首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytosolic and mitochondrial aspartate aminotransferase cDNAs were cloned from a lambda gt11 rat liver cDNA library. The complete coding sequence and the 3' non-coding sequence of the cytosolic isozyme mRNA were obtained from two overlapping cDNA clones. Partial sequences of the mitochondrial enzyme cDNAs were found to be identical to the recently published complete sequence (Mattingly, J. R., Jr., Rodriguez-Berrocal, F. J., Gordon, J., Iriarte, A., and Martinez-Carrion, M. (1987) Biochem. Biophys. Res. Commun. 149, 859-865). A single mRNA (2.4 kb (kilobase pair] hybridizing to the mitochondrial cDNA probe was detected by Northern blot analysis, whereas the cytosolic cDNA probe labeled one major (2.1 kb) and two minor (1.8 and 4 kb) mRNAs. The 1.8-kb and the 2.1-kb cytosolic aspartate aminotransferase mRNAs differ in their 3' ends and probably result from the use of either of the two polyadenylation signals present in the 3' noncoding region of the major cytosolic aspartate aminotransferase mRNA. Glucocorticoid hormones increased the activity of cytosolic but not mitochondrial aspartate aminotransferase in both liver and kidney. The increase in the enzyme activity was accompanied by an increase in the amount of the three corresponding mRNAs, while the mitochondrial enzyme mRNA was not significantly modified.  相似文献   

2.
3.
Human cytosolic aspartate aminotransferase (cAspAT) cDNA clones have been isolated from an adult human liver cDNA library. Among the clones, two cDNAs of 1550 and 1950 base pairs, respectively, have been characterized. These two cDNAs differ only in the lengths of their 3' noncoding regions and by the presence of one or two putative polyadenylation signals AATAAA. Northern blot analysis revealed two different mRNAs of 2.1 and 1.8 kbp in several human tissues, whereas Southern blot analysis suggested the existence of a single gene for the human cAspAT. The two mRNA species result from the alternative use of two polyadenylation signals. In the liver, the relative ratio of these mRNAs varies among different species and, in humans at least, during development. The properties of the two mRNAs were compared. The half-lives of the 2.1 and 1.8 kbp mRNAs, in the HepG2 cell line, are 8 and 12 h, respectively. The two mRNAs have similar and rather short poly(A) tracts of 20-50 nucleotides. Both mRNAs are capable of directing the in vitro synthesis of the cAspAT protein. We conclude that both the 2.1 and 1.8 kbp cAspAT mRNAs are functional and exhibit similar properties.  相似文献   

4.
Using several actin isotype-specific cDNA probes, we found actin mRNA of two size classes, 2.1 and 1.5 kilobases (kb), in extracts of polyadenylated and nonpolyadenylated RNA from sexually mature CD-1 mouse testes. Although the 2.1-kb sequence was present in both meiotic and postmeiotic testicular cell types, it decreased manyfold in late haploid cells. The 1.5-kb actin sequence was not detectable in meiotic pachytene spermatocytes (or in liver or kidney cells), but was present in round and elongating spermatids and residual bodies. To differentiate between the beta- and gamma-actin mRNAs, we isolated a cDNA, pMGA, containing the 3' untranslated region of a mouse cytoplasmic actin that has homology to the 3' untranslated region of a human gamma-actin cDNA but not to the 3' untranslated regions of human alpha-, beta-, or cardiac actins. Dot blot hybridizations with pMGA detected high levels of presumptive gamma-actin mRNA in pachytene spermatocytes and round spermatids, with lower amounts found in elongating spermatids. Hybridization with the 3' untranslated region of a rat beta-actin probe revealed that round spermatids contained higher levels of beta-actin mRNA than did pachytene spermatocytes or residual bodies. Both probes hybridized to the 2.1-kb actin mRNA but failed to hybridize to the 1.5-kb mRNA.  相似文献   

5.
6.
The temperature-sensitive RLA209-15 fetal rat hepatocyte line grown at the nonpermissive temperature (40 degrees C, normal phenotype) produces authentic rat alpha-fetoproteins (AFPs) of 69K and 73K (fetal AFPs) which are encoded by a 2.2-kb mRNA. These cells also produce low levels of a 1.7-kb AFP mRNA and a 65K variant AFP when grown at the permissive temperature (33 degrees C, transformed phenotype). Hybrid-selected translation demonstrates that the 1.7-kb AFP mRNA encodes the 65K variant AFP. Northern blot hybridization and S1 nuclease analyses indicate that the 1.7-kb mRNA lacks sequences present in the first seven 5' exons of the 2.2-kb AFP mRNA. However, the 1.7- and 2.2-kb AFP mRNAs share common sequences extending from the beginning of the eighth exon (corresponding to nucleotide 873 of the fetal AFP mRNA) to the 3' end. Primer extension analysis suggests that the 1.7-kb RNA contains additional sequences 5' to the common regions shared by both AFP mRNAs. We have previously shown that adult rat liver produces a 1.7-kb AFP mRNA; we now report the isolation of a cDNA (ARFP5) encoding this variant AFP mRNA from an adult rat liver cDNA library. Restriction endonuclease mapping and sequence analysis of ARFP5 confirm that the 1.7- and 2.2-kb AFP mRNAs share similar sequences at the 3' region (approximately 1.1 kb). However, ARFP5 contains an additional 90 bp variant AFP mRNA-specific 5' sequence which is located in the seventh intron of the rat AFP gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
We previously reported the isolation of a cDNA encoding the liver-specific isozyme of rat S-adenosylmethionine synthetase from a lambda gt11 rat liver cDNA library. Using this cDNA as a probe, we have isolated and sequenced cDNA clones for the rat kidney S-adenosylmethionine synthetase (extrahepatic isoenzyme) from a lambda gt11 rat kidney cDNA library. The complete coding sequence of this enzyme mRNA was obtained from two overlapping cDNA clones. The amino acid sequence deduced from the cDNAs indicates that this enzyme contains 395 amino acids and has a molecular mass of 43,715 Da. The predicted amino acid sequence of this protein shares 85% similarity with that of rat liver S-adenosylmethionine synthetase. This result suggests that kidney and liver isoenzymes may have originated from a common ancestral gene. In addition, comparison of known S-adenosylmethionine synthetase sequences among different species also shows that these proteins have a high degree of similarity. The distribution of kidney- and liver-type S-adenosylmethionine synthetase mRNAs in kidney, liver, brain, and testis were examined by RNA blot hybridization analysis with probes specific for the respective mRNAs. A 3.4-kilobase (kb) mRNA species hybridizable with a probe for kidney S-adenosylmethionine synthetase was found in all tissues examined except for liver, while a 3.4-kb mRNA species hybridizable with a probe for liver S-adenosylmethionine synthetase was only present in the liver. The 3.4-kb kidney-type isozyme mRNA showed the same molecular size as the liver-type isozyme mRNA. Thus, kidney- and liver-type S-adenosylmethionine synthetase isozyme mRNAs were expressed in various tissues with different tissue specificities.  相似文献   

9.
Structural characterization of exon 6 of the rat IGF-I gene.   总被引:3,自引:0,他引:3  
In rat liver, insulin-like growth factor I (IGF-I) mRNAs exist as two major size classes of 7.5-7.0 kb and 1.2-0.9 kb. The 7.5- to 7.0-kb IGF-I mRNAs predominate in some nonhepatic tissues of the rat. Because the previously reported sequences of rat IGF-I cDNAs and genomic clones account for only 2.1 kb of sequence, the majority of the sequence of 7.5- to 7.0-kb rat IGF-I mRNAs was unknown. Using a combination of nucleotide sequencing of genomic DNA and cDNA clones and Northern hybridization and RNase protection, we have characterized a 6,354-base-long 3' exon (exon 6) of the rat IGF-I gene. The sequence of exon 6 establishes the previously unknown sequence of the 3' end of the 7.5- to 7.0-kb rat IGF-I mRNAs, comprised predominantly of an unusually long 3' untranslated sequence (3'UT). The long 3'UT contains multiple ATTTA, A(T)nA, and (T)nA sequences, as well as inverted repeats. These sequences may contribute to the shorter half-life of the 7.5- to 7.0-kb rat IGF-I mRNAs relative to the 1.2- to 0.9-kb forms that have been demonstrated previously in vitro and in vivo. We also demonstrate that the 7.5- to 7.0-kb rat IGF-I mRNAs are localized to the cytoplasm of rat liver, providing indirect evidence that they are mature and functional mRNAs.  相似文献   

10.
11.
NAD(P)H:menadione oxidoreductase (NMOR1) is a flavoprotein that catalyzes the two-electron reduction of various redox dyes and quinones. It has been proposed that this enzyme may have a protective effect against cancer caused by quinones and their metabolic precursors. We show that tetrachlorodibenzo-p-dioxin (TCDD) treatment of the human hepatoblastoma cell line Hep-G2 produces a 5-fold induction of NMOR activity. Several overlapping human NMOR1 cDNAs were isolated from a human liver lambda gt 11 expression library, and their composite sequence corresponds to an mRNA of 2448 nucleotides containing a continuous open reading frame encoding a protein of 274 residues (molecular weight, 30,880). The corresponding human NMOR1 mRNA has an unusually long 3'-untranslated region (1679 base pairs) with four potential polyadenylation signals (I-IV) at positions 986, 1460, 1838, and 2419 and a single copy of human Alu repetitive sequence between polyadenylation sites II and III. Southern blot analysis of human genomic DNA suggests the presence of a single NMOR1 gene approximately 10 kilobases (KB) in length. The use of three of the aforementioned polyadenylation signals is likely to account for the three different species (2.7, 1.7, and 1.2 kb) of mRNA hybridizing to NMOR1 cDNA in Hep-G2 cells. Indeed several partial cDNA clones were isolated that corresponded to the mRNA derived by use of the proximal polyadenylation signal. Interestingly, the longest (2.7 kb) mRNA species was induced severalfold by TCDD, whereas the other two mRNAs (1.7 and 1.2 kb) were induced to a much lesser extent by TCDD treatment. The human NMOR1 cDNA and protein are 83 and 85% similar to rat liver cytosolic NMOR1 cDNA and protein, respectively. Southern analysis of DNA from 54 human x mouse and 39 human x hamster somatic cell hybrids shows that the NMOR1 gene resides on human chromosome 16.  相似文献   

12.
Three distinct clones encoding full-length 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBPase-2) were characterized from a rat liver cDNA library. Clone 22c was 1859 bp long and coded for the 470 amino acids of the bifunctional subunit of the liver homodimer. This polypeptide is phosphorylated on serine 32 by cyclic-AMP-dependent protein kinase. Clone 4c (2681 bp) had a coding region identical to that of clone 22c but it included a putative intron of 959 bp. In clone 5c (1750 bp), the sequence upstream from amino acid 33 differed from that in clone 22c and coded for a unique N-terminal portion of 10 amino acids. Poly(A)-rich RNA from rat tissues was hybridized with cDNA probes corresponding to the unique N-terminal portions of clones 22c and 5c. Dot and Northern blots showed signals indicative of three distinct PFK-2/FBPase-2 mRNAs. There were a 6.8-kb mRNA typical of cardiac tissue, a 2.1-kb mRNA typical of liver, corresponding to clone 22c, and a 1.9-kb mRNA typical of skeletal muscle, corresponding to clone 5c. Primer extension analysis showed that clones 22c and 5c were nearly complete since their respective 5'-untranslated sequences were at most 96/97 bp and 44 bp shorter than the corresponding mRNAs. These data provide a molecular basis for the existence of PFK-2/FBPase-2 isozymes.  相似文献   

13.
14.
The major sialoglycoprotein in the human red cell surface membrane, glycophorin A is encoded by a single gene. However, this gene gives rise to three species of glycophorin A mRNA of sizes about 1.0, 1.7 and 2.8 kilobases in reticulocytes, foetal liver cells and erythroleukaemic K562 cells. In an investigation of how the three mRNAs originated, we showed by primer extension analysis that all three mRNAs in K562 cells had identical 5' termini and, by nucleotide sequencing of correlated cDNAs, that they had identical coding regions, except for the well-known glycophorin AM-AN polymorphism. However, we found also by sequencing the cDNAs that the mRNAs apparently differed from each other in the lengths of their 3' untranslated regions. This was confirmed by Northern blot analysis which also provided evidence that the three mRNAs originated by use of different polyadenylation signals of which seven were found in the longest cDNA we analyzed.  相似文献   

15.
16.
17.
18.
Cloning and nucleotide sequence of rat ornithine decarboxylase cDNA   总被引:6,自引:0,他引:6  
The enzyme ornithine decarboxylase (ODC; EC 4.1.1.17) catalyses the first and rate-limiting step in polyamine biosynthesis. Its activity is markedly increased in rapidly growing or regenerating tissue and is subject to regulation by a variety of trophic and mitogenic stimuli. ODC is therefore believed to play an essential role in the onset of cellular proliferation. In a molecular-biological approach to investigate ODC regulation upon induction by tumor promoters in rat liver we isolated an almost full-length rat ODC cDNA clone of 2.4 kb (designated pODC.E10) from a cDNA library of testosterone-induced rat kidney poly(A)+ RNA. Characterization by restriction-endonuclease mapping and sequence analysis showed strong homology to mouse ODC cDNA sequences previously published [Gupta and Coffino, J. Biol. Chem. 260 (1985) 2941-2944; Kahana and Nathans, Proc. Natl. Acad. Sci. USA 82 (1985) 1673-1677; Hickok et al., Proc. Natl. Acad. Sci. USA 83 (1986) 594-598]. This homology is most pronounced in the 461-aa-spanning coding region, amounting to 94% and 97% at the DNA and protein levels, respectively. In the 423-nt 5' leader the rat-mouse homology (approx. 75%) is most pronounced in a region of about 175 nt directly upstream from the translational start site. The leader sequence also contains a perfect inverted repeat of 54 nt and ten additional upstream ATG triplets, which are all followed by nonsense codons before the initiating ATG. In the 633-nt 3' trailer region of pODC.E10 an additional polyadenylation signal is observed more than 300 nt upstream from the 3' end. Rat-mouse homology is about 80% up to this first polyadenylation signal and is considerably less thereafter. The presence of two alternate polyadenylation sites most likely accounts for the 3' size heterogeneity observed in the two ODC mRNAs of 2.1 and 2.6 kb, respectively. In rat liver both mRNAs are coordinately induced by different tumor promoters. Finally, Southern blot analysis of normal rat liver and rat hepatoma DNA revealed that rat ODC, as in other rodents, belongs to a multigene family.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号