobed FV during the process. In addition, expression of PfATG18 is induced upon starvation, both at the mRNA and protein level indicating its participation in the autophagy-like pathway, which is independent of its role in apicoplast biogenesis. The study also shows that PfATG18 is transported to the FV via the haemoglobin trafficking pathway. Overall, this study establishes the conserved functions of Atg18 in this important apicomplexan.  相似文献   

14.
15.
Autophagy targets cytoplasmic cargo to a lytic compartment for degradation. Autophagy-related (Atg) proteins, including the transmembrane protein Atg9, are involved in different steps of autophagy in yeast and mammalian cells. Functional classification of core Atg proteins in plants has not been clearly confirmed, partly because of the limited availability of reliable assays for monitoring autophagic flux. By using proUBQ10-GFP-ATG8a as an autophagic marker, we showed that autophagic flux is reduced but not completely compromised in Arabidopsis thaliana atg9 mutants. In contrast, we confirmed full inhibition of auto-phagic flux in atg7 and that the difference in autophagy was consistent with the differences in mutant phenotypes such as hypersensitivity to nutrient stress and selective autophagy. Autophagic flux is also reduced by an inhibitor of phosphatidylinositol kinase. Our data indicated that atg9 is phenotypically distinct from atg7 and atg2 in Arabidopsis, and we proposed that ATG9 and phosphatidylinositol kinase activity contribute to efficient autophagy in Arabidopsis.  相似文献   

16.
17.
《Autophagy》2013,9(4):473-481
Ticks are long-lived hematophagous arthropods and have tolerance to starvation. They can survive without food during the host-seeking period for several months to years. To understand how ticks obtain energy over a long period of non-feeding (starvation), we focused on autophagy, a crucial proteolysis system via the lysosomes for various cellular processes that is induced during starvation in eukaryotes. In the present study, EST databases for several organs of the tick Haemaphysalis longicornis led to the identification of HlATG3, HlATG4 and HlATG8, homologues of 3 autophagy-related (ATG) genes, ATG3, ATG4 and ATG8/LC3/GABARAP, respectively, which are essential for the Atg8 conjugation system in model animals. Real-time PCR results revealed that the expression of HlATG3, HlATG4 and HlATG8 in the tick showed higher levels during the non-feeding period than the feeding period, suggesting that the Atg8 conjugation system is at work in unfed ticks. Notably, their expression levels were higher in the midgut, a digestive organ, of unfed than fed adults. Histological analysis demonstrated that lipids and glycogen accumulated within the epithelial cells of the midgut in unfed ticks, implying that the midgut of unfed ticks serves as storage of those components as nutrients during non-feeding. Furthermore, autophagic organelles were found in the midgut undifferentiated cells of unfed ticks. The starved condition appears to be associated with the increased expression of HlATG genes in the midgut of unfed ticks. Tick autophagy might help compensate for the loss of nutrients derived from host blood components during the non-feeding period.  相似文献   

18.
Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.  相似文献   

19.
20.
Macroautophagy (hereafter autophagy) is a cellular “self-eating” process that is implicated in many human cancers, where it can act to either promote or suppress tumorigenesis. However, the role of autophagy in regulation of inflammation during tumorigenesis remains unclear. Here we show that autophagy is induced in the epidermis by ultraviolet (UV) irradiation and autophagy gene Atg7 promoted UV-induced inflammation and skin tumorigenesis. Atg7 regulated UV-induced cytokine expression and secretion, and promoted Ptgs2/Cox-2 expression through both a CREB1/CREB-dependent cell autonomous mechanism and an IL1B/IL1β-dependent non-cell autonomous mechanism. Adding PGE2 increased UV-induced skin inflammation and tumorigenesis, reversing the epidermal phenotype in mice with Atg7 deletion in keratinocytes. Similar to ATG7 knockdown in human keratinocytes, ATG5 knockdown inhibited UVB-induced expression of PTGS2 and cytokines. Furthermore, ATG7 loss increased the activation of the AMPK pathway and the phosphorylation of CRTC1, and led to endoplasmic reticulum (ER) accumulation and reduction of ER stress. Inducing ER stress and inhibiting calcium influx into the ER by thapsigargin reverses the inflammation and tumorigenesis phenotype in mice with epidermal Atg7 deletion. Taken together, these findings demonstrate that deleting autophagy gene Atg7 leads to a suppression of carcinogen-induced protumorigenic inflammatory microenvironment and tumorigenesis of the epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号