首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linnane AW  Eastwood H 《Mitochondrion》2004,4(5-6):779-789
In this communication, the concept is developed that coenzyme Q10 has a toti-potent role in the regulation of cellular metabolism. The redox function of coenzyme Q10 leads to a number of outcomes with major impacts on sub-cellular metabolism and gene regulation. Coenzyme Q10's regulatory activities are achieved in part, through the agency of its localization in the various sub-cellular membrane compartments. Its fluctuating redox poise within these membranes reflects the cell's metabolic micro-environments. As an integral part of this process, H2O2 is generated as a product of the normal electron transport systems to function as a mitogenic second messenger informing the nuclear and mitochondrial (chloroplast) genomes on a real-time basis of the status of the sub-cellular metabolic micro-environments and the needs of that cell. Coenzyme Q10 plays a major role both in energy conservation, and energy dissipation as a component of the uncoupler protein family. Coenzyme Q10 is both an anti-oxidant and a pro-oxidant and of the two the latter is proposed as its more important cellular function. Coenzyme Q10 has been reported, to be of therapeutic benefit in the treatment of a wide range of age related degenerative systemic diseases and mitochondrial disease. Our over-arching hypotheses on the central role played by coenzyme Q10 in redox poise changes, the generation of H2O2, consequent gene regulation and metabolic flux control may account for the wide ranging therapeutic benefits attributed to coenzyme Q10.  相似文献   

2.
3.
Summary A phenomenon associated with the aging process is a general age-dependent decline in cellular bioenergetic capacity that varies from tissue to tissue and even from cell to cell within the same tissue. This variation eventually forms a tissue bioenergy mosaic. Recent evidence by our group suggests that the accumulation of mitochondrial DNA mutations, in conjunction with a concurrent decrease in full-length mtDNA in tissues such as skeletal and cardiac muscle, strongly correlates with decreased mitochondrial function and accounts for the bioenergy mosaic. Evidence is also presented suggesting that amelioration with coenzyme Q10 may restore some of the age-associated decline in bioenergy function, in effect providing the potential for a “redox therapy”. Coenzyme Q is a naturally occurring material that is present in the membranes of all animal cells. Its primary function is to act as an electron carrier in the mitochondrial electron transport chain enabling the energy from substrates such as fats and sugars (in the form of reducing equivalents) to be ultimately captured in the form of ATP, which in turn may be utilised as a source of cellular bioenergy. Coenzyme Q10 has no known toxic effects and has been used in a limited number of animal studies and human clinical trials; however, the mechanism of action of coenzyme Q10 remains unclear. A series of experiments by this group aimed at determining the efficacy of coenzyme Q10 treatment on ameliorating the bioenergy capacity at the organ and cellular level will also be reviewed.  相似文献   

4.
Plant mitochondrial uncoupling proteins (pUCPs) play important roles in generation of metabolic thermogenesis, response to stress situation, and regulation of energy metabolism. Although the signaling pathways for the pUCPs-regulated plant energy metabolism and thermogenesis are well studied, the role of pUCPs in the regulation of plant stress tolerance has not been fully substantiated. Here we showed that mitochondrial uncoupling protein was required for effective antioxidant enzymes activities, chlorophyll fluorescence and redox poise in tomato under oxidative stress using virusinduced gene silencing approach. Silencing of LeUCP gene reduced maximal quantum yield of PSII (Fv/Fm) and photochemical quenching coefficient (qP), as well as mitigated activation of antioxidant enzymes and related genes expression. The content of reduced ascorbate and reduced glutathione, redox ratio of ascorbate and L-galactono-1,4-lactone dehydrogenase (GalLDH; EC 1.3.2.3) activity were all decreased in the leaves of LeUCP gene-silenced plant. However, malondialdehyde content was increased under methylviologen (MV) stress. ROS accumulation was increased significantly following MV and heat stress treatments. Meanwhile, LeUCP gene silencing aggravated accumulation of H2O2 and O 2 ·? in leaves. Taken together, these results strongly suggest that LeUCP gene plays critical role in maintaining the redox homeostasis and balance in antioxidant enzyme system under oxidative stress.  相似文献   

5.
Many investigators have purified an aldehyde oxidase from mammalian livers, and described reactions of this enzyme with diverse substrates. Coenzyme Q10 was unambiguously identified and found present in some of these enzyme preparations. It was considered that coenzyme Q10 might participate in the functionality of this enzyme, but the validity of the intrinsic association of coenzyme Q10 was questioned. We have similarly purified aldehyde oxidase from rabbit livers. No coenzyme Q10 could be detected under controlled conditions for detecting the presence of coenzyme Q10. It is concluded that coenzyme Q10 may be a contaminant of some aldehyde oxidase preparations, and that it is not intrinsic for the functionality of this enzyme.  相似文献   

6.
Cardiac oxidative stress is an early event associated with diabetic cardiomyopathy, triggered by hyperglycemia. We tested the hypothesis that targeting left-ventricular (LV) reactive oxygen species (ROS) upregulation subsequent to hyperglycemia attenuates type 1 diabetes-induced LV remodeling and dysfunction, accompanied by attenuated proinflammatory markers and cardiomyocyte apoptosis. Male 6-week-old mice received either streptozotocin (55 mg/kg/day for 5 days), to induce type 1 diabetes, or citrate buffer vehicle. After 4 weeks of hyperglycemia, the mice were allocated to coenzyme Q10 supplementation (10 mg/kg/day), treatment with the angiotensin-converting-enzyme inhibitor (ACE-I) ramipril (3 mg/kg/day), treatment with olive oil vehicle, or no treatment for 8 weeks. Type 1 diabetes upregulated LV NADPH oxidase (Nox2, p22phox, p47phox and superoxide production), LV uncoupling protein UCP3 expression, and both LV and systemic oxidative stress (LV 3-nitrotyrosine and plasma lipid peroxidation). All of these were significantly attenuated by coenzyme Q10. Coenzyme Q10 substantially limited type 1 diabetes-induced impairments in LV diastolic function (E:A ratio and deceleration time by echocardiography, LV end-diastolic pressure, and LV −dP/dt by micromanometry), LV remodeling (cardiomyocyte hypertrophy, cardiac fibrosis, apoptosis), and LV expression of proinflammatory mediators (tumor necrosis factor-α, with a similar trend for interleukin IL-1β). Coenzyme Q10's actions were independent of glycemic control, body mass, and blood pressure. Coenzyme Q10 compared favorably to improvements observed with ramipril. In summary, these data suggest that coenzyme Q10 effectively targets LV ROS upregulation to limit type 1 diabetic cardiomyopathy. Coenzyme Q10 supplementation may thus represent an effective alternative to ACE-Is for the treatment of cardiac complications in type 1 diabetic patients.  相似文献   

7.
Summary The acute effects of carbon monoxide (CO) on cardiac metabolism at the mitochondrial level were investigated. Rats were exposed to 4% CO for 4 minutes in a closed chamber. Immediately after exposure, hearts were removed and frozen with a precooled clamp. Blood from the thoracic cavity was sampled for analysis. Gas analysis of arterial blood taken from the abdominal aorta demonstrated severe hypoxia with oxygen partial pressure less than 20 mmHg, metabolic acidosis and reduced pH value. There were no significant changes in the plasma level of glucose and non esterified fatty acids (NEFA). In the myocardium, ATP levels decreased significantly, and concomitantly, a significant increase in the plasma uric acid level was observed. Although no significant change was observed in short chain acyl carnitine, free carnitine levels decreased to one fourth of the control value. Long chain acylcarnitine increased 11-fold. Coenzyme Q9 (CoQ9) level decreased significantly, but there was no significant change in Coenzyme Q10 (CoQ10).  相似文献   

8.
Coenzyme Q10 (CoQ10) is a redox molecule critical for the proper function of energy metabolism and antioxidant defenses. Despite its essential role in cellular metabolism, the regulation of CoQ10 biosynthesis in humans remains mostly unknown. Herein, we determined that PPTC7 is a regulatory protein of CoQ10 biosynthesis required for human cell survival. We demonstrated by in vitro approaches that PPTC7 is a bona fide protein phosphatase that dephosphorylates the human COQ7. Expression modulation experiments determined that human PPTC7 dictates cellular CoQ10 content. Using two different approaches (PPTC7 over-expression and caloric restriction), we demonstrated that PPTC7 facilitates and improves the human cell adaptation to respiratory conditions. Moreover, we determined that the physiological role of PPTC7 takes place in the adaptation to starvation and pro-oxidant conditions, facilitating the induction of mitochondrial metabolism while preventing the accumulation of ROS. Here we unveil the first post-translational mechanism regulating CoQ10 biosynthesis in humans and propose targeting the induction of PPTC7 activity/expression for the treatment of CoQ10-related mitochondrial diseases.  相似文献   

9.
Oxidative stress leads to mitochondrial dysfunction, which triggers the opening of the permeability transition pores (PTP) and the release of pro-apoptotic factors causing apoptotic cell death. In a limited number of cell systems, anti-oxidants and free-radical scavengers have been shown to block this response. We have previously reported that coenzyme Q10 (CoQ10), an electron carrier in the mitochondrial respiratory chain, is involved in the reactive oxygen species (ROS) removal and prevention of oxidative stress-induced apoptosis in neuronal cells. However, the mechanism of this protection has not been fully elucidated. In the present study we investigated the effects of CoQ10 on the mitochondrial events characteristic to apoptosis, especially on the function of pro-apoptotic protein Bax. Our results demonstrated that following a brief exposure of two human cell lines (fibroblasts and HEK293 cells) to H2O2 the intracellular levels of ROS and the association of Bax with the mitochondria significantly increased and the cells underwent apoptosis. Both of these events, as well as the release of cytochrome c from the mitochondria, were blocked by a 24 h pre-treatment with CoQ10. It is therefore believed that CoQ10 prevented the collapse of the mitochondrial membrane potential in response to the H2O2 treatment. Recombinant Bax protein alone caused the ROS generation and release of cytochrome c from isolated mitochondria and, again, CoQ10 inhibited these Bax-induced mitochondrial dysfunctions.  相似文献   

10.
The study of the components of mitochondrial metabolism has potential benefits for health span and lifespan because the maintenance of efficient mitochondrial function and antioxidant capacity is associated with improved health and survival. In yeast, mitochondrial function requires the tight control of several metabolic processes such as coenzyme Q biosynthesis, assuring an appropriate energy supply and antioxidant functions. Many mitochondrial processes are regulated by phosphorylation cycles mediated by protein kinases and phosphatases. In this study, we determined that the mitochondrial phosphatase Ptc7p, a Ser/Thr phosphatase, was required to regulate coenzyme Q6 biosynthesis, which in turn activated aerobic metabolism and enhanced oxidative stress resistance. We showed that Ptc7p phosphatase specifically activated coenzyme Q6 biosynthesis through the dephosphorylation of the demethoxy-Q6 hydroxylase Coq7p. The current findings revealed that Ptc7p is a regulator of mitochondrial metabolism that is essential to maintain proper function of the mitochondria by regulating energy metabolism and oxidative stress resistance.  相似文献   

11.
The in vitro toxicity of multiple hydrophobic compounds was the focus of this study. A mitochondrial respiratory assay, sensitive to perturbations caused by hydrophobic chemicals, was utilized to measure the effects of individual aromatic hydrocarbon pollutants and their mixtures on mitochondrial respiratory function. Benzene, naphthalene, acenaphthene, and 1-chloronaphthalene, common industrial solvents shown to interact additively in vivo, were evaluated using this in vitro assay system. Mitochondrial respiration was inhibited 50% (EC50) by 525 ppm (6.7 mM) benzene, 15 ppm (117 μM) naphthalene, 3.9 ppm (25.5 μM) acenaphthene, or 3.8 ppm (23.4 μM) 1-chloronaphthalene. NADH:O2 oxidoreductase (NADH → O2), NADH: ubiquinone oxidoreductase, and ubiquinol:O2 oxidoreductase activities were inhibited by all four compounds, whereas succinate:O2 oxidoreductase, cytochrome c oxidase, and duroquinol: O2 oxidoreductase activities were not inhibited. Inhibition of mitochondrial respiration occurred at the level of ubiquinone (coenzyme Q10) for all four aromatic hydrocarbons. The ultraviolet absorbance spectrum of isolated Q10 was also altered by naphthalene, acenaphthene, or 1-chloronaphthalene, suggesting a specific interaction between that component of the respiratory chain and these aromatic hydrocarbons. Inhibition by a mixture of 2, 3, or 4 of the compounds tested was additive, reflecting a summation effect of each compound present in the mixture. This additive nature is consistent with previously reported effects of these compounds in vivo and with compounds having similar modes of action. The similar mode of action in vitro is a specific interaction with coenzyme Q10, not a generalized membrane perturbation as speculated to occur in vivo, and is the likely mechanism for the observed additive toxicity.  相似文献   

12.
I. L. Sun  E. E. Sun  F. L. Crane 《Protoplasma》1995,184(1-4):214-219
Summary The addition of coenzyme Q10 to culture media stimulates the serum-free growth of HeLa, HL-60 cells, and mouse fibroblasts (Balb/3T3). With HeLa cells, the stimulation by coenzyme Q10 is additive to the stimulation by ferricyanide, an impermeable electron acceptor for the transplasma membrane electron transport. This combined response to coenzyme Q10 and ferricyanide is enhanced with insulin. -Tocopherylquinone can also stimulate the growth of HeLa cells, but vitamin K1 is inactive. Specificity of quinone effects is indicated. Serum-free growth of Balb/3T3 and SV 40 transformed BaIb/3T3 (SV/T2) cells is also stimulated by coenzyme Qio with stimulation similar to HeLa cells. However, Balb/3T3 cells are not stimulated by ferricyanide, which does not increase the response to coenzyme Q10. The transformed cells (SV/T2) respond better to ferricyanide alone, but the effects of coenzyme Qio and ferricyanide are not additive. Serum-free growth of HL-60 cells is stimulated dramatically by coenzyme Q10. The extent of growth stimulation on HL-60 cells is almost six-fold that of HeLa or Balb/3T3 cells. The stimulation of NADH-ferricyanide reductase (a transmembrane redox enzyme) by coenzyme Q10 with HL-60 cells is similar to their growth pattern in response to coenzyme Q10. Unlike HL-60, HeLa and Balb/3T3 cells show little stimulation of ferricyanide reduction by coenzyme Q10. The stimulatory effect on both ferricyanide reduction and cell growth by the short side-chain coenzyme Q2 is much less than that of the long side-chain coenzyme Q10. Ferricyanide reduction by HeLa cells is inhibited by coenzyme Q analogs such as 2,3-dimethoxy-5-chloro-6-naphthyl-mercapto-coenzyme Q and 2-methoxy-3-ethoxyl-5-methyl-6-hexadecyl-mercapto-coenzyme Q. However, these inhibitions are reversed by coenzyme Q10. The growth inhibition of HL-60 cells by other coenzyme Q analogs, such as capsiacin can also be reversed by coenzyme Q10. These data indicate that plasma membrane-based NADH oxidation or modification of the membrane quinone redox balance may be a basis for the growth stimulation.  相似文献   

13.
COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q2. Rescue of respiration by Q2 is a characteristic of mutants blocked in coenzyme Q6 synthesis. Unlike Q6 deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q6. The physiological significance of earlier observations that purified Coq10p contains bound Q6 was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q2. This suggests that in vivo binding of Q6 by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p.  相似文献   

14.
Reduced and oxidized coenzyme Q10 (Q10H2 and Q10) in guinea-pig liver mitochondria were rapidly extracted and determined by high-performance liquid chromatography (HPLC). The percentages of Q10H2 as compared to the total (sum of Q10 and Q10H2) were increased by the addition of respiratory substrates such as succinate, malate and β-hydroxybutyrate (State 4). The levels of Q10H2 in State 4 were increased more extensively with electron-transport inhibitors such as KCN, NaN3 and antimycin A. These results indicate that the method for determining Q10H2 and Q10 by HPLC is quite useful for investigation of the physiological function of coenzyme Q in mitochondria and other organelles. The reduced and oxidized coenzyme Q levels of rat liver mitochondria, which contain both coenzyme Q9 and coenzyme Q10, were measured simultaneously. The results suggest that coenzymes Q9 and Q10 play a similar role as an electron carriers. The liver microsomes of guinea-pig contained approx. 133 nmol total coenzyme Q10 per g protein. The Q10H2 levels of microsomes were increased from 46.5 to 67.5 and 64.8% with NADH and NADPH, respectively. The plasma levels of total coenzyme Q were 0.92 μg/ml for man, 0.35 μg/ml for guinea-pig and 0.27 μg/ml for rat. The reduced coenzyme Q were also present in those plasma samples. The levels of reduced coenzyme Q were 51.1, 48.9 and 65.3%, respectively.  相似文献   

15.

Background

Mitochondria are both the cellular powerhouse and the major source of reactive oxygen species. Coenzyme Q10 plays a key role in mitochondrial energy production and is recognized as a powerful antioxidant. For these reasons it can be argued that higher mitochondrial ubiquinone levels may enhance the energy state and protect from oxidative stress. Despite the large number of clinical studies on the effect of CoQ10 supplementation, there are very few experimental data about the mitochondrial ubiquinone content and the cellular bioenergetic state after supplementation. Controversial clinical and in vitro results are mainly due to the high hydrophobicity of this compound, which reduces its bioavailability.

Principal Findings

We measured the cellular and mitochondrial ubiquinone content in two cell lines (T67 and H9c2) after supplementation with a hydrophilic CoQ10 formulation (Qter®) and native CoQ10. Our results show that the water soluble formulation is more efficient in increasing ubiquinone levels. We have evaluated the bioenergetics effect of ubiquinone treatment, demonstrating that intracellular CoQ10 content after Qter supplementation positively correlates with an improved mitochondrial functionality (increased oxygen consumption rate, transmembrane potential, ATP synthesis) and resistance to oxidative stress.

Conclusions

The improved cellular energy metabolism related to increased CoQ10 content represents a strong rationale for the clinical use of coenzyme Q10 and highlights the biological effects of Qter®, that make it the eligible CoQ10 formulation for the ubiquinone supplementation.  相似文献   

16.
Ubiquinone (coenzyme Q10), in addition to its function as an electron and proton carrier in mitochondrial electron transport coupled to ATP synthesis, acts in its reduced form (ubiquinol) as an antioxidant, inhibiting lipid peroxidation in biological membranes and protecting mitochondrial inner-membrane proteins and DNA against oxidative damage accompanying lipid peroxidation. Tissue ubiquinone levels are subject to regulation by physiological factors that are related to the oxidative activity of the organism: they increase under the influence of oxidative stress, e.g. physical exercise, cold adaptation, thyroid hormone treatment, and decrease during aging. In the present study, coenzyme Q homologues were separated and quantified in the brains of mice, rats, rabbits, and chickens using high-performance liquid chromatography. In addition, the coenzyme Q homologues were measured in cells such as NG-108, PC-12, rat fetal brain cells and human SHSY-5Y and monocytes. In general, Q1 content was the lowest among the coenzyme homologues quantified in the brain. Q9 was not detectable in the brains of chickens and rabbits, but was present in the brains of rats and mice. Q9 was also not detected in human cell lines SHSY-5Y and monocytes. Q10 was detected in the brains of mice, rats, rabbits, and chickens and in cell lines. Since both coenzyme Q and vitamin E are antioxidants, and coenzyme Q recycles vitamins E and C, vitamin E was also quantified in mice brain using HPLC-electrochemical detector (ECD). The quantity of vitamin E was lowest in the substantia nigra compared with the other brain regions. This finding is crucial in elucidating ubiquinone function in bioenergetics; in preventing free radical generation, lipid peroxidation, and apoptosis in the brain; and as a potential compound in treating various neurodegenerative disorders.  相似文献   

17.

Introduction

Fibromyalgia is a chronic pain syndrome with unknown etiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of fibromyalgia. However, it is still not clear whether oxidative stress is the cause or the effect of the abnormalities documented in fibromyalgia. Furthermore, the role of mitochondria in the redox imbalance reported in fibromyalgia also is controversial. We undertook this study to investigate the role of mitochondrial dysfunction, oxidative stress, and mitophagy in fibromyalgia.

Methods

We studied 20 patients (2 male, 18 female patients) from the database of the Sevillian Fibromyalgia Association and 10 healthy controls. We evaluated mitochondrial function in blood mononuclear cells from fibromyalgia patients measuring, coenzyme Q10 levels with high-performance liquid chromatography (HPLC), and mitochondrial membrane potential with flow cytometry. Oxidative stress was determined by measuring mitochondrial superoxide production with MitoSOX™ and lipid peroxidation in blood mononuclear cells and plasma from fibromyalgia patients. Autophagy activation was evaluated by quantifying the fluorescence intensity of LysoTracker™ Red staining of blood mononuclear cells. Mitophagy was confirmed by measuring citrate synthase activity and electron microscopy examination of blood mononuclear cells.

Results

We found reduced levels of coenzyme Q10, decreased mitochondrial membrane potential, increased levels of mitochondrial superoxide in blood mononuclear cells, and increased levels of lipid peroxidation in both blood mononuclear cells and plasma from fibromyalgia patients. Mitochondrial dysfunction was also associated with increased expression of autophagic genes and the elimination of dysfunctional mitochondria with mitophagy.

Conclusions

These findings may support the role of oxidative stress and mitophagy in the pathophysiology of fibromyalgia.  相似文献   

18.
《Free radical research》2013,47(11):1338-1344
Abstract

Despite their being good markers of oxidative stress for clinical use, little is known about ubiquinol-10 (reduced coenzyme Q10) and ubiquinone-10 (oxidized coenzyme Q10) levels in foetuses and their mothers. This study investigates oxidative stress in 10 healthy maternal venous, umbilical arterial and venous bloods after vaginal delivery by measuring ubiquinol-10 and ubiquinone-10 levels. Serum ubiquinol-10 and ubiquinone-10 levels were measured by HPLC with a highly sensitive electrochemical detector. Maternal venous ubiquinol-10 and ubiquinone-10 levels were significantly higher than umbilical arterial and venous levels (all p < 0.001). However, the ubiquinone-10/total coenzyme Q10 (CoQ10) ratio, which reflects the redox status, was significantly higher in umbilical arterial and umbilical venous blood compared to maternal venous blood (all p < 0.001). The ubiquinone-10/total CoQ10 ratio was higher in umbilical arterial than in umbilical venous blood (p < 0.01). The present study demonstrated that foetuses were under higher oxidative stress than their mothers.  相似文献   

19.
The effect of coenzyme Q10 on glioma-cell proliferation under serum-deprived conditions has been studied. Our results have shown that the addition of coenzyme Q10 into a serum-free culture medium enhances cell viability, stimulates cell growth, restores mitochondrial potential, and increases the quantity of energized mitochondria. It is found that coenzyme Q10-induced glioma-cell proliferation in conditions of serum deficiency is a result of an intracellular reduced glutathione concentration with subsequent activation of protein kinase C, ERK1/2, and phosphoinositol-3-kinase.  相似文献   

20.
Thioredoxins (TRXs) are important proteins involved in redox regulation of metabolism. In plants, it has been shown that the mitochondrial metabolism is regulated by the mitochondrial TRX system. However, the functional significance of TRX h2, which is found at both cytosol and mitochondria, remains unclear. Arabidopsis plants lacking TRX h2 showed delayed seed germination and reduced respiration alongside impaired stomatal and mesophyll conductance, without impacting photosynthesis under ambient O2 conditions. However, an increase in the stoichiometry of photorespiratory CO2 release was found during O2-dependent gas exchange measurements in trxh2 mutants. Metabolite profiling of trxh2 leaves revealed alterations in key metabolites of photorespiration and in several metabolites involved in respiration and amino acid metabolism. Decreased abundance of serine hydroxymethyltransferase and glycine decarboxylase (GDC) H and L subunits as well as reduced NADH/NAD+ ratios were also observed in trxh2 mutants. We further demonstrated that the redox status of GDC-L is altered in trxh2 mutants in vivo and that recombinant TRX h2 can deactivate GDC-L in vitro, indicating that this protein is redox regulated by the TRX system. Collectively, our results demonstrate that TRX h2 plays an important role in the redox regulation of mitochondrial photorespiratory metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号