首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Circadian variation in the circulating concentrations of the N-terminal and C-terminal portions of the atrial natriuretic factor prohormone (pro ANF) was evaluated in 8 men, ages 41-47, who have been followed for 19 years with respect to circadian variation in physiological variables including blood pressure and clinical chemistries. The N-terminus of the ANF prohormone contains two peptides consisting of amino acids 1-30 and 31-67 while the C-terminus contains 1 peptide (amino acids 99-126) of this 126 amino acid prohormone which lower blood pressure and have natriuretic properties. To determine if either the N-terminus and/or the C-terminus of the prohormone have a circadian variation in their circulating plasma concentrations these 8 men had blood samples obtained for radiommunoassay every 3 hr during a 24-hr period. Three radiommunoassays which immunologically recognize (1) the whole N-terminus (i.e. amino acids 1-98), (2) the midportion of the N-terminus (amino acids 31-67) and (3) the C-terminus (amino acids 99-126) of the ANF prohormone were utilized. The whole N-terminus, the midportion of the N-terminus which circulates after being proteolytically cleaved from the rest of the N-terminus, and the C-terminus each had a peak circulating concentration between 0400 and 0700 which were significantly (P less than 0.001) higher than their concentrations at any other time throughout the 24-hr period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Atrial natriuretic peptide hormonal system in plants.   总被引:1,自引:0,他引:1  
To determine if atrial natriuretic peptides are present in plants as well as animals, where they are important for water and sodium metabolism, the leaves and stems of the Florida Beauty (Dracena godseffiana) were examined. The N-terminus consisting of amino acids (a.a.) 1-98 (i.e., pro ANF 1-98), the mid portion of the N-terminus (a.a. 31-67; pro ANF 31-67), and C-terminus (a.a. 99-126; ANF) of the 126 a.a. atrial natriuretic factor (ANF) prohormone were all present in the leaves and stems of this plant. The concentrations of pro ANF 1-98, pro ANF 31-67 and ANF-like peptides of 120 +/- 20, 123 +/- 21, and 129 +/- 20 ng/g of plant tissue in leaves and 109 +/- 20, 96 +/- 21, and 124 +/- 18 ng/g of tissue, respectively, in the stems were lower (P less than 0.05) than their concentrations in rat (Rattus norvegicus) heart atria of 196 +/- 40, 192 +/- 28, and 189 +/- 15 ng/g of tissue respectively, but higher (P less than 0.001) than their respective concentrations of 4.3 +/- 1.4, 4.1 +/- 1.2, and 3.9 +/- 1 ng/g of rat heart ventricular tissue. We conclude that the atrial natriuretic peptide-like hormonal system is present in the plant kingdom as well as in the animal kingdom.  相似文献   

3.
The 98 amino acid (a. a.) N-terminus of the 126 a. a. atrial natriuretic factor (ANF) prohormone contains three peptides consisting of a. a. 1–30 (proANF 1–30), a. a. 31–67 (proANF 31–67) and a. a. 79–98 (proANF 79–98) with blood pressure lowering, sodium and/or potassium excreting properties similar to atrial natriuretic factor (a. a. 99–126, C-terminus of prohormone). ProANF 1–30 and proANF 31–67 have separate and distinct receptors from ANF in both vasculature and in the kidney to help mediate the above effects. At the cellular level proANFs 1–30, 31–67, and 79–98 as well as ANF's effects are mediated by enhancement of the guanylate cyclase (EC 4.6.1.2) — cyclic GMP system in vasculature and in the kidney. These peptides from the N-terminus of the ANF prohormone circulate normally in man and in all animal species tested. The object of the present investigation was to determine if these peptides have the ability to enhance either guanylate cyclase and/or adenylate cyclase in a variety of other tissues in addition to kidney and vasculature. ProANF 1–30, proANF 31–67, proANF 79–98, and ANF all increased rat lung, liver, heart and testes, but not spleen, particulate guanylate cyclase 2- to 3-fold at their 100 nM concentrations. Dose response curves revealed that maximal stimulation of particulate guanylate cyclase activity by these newly discovered peptides was at their 1 M concentrations, with no further increase in activity above their 1 M concentrations. Half-maximal (EC50) enhancement of particulate guanylate cyclase occurred at 0.15 ± 0.01, 0.3 ± 0.02, 0.5 ± 0.03, and 0.9 ± 0.03 nM for proANF 1–30, proANF 31–67, proANF 79–98 and ANF, respectively. ProANFs 1–30, 31–67, 79–98, and 99–126 (i.e., ANF) each increased cyclic GMP but not cyclic AMP levels in tissue slices of liver, lung, small intestine, heart, and testes. None of these peptides enhanced either adenylate cyclase or the soluble 100,000 G form of guanylate cyclase. The ability of these N-terminal peptides to enhance particulate guanylate cyclase activity in a wide variety of tissues suggests that they may have effects in a much wider variety of tissues than presently thought.  相似文献   

4.
D L Vesely  A T Giordano 《Peptides》1992,13(1):177-182
The present investigation was designed to determine if the atrial natriuretic peptide hormonal system is present within single cell organisms. Paramecium multimicronucleatum were examined with 3 sensitive and specific radioimmunoassays which recognize the N-terminus [amino acids 1-98; proANF(1-98)], the midportion of the N-terminus [amino acids 31-67; proANF(31-67)] and C-terminus (amino acids 99-126; ANF) of the 126 amino acid atrial natriuretic factor (ANF) prohormone. ProANF(1-98), proANF(31-67), and ANF-like peptides were all present within these unicellular organisms at concentrations of 460 +/- 19 pg/ml, 420 +/- 15 pg/ml, and 14.5 +/- 2 pg/ml, respectively. These concentrations are similar to their respective concentrations in the plasma of the rat (Rattus norvegicus). These results suggest that even single cell organisms contain the atrial natriuretic peptide-like hormonal system.  相似文献   

5.
Degradation and clearance of atrial natriuretic factors (ANF)   总被引:2,自引:0,他引:2  
A L Gerbes  A M Vollmar 《Life sciences》1990,47(14):1173-1180
Atrial natriuretic factor, the first well defined natriuretic hormone is synthesized in the human heart as 151 aminoacid (AA) preprohormone and stored as 126 AA prohormone in atrial granules. Upon appropriate stimulation, the prohormone is cleaved into a 98 AA N-terminal fragment and a 28 AA C-terminal fragment, the biological active ANF(99-126), both circulating in plasma. Circulating ANF(99-126) is cleared by various organs, such as lung, liver and intestine, kidney and upper and lower limbs. Reported arterial-venous extraction ratios vary greatly, but are not much different between organs, the average extraction ratio being about 35%. Due to marked differences of organ blood flow, the contribution of various organs to total body ANF clearance differs considerably. Major mechanisms for ANF clearance are uptake by clearance receptors and degradation by an endoprotease (EC 3.4.24.11.). Clearance receptors, distinct from the receptors mediating the biological actions of ANF, have been demonstrated in various organs. Characterization of the ANF degrading enzyme activity has been performed in kidney tissue. Whether and how pathophysiological states affect ANF clearance is still poorly understood. Inhibition of clearance by ANF analogues binding to clearance receptors and by inhibitors of degrading peptidase can increase the biological action of circulating ANF. This may prove to be a therapeutic approach in diseases with smooth muscle contraction or volume overload.  相似文献   

6.
The 98 amino acid (a.a.) N-terminus of the 126 a.a. atrial natriuretic factor prohormone contains two natriuretic and vasodilatory peptides consisting of a.a. 1-30 (proANF 1-30) and a.a. 31-67 (proANF 31-67). The N-terminus and C-terminus (a.a. 99-126, i.e., ANF--also a vasodilatory peptide) circulate normally in humans with a circadian peak at 04:00 h in plasma. To determine if the N-terminus and C-terminus of the ANF prohormone are present in urine and possibly have a circadian variation in urine, six healthy volunteers had urine samples hourly while awake and every 3 h during sleep for five consecutive days obtained for radioimmunoassay. The sleep-awake pattern was varied so that after 2 days of normal sleep (supine)-awake (upright) positions, these volunteers were supine from 15:00 h on the third day until 10:00 h of the fourth day. They were then upright until 19:00 h that day when they became supine again until 02:30 h, and then were upright until 10:00 h of day 5. Three radioimmunoassays that immunologically recognize (a) the whole N-terminus (i.e., amino acids 1-98), (b) the midportion of the N-terminus (amino acids 31-67), and (c) the C-terminus of the ANF prohormone were utilized. ProANF 1-98, proANF 31-67, and the ANF radioimmunoassays each detected their respective peptides in urine. A circadian peak for each of these peptides was detected at 04:00 to 05:00 h whether the person was supine or upright during the night, which were significantly (p less than 0.001) higher than their concentrations in the afternoon of the previous days. Assuming a supine position during the day caused a significant (p less than 0.01) two- to threefold increase in these peptides in the urine. Food intake also increased the concentrations of proANF 1-98, proANF 31-67, and ANF in urine (p less than 0.001). Fluid intake when abstaining from food throughout the day lowered the concentration of these peptides in the urine. It was concluded that there is a circadian rhythm in both the N-terminus and C-terminus of the ANF prohormone excretion into urine with a peak at 04:00 h irrespective of posture, but that both posture and food and fluid intake throughout the day significantly influence the excretion of these peptides into the urine, with supine posture and food increasing their concentrations in the urine while fluid intake decreases their concentrations in the urine.  相似文献   

7.
The 98 amino acid (a.a.) N-terminus of the 126 a.a. atrial natriuretic factor prohormone contains two natriuretic and vasodilatory peptides consisting of a.a. 1–30 (proANF 1–30) and a.a. 31–67 (proANF 31–67). The N-terminus and C-terminus (a.a. 99–126, i.e., ANF–also a vasodilatory peptide) circulate normally in humans with a circadian peak at 04:00 h in plasma. To determine if the N-terminus and C-terminus of the ANF prohormone are present in urine and possibly have a circadian variation in urine, six healthy volunteers had urine samples hourly while awake and every 3 h during sleep for five consecutive days obtained for radioimmunoassay. The sleep-awake pattern was varied so that after 2 days of normal sleep (supine)-awake (upright) positions, these volunteers were supine from 15:00 h on the third day until 10:00 h of the fourth day. They were then upright until 19:00 h that day when they became supine again until 02:30 h, and then were upright until 10:00 h of day 5. Three radioimmunoassays that immunologically recognize (a) the whole N-terminus (i.e., amino acids 1–98), (b) the midportion of the N-terminus (amino acids 31–67), and (c) the C-terminus of the ANF prohormone were utilized. ProANF 1–98, proANF 31–67, and the ANF radioimmunoassays each detected their respective peptides in urine. A circadian peak for each of these peptides was detected at 04:00 to 05:00 h whether the person was supine or upright during the night, which were significantly (p < 0.001) higher than their concentrations in the afternoon of the previous days. Assuming a supine position during the day caused a significant (p < 0.01) two- to threefold increase in these peptides in the urine. Food intake also increased the concentrations of proANF 1–98, proANF 31–67, and ANF in urine (p < 0.001). Fluid intake when abstaining from food throughout the day lowered the concentration of these peptides in the urine. It was concluded that there is a circadian rhythm in both the N-terminus and C-terminus of the ANF prohormone excretion into urine with a peak at 04:00 h irrespective of posture, but that both posture and food and fluid intake throughout the day significantly influence the excretion of these peptides into the urine, with supine posture and food increasing their concentrations in the urine while fluid intake decreases their concentrations in the urine.  相似文献   

8.
The effects on guanylate cyclase and cyclic GMP accumulation of a synthetic peptide containing the amino acid sequence and biological activity of atrial natriuretic factor (ANF) were studied. ANF activated particulate guanylate cyclase in a concentration- and time- dependent fashion in crude membranes obtained from homogenates of rat kidney. Activation of particulate guanylate cyclase by ANF was also observed in particulate fractions from homogenates of rat aorta, testes, intestine, lung, and liver, but not from heart or brain. Soluble guanylate cyclase obtained from these tissues was not activated by ANF. Trypsin treatment of ANF prevented the activation of guanylate cyclase, while heat treatment had no effect. Accumulation of cyclic GMP in kidney minces and aorta was stimulated by ANF activation of guanylate cyclase. These data suggest a role for particulate guanylate cyclase in the molecular mechanisms underlying the physiological effects of ANF such as vascular relaxation, natriuresis, and diuresis.  相似文献   

9.
The N-terminus consisting of amino acids (a.a.) 1-98 (i.e., proANF 1-98), C-terminus (i.e., ANF; a.a. 99-126) and midportion of N-terminus consisting of a.a. 31-67 (proANF 31-67; Vessel Dilator) of the 126 a.a. ANF prohormone were present in the urine in 5-to-8-fold increased concentrations versus their plasma concentrations in 6 dogs under basal conditions. With acute coronary occlusion the right atrial plasma concentrations of these peptides increased two-to-three-fold, while in the urine only proANF 31-67 increased (3.5-fold). Ventricular fibrillation caused a 4-to-10-fold increased secretion into the right atrial chamber with a simultaneous 3-to-4.7-fold increase in the urine of proANF 1-98, proANF 31-67, and ANF. This investigation demonstrates that proANF 1-98, proANF 31-67 and ANF are normally present in urine and increase in the urine with cardiac stimuli that cause their release from the heart.  相似文献   

10.
Summary Rats were injected either with synthetic125I-Arg 101-Tyr 126 atrial natriuretic factor (ANF) or with125I-ANF together with an excess of cold Arg 101-Tyr 126 ANF. Binding sites in various tissues were accepted depending on two criteria: displacement of radioactivity by cold ANF and absence of localization of silver grains on putative target cells in the presence of cold ANF. Binding sites were localized on zona glomerulosa cells and on adrenergic and noradrenergic cells of adrenal medulla, on hepatocytes, on the base of mature epithelial cells of villi in the small intestine, on smooth muscle cells of the muscularis layer of the colon and on the base of epithelial cells of the ciliary bodies. In addition, binding sites were localized in the vasculature of kidney, adrenal cortex, lung and liver. Binding sites were particularly numerous on renal glomerular endothelial cells. These results indicate that ANF may have important hemodynamic effects in kidney, lung, liver and adrenal cortex, may regulate water and ion transport in small intestine and ciliary bodies and may have metabolic effects in the liver. The presence of binding sites on the zona glomerulosa is in agreement with the important inhibitory effect of the peptide on aldosterone secretion.  相似文献   

11.
We have used human apolipoprotein cDNAs as hybridization probes to study the relative abundance and distribution of apolipoprotein mRNAs in rabbit tissues by RNA blotting analysis. The tissues surveyed included liver, intestine, lung, pancreas, spleen, stomach, skeletal muscle, testis, heart, kidney, adrenal, aorta, and brain. We found that liver is the sole or major site of synthesis of apoA-II, apoA-IV, apoB, apoC-I, apoC-II, apoC-III, and apoE, and the intestine is a major site of synthesis of apoA-I, apoA-IV, and apoB. Minor sites of apolipoprotein mRNA synthesis were as follows: apoA-I, liver and skeletal muscle; apoA-IV, spleen and lung; apoB, kidney; apoC-II and apoC-III, intestine. ApoE mRNA was detected in all tissues surveyed with the exception of skeletal muscle. Sites with moderate apoE mRNA (10% of the liver value) were lung, brain, spleen, stomach, and testis. All rabbit mRNAs had forms with sizes comparable to their human counterparts. In addition, hybridization of hepatic and intestinal RNA with human apoA-IV and apoB probes produced a second hybridization band of approximately 2.4 and 8 kb, respectively. Similarly, hybridization of rabbit intestinal RNA with human apoC-II produced a hybridization band of 1.8 kb. The 8 kb apoB mRNA form may correspond to the apoB-48 mRNA, whereas the apoA-IV- and apoC-II-related mRNA species have not been described previously. This study provides a comprehensive survey of the sites of apolipoprotein gene expression and shows numerous differences in both the abundance and the tissue distribution of several apolipoprotein mRNAs between rabbit and human tissues. These findings and the observation of potentially new apolipoprotein mRNA species are important for our understanding of the cis and trans acting factors that confer tissue specificity as well as factors that regulate the expression of apolipoprotein genes in different mammalian species.  相似文献   

12.
Immunoreactive atrial natriuretic factor (ANF) was localized by immunochemistry and radioimmunoassay in mouse and rat testes. The analyses of acid extracts of testes by gel filtration and reverse phase high pressure liquid chromatography (HPLC) revealed the presence of a processed 31-residues peptide and the precursor form of 126-residues pro-ANF molecule corresponding to a molecular weights (Mr) of 3,300 and 18,000, respectively. The concentration of ANF in mice testis averaged 12 +/- 3 ng and in rat testis 8 +/- 2 ng per g of tissue. Specific immunochemical staining was localized in the spermatids and elongating spermatozoa of mammalian testis. The demonstration of immunoreactive ANF in testis and specific localization in spermatids reveals a new site at which ANF may be actively synthesized and regulate paracrine and/or autocrine function(s) during spermiogenesis, suggesting a broader spectrum of ANF action in addition to its known regulatory role in the control of blood pressure homeostasis.  相似文献   

13.
14.
The distribution of ANF was studied in the heart of the frog (Rana ridibunda) using indirect immunofluorescence. ANF-like immunoreactivity was localized mainly in the right and left atrium, most of cardiocytes being intensively labelled. At the electron microscopic level, all secretory granules present in atrial cardiocytes contained ANF immunoreactive material. Using a specific radioimmunoassay, we found higher concentrations of ANF in the left atrium (208 +/- 25 ng/mg protein) than in the right atrium (120 +/- 16 ng/mg protein) whilst in the rat, the right atrium contains the highest ANF concentration. The concentration of ANF in the ventricle was 10 times lower than in the whole atrium (32 +/- 4 ng/mg protein). Sephadex G-50 gel filtration of atrial extracts showed that ANF-like immunoreactivity eluted in three peaks. Most of the immunoreactivity corresponded to high molecular weight material eluting at the void volume while 20% of the material co-eluted with synthetic (Arg 101-Tyr 126) ANF. These results indicate that frog cardiocytes synthetize a peptide which is immunologically and biochemically related to mammalian ANF.  相似文献   

15.
A sensitive DNA-excess solution hybridization assay was used to quantitate apo-E mRNA in the liver and peripheral tissues of two nonhuman primates, Macaca fascicularis and Cercopithecus aethiops. When expressed on the basis of total RNA, apo-E mRNA values for M. fascicularis adrenal, brain, testis, and spleen ranged from 17-52% of the liver value. Apo-E mRNA values for mesenteric lymph node, kidney, thymus, and skeletal muscle were 1-5% of the liver value. When expressed on a cellular basis, apo-E mRNA was most abundant in the liver at approximately 1200 molecules/cell. Peripheral tissues showed a continuous range of apo-E mRNA from 1.5 molecules/cell in the thymus up to 350 molecules/cell in the brain. Similar results were obtained with peripheral tissues from C. aethiops in which case apo-E mRNA also was found in skin, lung, skeletal muscle, small intestine, and vascular tissues such as heart, aorta, and brachial artery. Calculation of the total apo-E mRNA/organ showed that most of the apo-E mRNA was present in the liver. However, summation of apo-E mRNA in peripheral tissues indicated that 20-40% of total body apo-E mRNA was extrahepatic. This results indicates that apo-E made in peripheral tissues may play a quantitatively important role in cholesterol metabolism since peripheral tissues have the potential to contribute a significant fraction of plasma apo-E.  相似文献   

16.
Previous work has shown that a low dietary intake of zinc for a short duration significantly lowers the lymphatic absorption of α-tocopherol (αTP) in adult male rats. The present study investigated whether the nutritional status of zinc is critical in maintaining the tissue levels of the vitamin. One group of rats was fed an AIN-93G diet containing 3 mg zinc/kg (low zinc, LZ) and the other was fed the same diet but containing 30 mg zinc/kg (adequate zinc, AZ). Food intakes between groups were matched by feeding two meals per day. At 6 wk, the body weights (356±8 g) of LZ rats reached 98% those (362±10 g) of AZ rats. Feeding of the LZ diet for 6 wk significantly lowered the concentrations of both αTP and zinc in the liver, kidney, heart, testis, and brain. No consistent relationships between αTP and zinc concentrations were observed in other tissues such as spleen, lung, gastrocnemius muscle, and retroperitoneal fat tissues. The concentrations of αTP in the liver, testis, brain, spleen, heart, and kidney were significantly correlated with the tissue concentrations of zinc. The LZ diet slightly but significantly increased the total lipid contents (mg/g) of liver, kidney, heart, and spleen. However, the tissue levels of phospholipid (μmol/100 mg lipid) in the heart, lung, testis, and spleen were decreased significantly in LZ rats. These findings indicate that low zinc intake results in a pronounced decrease in the animal’s αTP status under the conditions of matched food intakes, body weights, and feeding patterns. The lower tissue levels of αTP may explain in part the compromised antioxidant defense system and increased susceptibility to oxidative damage observed in zinc deficiency.  相似文献   

17.
18.
When the amounts of primary prostaglandins formed from endogenous arachidonic acid were determined in homogenates of various tissues of adult rats, prostaglandin D2 was the major prostaglandin found in most tissues. It was formed actively in the spleen (3100 ng/g tissue/5 min at 25 degrees C), intestine (2600), bone marrow (2400), lung (1100), and stomach (630); moderately in the epididymis, skin, thymus, and brain (140-340); and weakly in other tissues (less than 100). Addition of exogenous arachidonic acid (1 mM) accelerated the formation of prostaglandin D2 in all tissues as follows: spleen (15,000); bone marrow, intestine, thymus, liver, and lung (1600-5200); stomach, adrenal gland, epididymis, brain, salivary gland, skin, spinal cord, and seminal vesicle (380-1000); and other tissues (80-310). The activity of prostaglandin D synthetase (prostaglandin-H2 D-isomerase) was detected in 100,000g supernatants of almost all tissues. As judged by glutathione requirement for the reaction, inhibition of the activity by 1-chloro-2,4-dinitrobenzene, and immunotitration or immunoabsorption analyses with specific antibodies, the enzyme in the epididymis, brain, and spinal cord (1.8-9.2 nmol/min/mg protein) was glutathione-independent prostaglandin D synthetase (Y. Urade, N. Fujimoto, and O. Hayaishi (1985) J. Biol. Chem. 260, 12410-12415). The enzyme in the spleen, thymus, bone marrow, intestine, skin, and stomach (2.0-57.1) was glutathione-requiring prostaglandin D synthetase (Y. Urade, N. Fujimoto, M. Ujihara, and O. Hayaishi (1987) J. Biol. Chem. 262, 3820-3825). The activity in the kidney and testis (3.7-4.5) was catalyzed by glutathione S-transferase. The activity in the liver, lung, adrenal gland, salivary gland, heart, pancreas, and muscle (0.6-5.1) was due to both the glutathione-requiring synthetase and the transferase.  相似文献   

19.
The biotransformation of isosorbide dinitrate (ISDN) by various tissues of the rabbit and rat was examined. Incubation of 2 X 10(-7) M ISDN at 37 degrees C with tissue homogenates of liver, lung, kidney, intestine, skeletal muscle, aorta, and erythrocytes from the rabbit and rat resulted in a significant disappearance of ISDN after a 30-min incubation (also, 5-min incubation for liver). The disappearance of ISDN in each tissue homogenate was accompanied by an equimolar production of the mononitrate metabolites, isosorbide-2-mononitrate (2-ISMN) and isosorbide-5-mononitrate (5-ISMN), with the exception of liver homogenates where the loss of ISDN could not be accounted for by mononitrate formation. The relative rate of ISDN disappearance in various tissue homogenates was for the male rabbit, liver greater than lung approximately intestine greater than kidney greater than erythrocytes approximately skeletal muscle approximately aorta; for the female rabbit, liver greater than kidney approximately lung approximately intestine greater than erythrocytes approximately skeletal muscle approximately aorta; and for the male rat, liver greater than intestine greater than erythrocytes greater than skeletal muscle greater than lung approximately kidney. A sex difference in the percent disappearance of ISDN was observed in homogenates of lung and intestine from male and female rabbits. In addition, a sex difference in the ratio of metabolite (2-ISMN/5-ISMN) formed by denitration of ISDN was seen in homogenates of lung, skeletal muscle, and erythrocyte lysate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Glucose utilization of different organs (spleen, liver, ileum, kidney, skin, lung, and testis) was investigated in vivo in conscious rats 3, 24, or 48 h after treatment with 100 micrograms of endotoxin/100 g of body weight. Glucose uptake was determined by the 2-deoxyglucose technique, which was validated by demonstrating that endotoxin treatment did not alter either the intracellular retention of the phosphorylated metabolites (P-2-dGlc) of the tracer or the discrimination against 2-deoxyglucose in pathways of glucose metabolism. At 3 h after endotoxin the accumulation of P-2-dGlc was markedly increased in the liver (4.8-fold), spleen and skin (2.9-fold), lung (2.4-fold), and ileum and kidney (2.1-fold), as compared to time-matched controls. This effect was sustained in the liver at 24 and 48 h, was diminishing but still significant in spleen, ileum, and kidney, and absent in skin and lung. Accumulation of P-2-dGlc in the testis remained unchanged after endotoxin. Glucose uptake by individual organs and their contribution to whole body glucose utilization in control and endotoxin-treated rats were compared based on P-2-dGlc accumulation data. Organs rich in mononuclear phagocytes (liver and spleen) exhibited a marked and prolonged increase in glucose uptake after endotoxin. Yet the bulk of the increment in the whole body glucose disappearance rate (Rd) was due to three large tissues (skin, intestine, and muscle, accounting for more than 80% of the total P-2-dGlc accumulation in soft tissues), which showed a more moderate and transient increase in glucose utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号